
Learning Probabilistic Models for Safe Predictive Control in Unknown
Environments

Christopher D. McKinnon and Angela P. Schoellig

Abstract— Researchers rely increasingly on tools from ma-
chine learning to improve the performance of control algorithms
on real world tasks and enable robots to operate for long periods
of time without intervention. Many of these algorithms require a
model for the dynamics of the robot. In particular, researchers
designing methods for safe learning control often rely on an
upper bound on model error to make guarantees about the
worst-case closed-loop performance of their algorithm. There
are different options for how to learn such a model of the
robot dynamics. We study probabilistic models for use in the
context of stochastic model predictive control. Two popular
choices for learning the robot dynamics are Gaussian Process
(GP) regression and various forms of local linear regression. In
this paper, we present a study comparing GPs with a particular
form of local linear regression for learning robot dynamics with
the aim of guaranteeing safety when a robot operates in novel
conditions. We show results based on experimental data from
a 900 kg ground robot using vision for localisation.

I. INTRODUCTION

This paper presents a study comparing two probabilistic
methods for modelling robot dynamics in the context of
stochastic Model Predictive Control (MPC): Gaussian Pro-
cess (GP) regression, and local, weighted Bayesian Linear
Regression (BLR). In particular, we are interested in how
these methods can enable a robot to operate in challenging
and changing environments with minimal expert input and
prior knowledge of the operating conditions. Our study is
motivated by the growing popularity of GPs [1]–[4] and local
linear regression [5]–[7] to model robot dynamics, and the
interest in deploying robots in a wide range of operating
conditions.

Safe control methods have emerged as a way to guarantee
that safety constraints (e.g. a bound on maximum path track-
ing error) are kept in the face of model errors. The accuracy
of the bound on model error is of critical importance to the
validity of these safety guarantees. In order to derive such
models for complex systems or systems operating in chal-
lenging operating conditions, researchers increasingly rely
on tools from machine learning. In particular, probabilistic
models are used since they provide a measure of model
uncertainty which can naturally be used to derive an upper
bound on model error. Two common methods for doing this
are GP regression [1]–[4] and various forms of local linear
regression [5]–[7].

GPs have recently gained a lot of popularity. They have
been applied to problems such as modelling the dynamics
of a robot performing repetitive path following [2], model

The authors are with the Dynamic Systems Lab (www.dynsyslab.org) at
the University of Toronto Institute for Aerospace Studies (UTIAS), Canada.
email: chris.mckinnon@mail.utoronto.ca, schoellig@utias.utoronto.ca

car racing [1], and for a manipulator robot performing a
tracking task [6]. While a naive implementation of a GP
can be computationally intractable since it scales poorly in
the number of training points, several solutions have been
proposed including local GPs [8], [9], sparse GPs [1], and
GPs using a special set of basis functions [7]. These alterna-
tives make GPs computationally tractable in a control loop,
even for controllers such as stochastic MPC which require
evaluating the model for the robot dynamics many times at
each timestep. In addition to being computationally feasible
for stochastic MPC, GP-based models have been extended
to learn the dynamics of a robot subjected to changes not
seen in the training data [2]. Comparisons have shown that
GPs can achieve higher accuracy and good prediction speed
compared to local linear regression when GP approximations
are used. These comparisons and the work using GPs for
modelling robot dynamics typically consider fairly controlled
environments such as a manipulator performing a tracking
task [10] or a ground robot in a parking lot [2]. While there
are notable exceptions, e.g. [3], where a ground robot was
driven over challenging outdoor terrain, there has been no
comparison to local linear regression in this case.

Local linear regression can also predict model uncertainty
which makes it a good alternative for use in learning-based
control [7]. While local linear regression can be used as
a general nonlinear function approximator [5], it can also
be used in combination with parametrized physical models
which makes it very computationally efficient [11], [12]. In
our previous work [12], we demonstrated that this approach
has the potential to learn robot dynamics in a wide range
of operating conditions and demonstrated that it is capable
of enabling the robot to drive at high speed on challenging
offroad terrain. In this paper, we compare the performance
of the same safe controller with a GP-based model and a
model based on local linear regression and show how the
two models perform as the operating conditions are made
increasingly challenging.

The rest of this paper is organized as follows. In Sec. II,
we define our problem statement including the class of
dynamics models being considered. In Sec. III, we provide
a brief overview of GP regression and introduce local BLR,
which are the two methods for model learning compared
in this paper, and show a simple example illustrating a key
difference that is relevant for stochastic control in changing
environments. In Sec. IV, we describe how we construct local
models for control, manage past data, and do uncertainty
propagation, which is important for stochastic control. In
Sec. V, we show how we apply both methods to a ground



robot, and, in Sec. VI, we present our experimental results.
Notation: We denote matrices with boldface uppercase

letters, column vectors with boldface lowercase letters, and
scalars with non-boldface letters. The identity matrix of
appropriate size will be denoted by I. The matrix trace
operator is tr(·), and ||v||2M = vTMv. The mean of a
Gaussian random variable v is v̄. Functions are followed by
round brackets, e.g. v(·), if the output is a vector and v(·) if
the output is a scalar. A probability density function (pdf) of
v given parameters ∗ will be denoted by p(v | ∗). A Gaussian
pdf of v with mean µ and variance σ2 will be denoted by
N (v |µ, σ2), and v ∼ N (µ, σ2) means that samples of v are
distributed according to a Gaussian distribution with mean µ
and variance σ2. An Inverse Gamma distribution for variable
v with shape parameter a and scale parameter b will be
denoted IG(v | a, b). A Student t distribution for variable v
with mean µ, scale σ2, and degrees of freedom ν will be
denoted as T (v |µ, σ2, ν).

II. PROBLEM STATEMENT

The goal of this work is to study probabilistic model learn-
ing for stochastic MPC for robots performing repetitive path
following tasks in changing conditions. The key requirements
for the model are: (i) high accuracy multi-step prediction
to achieve high control performance; (ii) realistic bounds
on model error to maintain safety; and (iii) computational
efficiency to allow for a long prediction horizon in MPC.

We consider systems with dynamics of the form

sk+1 = sk + dt

known︷ ︸︸ ︷
f(sk, ξk), (1)

ξk+1 = g0(ξk,uk)︸ ︷︷ ︸
known

+dt gk(xk)︸ ︷︷ ︸
unknown

, (2)

where the state of the system s evolves according to known
dynamics f(·) that depend on s and the state of the actuators
ξ. We assume that our control input u affects the actuator
dynamics which consist of a known part g0(·) and an
unknown and potentially changing part gk(·) that we wish
to learn. The unknown dynamics depend on a feature vector
x that may be, for example, composed of ξ and u. The
subscript refers to the timestep and dt is the duration of a
timestep.

III. MODEL LEARNING TECHNIQUES

In this paper, we compare two common methods for proba-
bilistic model learning: (i) Gaussian Process (GP) regression,
which can learn nonlinear functions with additive Gaussian
noise; and (ii) a particular form of Bayesian linear regression
(BLR), which can learn functions that have additive Gaussian
noise and are linear in a set of model parameters. In this
section, we describe both methods and give a simple example
illustrating a key difference between these methods that is
relevant for stochastic control in changing conditions.

For both methods, our goal is to model gk(xk) given mea-
surements of xk, ξk, and uk. We consider each dimension
of gk(xk) separately. For this section, we will refer to a
single dimension of gk(·) as g(·). For a given pair of xk and

ξk, the corresponding sample from g(xk), denoted as gk,
may be calculated as gk = (ξk+1 − g0(ξk,uk))/dt, where
ξk+1 and g0(·) are the relevant dimensions of ξk+1 and g0(·)
respectively.

A. Gaussian Process Regression

GPs are a common choice for modelling unknown func-
tions such as gk(·) [1], [3], [13]. They provide an estimate
of model uncertainty, can approximate nonlinear functions,
and the parameters can be determined from data. Since there
are many good references on GPs, e.g. [14], here we provide
only a high-level summary. A GP models functions of the
form

g(x) = µ(x) + η, (3)

where η ∼ N (0, σ2) and µ(·) is a potentially nonlinear mean
function. A GP is a distribution over functions given past data
D = {xi, gi}ni=1, a kernel, and kernel hyperparameters. For
this formulation, all points are weighted equally. The pos-
terior distribution is characterized by a mean and variance,
which can be queried at any point x∗ using

µ(x∗) = kT (x∗)K−1g, (4)

σ2(x∗) = κ(x∗,x∗)− kT (x∗)K−1k(x∗), (5)

where g is a column vector of gi, the covariance ma-
trix K ∈ Rn×n has entries Ki,j = κ(xi,xj), where
κ(·) is the kernel function. The column vector k(x∗) =
[κ(x∗,x1), ..., κ(x∗,xn)]T contains the covariances between
the new test point x∗ and the observed data points in D. For
this work, we use the squared exponential kernel,

κ(xi,xj) = σ2
f exp

(
−1

2
||xi − xj ||2M−2

)
+ σ2

ηδij (6)

with δij being the Kronecker delta, because of its success in
modelling robot dynamics [3], [15]–[17]. The hyperparame-
ters are the diagonal matrix M with so-called length-scales
on the diagonal, which are inversely related to the importance
of each element of x, the process noise variance σ2

f , which
is the variance of the prior family of functions represented
by the GP, and the measurement noise variance σ2

η .
Although it is assumed that the underlying function is

deterministic and that we receive noisy observations with
a constant noise variance σ2

η , the predicted variance (5)
depends on x∗ because uncertainty about the underlying
function depends on the distribution of training data.

As training data is added to a particular GP, uncertainty is
reduced and the posterior distribution of the GP specializes
to a particular family of functions that represents the system
dynamics in a particular operating condition.

B. Bayesian Linear Regression

Alternatively to GPs, if the function has additive Gaussian
noise and can be factored such that it is linear in a set of
model parameters, we can use Bayesian Linear Regression
(BLR). In this section, we present weighted BLR (wBLR)
where each data point can be assigned a weight indicating its
importance. The weight can be used to vary its contribution



to the current regression. These weights are determined in
a separate step and are useful for tasks such as long-term
learning where some past experiences may be more relevant
than others [12]. We will discuss how to compute these
weights in Sec. IV-B.

Suppose we are given a weighted dataset
Dl = {xi, gi, li}ni=1 with scalar weights li ∈ [0, 1] that
determine the importance of each data point. If li = 0, the
point has no influence on the regression, and if li = 1, the
point is fully included. In a simple scenario, all weights
can be set to 1, in which case we recover regular BLR. We
assume that the dynamics of interest depend on a vector of
model parameters w and are of the form

g(x) = xTw + η, (7)

where η ∼ N (0, σ2). The goal of wBLR is to determine
the distribution of both w and σ2 given Dl.

The likelihood of the dataset Dl assuming all measure-
ments are independent is

p(g |X,w, σ2) =

n∏
i=1

N (gi |xTi w, σ2)li , (8)

where g is a column vector of gi, and rows of X are xi.
Expanding the above, we get

p(g |X,w, σ2)

=

n∏
i=1

[
(2π)−

1
2 (σ2)−

1
2 exp

(
− 1

2σ2
(gi − xTi w)2

)]li
(9)

= (2π)−
tr(L)

2 (σ2)−
tr(L)

2 exp

(
− 1

2σ2
||g −Xw||2L

)
, (10)

where L is a diagonal matrix with diagonal elements li. Now
we factor the likelihood to get it in terms of the parameters
of the distribution rather than the data. Ignoring constants
(which do not depend on w and σ),

p(g |X,w, σ2)

∝ (σ2)
−tr(L)

2 exp
( −1

2σ2
(||g||2L − 2gTLXw + ||Xw||2L)

)
∝ (σ2)

−tr(L)
2 exp

(
−1

2σ2
||w − w̄||2Σ−1

)
exp

(
−1

2σ2
(||g||2L − ||w̄||2Σ−1)

)
, (11)

where w̄T = gTLX(XTLX)−1 and Σ−1 = (XTLX).
This is of the form of a Normal Inverse Gamma (NIG)
distribution,

p(g |X,w, σ2) =N (w | w̄, σ2Σ)

IG(σ2 | tr(L)/2, (||g||2L − ||w̄||2Σ−1)/2),
(12)

where IG(·) is the Inverse Gamma distribution. We can then
choose an NIG distribution as a conjugate prior [18]. The
prior represents our belief about the distribution of w and σ2

before observing the data Dl. The posterior joint distribution

for w and σ2 is then

p(w, σ2 | Dl) = NIG(w, σ2 |wN ,VN , aN , bN ) (13)

, N (w |wN , σ
2VN )IG(σ2 | aN , bN ), (14)

where

VN = (V−1
0 + XTLX)−1, (15)

wN = VN (V−1
0 w0 + XTLg), (16)

aN = a0 + tr(L)/2, (17)

bN = b0 +
1

2
(wT

0 V−1
0 w0 + gTLg −wT

NV−1
N wN ). (18)

The subscripts 0 and N indicate parameters of the prior
and posterior, respectively. The prior parameters (and their
posterior equivalents) have the following interpretation: w0

is the prior mean for w; a0 proportional to the strength of
the prior; b0 = σ2

0a0, where σ2
0 is the prior estimate of σ2;

and V0 = 1/σ2
0Σ

ww
0 where Σww

0 is the covariance matrix of
w0. For example, if we have prior knowledge suggesting that
each element of w is independent and has a mean value of
zero and variance τ20 , then V0 = τ20 /σ

2
0I. These parameters

can also be identified from data using (15)-(18) and a non-
informative prior, i.e. w0 = 0, τ20 =∞, b0 = 0, and a0 = 0,
and σ2

0 large. The resulting posterior parameters can then be
used to set a new prior. The prior is initialized once this way
at the beginning of each run.

Following [18], the posterior marginals are then

p(σ2 | Dl) = IG(σ2 | aN , bN ), (19)

p(w | Dl) = T (w |wN ,
bN
aN

VN , 2aN ), (20)

where T is a Student t distribution. The Student t distribution
arises because of marginalizing out σ2 and rapidly converges
to a Gaussian distribution for 2aN � 5 [18], which is useful
for using this method with common tools for robotics which
often assume Gaussian probability distributions.

Recursive Updates: When dealing with streaming data
such as the data generated by a robot driving, it is useful
to continually update the model in order to adapt quickly
to new scenarios. To do this while ensuring the model stays
flexible enough to adapt to sudden changes, we recursively
update the prior parameters while keeping the strength of
the prior fixed at a pre-determined value n0. The value of
n0 determines how many effective data points we attribute to
the prior. A large value for n0 results in smoother estimates
for the w and σ2 while a smaller value for n0 allows them
to vary more quickly. If we start with fewer than n0 points
in the prior, e.g. a0 < n0/2, we update the prior using (15)-
(18) with the weight for the new point set to one, and set the
posterior parameters to the prior for the next timestep. Once
a0 reaches n0/2, we use (15)-(18) with the weight for the
new point set to one and then use the following re-weighting



to keep n0 constant:

V0∗ =
n0 + 1

n0
VN , w0∗ = wN , (21)

a0∗ =
n0

n0 + 1
aN , b0∗ =

n0
n0 + 1

bN . (22)

The parameters (·)0∗ are the re-weighted parameters which
become the new prior. This is equivalent to assigning the
prior and the new point a weight of n0/(n0+1) and carrying
out a weighted update using (15)-(18).

Compared to GPs, this gives us more control on how fast
the model adapts. For a GP, a new point must either displace
an existing one if the model has fixed size or increase the
model size, which increases the computational cost of the
model and will make it less flexible over time as more points
are added. For wBLR, the influence of old data decreases
after each re-weighting. The rate at which this happens
depends on n0, which is a parameter of our choosing and
does not affect the computational cost of the model.

C. Computational Efficiency

There are three important operations for each model:
(i) fitting the model to the data, (ii) evaluating the mean at
a test point and (iii) evaluating the variance at a test point.
Fitting a model can be done in parallel to the control loop
to mitigate some of the computational cost of this step [2].
However, querying the mean and variance are often part of
computing the control, which makes these operations time-
critical. This is especially true for MPC, which queries the
model several times at each timestep.

The time it takes to fit a GP to N data points, query the
variance, and query the mean scales with O(N3), O(N2),
and O(N), respectively. This is because of the computation
of the matrix inverse K−1, the matrix product in (5), and
the dot product in (4). For wBLR, the same operations scale
with O(N), O(1), and O(1) because of the dot products in
(15)-(18) and because the output equations are parametric.

D. Simple Example

Safe control algorithms require an accurate estimate of the
model uncertainty to guarantee constraint satisfaction even if
the mean prediction from the model is inaccurate. One key
difference between wBLR and GP regression (for fixed GP
hyperparameters) is that the uncertainty estimate from a GP
depends only on the similarity between the query point and
training points in the input space as measured by a kernel
(see (5)). In contrast, the wBLR parameters can be updated
efficiently online using (15)-(18) which allows the posterior
estimate to reflect variations in noise more readily.

Figure 1b shows a simple example where the underlying
function has a component that increases in frequency as the
input variable increases. Training samples are gathered from
x ∈ [−3, 0] and used to determine the GP hyperparameters
and the wBLR prior. For the GP, we use a squared expo-
nential kernel (6) and determine the hyperparameters using
maximum likelihood. For wBLR, we use a non-informative
prior and set li = 1/n so that a0 = 1/2 (the effective

Marginal Distribution of w
Prior PDF

Posterior PDF
Prior Mean

Posterior Mean

30

20

10

0

p
(w

)

0.8 1.0 1.20.9 1.1
w σ2

0 0.02 0.060.04 0.08 0.10
0

100

200

50

150

p
(σ

2
)

Marginal Distribution of σ2

Prior PDF

Posterior PDF
Prior Mean

Posterior Mean

(a) wBLR estimates for the distribution of the weights and the output
variance. The prior is set using 100 samples from the function depicted
in Fig. 1b from x ∈ [−3, 0] and the posterior is set using 200 samples
from x ∈ [−3, 3]. The wBLR posterior estimate of the variance increases
to reflect the high frequency component of the function that is more
pronounced for x > 0.

GP Approximation wBLR Approximation

Test Samples

wBLR 2σ
wBLR Mean1

-1

-3 -2 -1 0 1 2 3
x

-3 -2 -1 0 1 2 3
x

y

Test Samples
GP Mean
GP 2σ

0

True Mean FunctionTrue Mean Function

(b) Predictive distribution for the GP and wBLR models after fitting the
posterior to x ∈ [−3, 3]. The fact that the GP hyperparameters are fixed,
which is a common assumption due to computational constrains, means
it cannot adapt to the high frequency component for x > 0, while the
wBLR model increases the output variance resulting in more accurate
uncertainty bounds. While the mean estimates for the two methods are
very similar, the model uncertainty estimate for wBLR is more realistic
which is important for safe learning algorithms.

Fig. 1: Simple example illustrating one difference between wBLR and GPs
for the function y = 1.2 sin(x) + 0.2 sin(5 exp(x)) + η, where η ∼
N (0, 0.052). For wBLR, it is assumed that the function is of the form
y = w sin(x) + η where w is the model parameter and sin(x) is the
feature.

number of data points in the prior is 1). For a robot,
this represents gathering training data from a set of test
scenarios. The test data is gathered from x ∈ [−3, 3], which
represents deploying the robot in a partially novel scenario.
Once both models are fit to this new data, which involves
computing K−1 and K−1g based on the new points for
the GP and computing the posterior parameters for wBLR
using (15)-(18), Fig. 1b shows how the GP uncertainty
estimate is no longer valid while the wBLR model is able to
adapt the uncertainty estimate (see Fig. 1a) making it more
appropriate for this new data. This property is important for
safe learning-based controllers deployed in novel scenarios.

IV. MODEL LEARNING FOR REPETITIVE PATH
FOLLOWING AND PREDICTIVE CONTROL

We consider a repetitive path following task with a
stochastic MPC (presented in [12]) where data from each run
is stored and indexed by location along the path as depicted
in Fig. 2. Stochastic MPC computes a sequence of controls
that minimises a given cost function over a prediction horizon
subject to state and input constraints given a model for
the robot dynamics and the current state of the robot. At
each timestep, the first input value of the computed, optimal
sequence is applied to the system. This is repeated at the
each time-step.



Maximum Lateral Error

Data from Previous Runs Reference Path

Predicted Mean
Predicted State Distribution

Fig. 2: This figure shows the robot and the predicted state distribution
given the sequence of inputs from MPC overlaid on the reference path with
maximum path tracking constraints (state constraints). Data from previous
runs is indexed by location along the path and indicated by the green
circles. We are interested in constructing a model for the vehicles dynamics
over the section of the path which is relevant for the MPC based on the
chosen prediction horizon (shaded blue region). To construct this model, we
consider data from previous runs over that section of the path.

A. Local Models

Since the controller only makes use of the dynamics of
the vehicle over the upcoming section of the path, we only
have to model the dynamics of the vehicle relevant for the
upcoming manoeuvre. The advantage for the GP is that we
need fewer points to model the dynamics over this restricted
region of the state space which is more computationally effi-
cient. The advantage for wBLR is that the relatively simple
parametric model is more likely to be a good approximation
for the dynamics over this restricted region.

B. Data Management

For the GP, we only use data from the upcoming section
of the path (and not the current run) because the number of
points in the GP is limited and we only need the dynamics for
the upcoming manoeuvre. Following [2], to update the points
in the GP, we randomly take np points from the previous run
over the upcoming section of the path, combine this with the
ngp points in the GP, and randomly select ngp points from
this combined set to construct the updated model. In this
way, the number of points in the GP remains constant and
the GP ‘forgets’ old experiences over time.

For wBLR, we recursively update the prior using data from
the current run at each timestep (Sec. III-B) and compute
the posterior using data from the upcoming section of the
path weighted according to how similar the dynamics in each
previous run were to the current run (15)-(18). See [12] for
details on determining the weights. We use data from all
previous runs because the update is efficient and the time to
evaluate the model does not depend on the number of data
points used to construct it. The posterior update (based on
data from previous runs) is considered to be location specific
and therefore discarded after computing the control; that is,
the recursively updated prior becomes the prior for the next
timestep.

We use these local models to predict trajectories and their
associated uncertainty at each timestep given a sequence of
inputs from MPC. Both models are updated at every timestep

C. Uncertainty Propagation

We assume a Gaussian belief over the state at each
time step and a nonlinear model for the robot dynamics.
This allows us to use the Extended Kalman Filter (EKF)
prediction equations to propagate our belief over the full state
into the future given a series of inputs [19].

For a wBLR-based model, we include uncertainty in the
full state z = [sT , ξT ]T , the actuator model parameters w,
and the actuator model output η. Let h(·) be the combined
dynamics model (1) and (2) and A be the Jacobian of h(·)
with respect to the stacked full state and parameters evaluated
at the mean state at time k, A = [Az,Aw]. The mean z̄k
and covariance Σzz

k can be updated using:

z̄k+1 = h(z̄k,uk), (23)

Σzz
k+1 = APkA

T + Qk, (24)

Pk =

[
Σzz
k 0
0 Σww

k

]
, (25)

where Σww
k is a block-diagonal matrix containing the model

weight covariance matrix from (20) for each dimension of
gk(·), Qk is the process noise covariance, and uk comes
from MPC. The only non-zero components in Qk are the
diagonal elements corresponding to uncertainty in the output
of the actuators for which we use the posterior mean of
the variance from (19). In this framework, we can include
uncertainty in the evolution of the model parameters w by
modelling their dynamics as a random walk. In this work,
we consider them to be fixed at the posterior estimate over
the lookahead horizon.

The prediction equations for the GP-based model are the
same but without the additional elements for w and using
(5) for the non-zero elements of Qk.

D. Ancillary Controller Design

If we use the dynamics model h(·) without modification,
the method presented in the previous section estimates the
uncertainty in the predicted trajectories as if the control
sequence was applied open loop. However, this is conser-
vative since it neglects the fact that the controller can take
corrective actions at each timestep. One common approach
to account for this is to include an ancillary controller in the
predictive model that is designed to steer the system towards
the predicted mean, denoted by (̄·). This limits the growth
of uncertainty around the mean. A common simplifying
assumption is that the prior model is linear (or linearised
about an operating point) and that the unknown dynamics
are bounded [19]–[22]. Since we assume the dynamics of
s are known and nonlinear, we use an ancillary controller
to control the growth of the uncertain, learned dynamics of
ξ. Not only does this simplify the design of the ancillary
controllers, but it allows us to reduce the uncertainty in ξ
which in turn keeps the uncertainty in s low over the length
of a typical MPC prediction horizon. The dynamics of the
actuator state with the added ancillary controller π(·) become

ξk+1 = g0(ξk,uk) + dt
(
gk(xk) + π(ξk, sk, ξ̄k, s̄k)

)
.
(26)

The ancillary controller is never used directly and is a
design parameter used to control the growth of predicted
uncertainty. There are guidelines on how to choose it [19]–
[22]. In general, the more control action is allocated to reduce
uncertainty in the predicted state, the less control action is



Fig. 3: This figure shows the 900 kg Clearpath Grizzly on the muddy test
track used for the experiments in the results section. The controller receives
estimates of its pose and velocity from a vision system which relies solely
on a stereo camera (c.f. [23]).

available for MPC to steer the mean of the system along the
path. In the following section, we will show one possible
design for π(·) for a ground vehicle.

V. APPLICATION TO A GROUND ROBOT
In this section, we show an example of how to apply

the two probabilistic modelling techniques, GPs and wBLR,
in combination with stochastic MPC to a ground robot, the
Clearpath Grizzly depicted in Fig. 3.

A. Robot Model

Let s = [x, y, θ]T , the 2D position and heading of the
robot, ξ = [v, ω]T , the speed and turn rate of the robot,
and u = [vcmd, ωcmd]T , the commanded speed and turn rate
of the robot. We assume that the dynamics of s are well
approximated by a unicyclexk+1

yk+1

θk+1


︸ ︷︷ ︸

sk+1

=

xkyk
θk


︸ ︷︷ ︸

sk

+dt

vk cos θk
vk sin θk
ωk


︸ ︷︷ ︸

f(·)

, (27)

which is of the form (1). For wBLR, we will model the
dynamics of ξ as[

vk+1

ωk+1

]
︸ ︷︷ ︸

ξk+1

=

[
vk
ωk

]
︸ ︷︷ ︸
g0(·)

+dt

[
[vcmdk , vk]wv

k + ηvk
[ωcmdk , ωk]wω

k + ηωk

]
︸ ︷︷ ︸

gk(·)

, (28)

which is of the form (2). For the model using GPs, we model
the speed and turn rate dynamics as[

vk+1

ωk+1

]
︸ ︷︷ ︸

ξk+1

=

[
vcmdk

ωcmdk

]
︸ ︷︷ ︸

g0(·)

+dt

[
µvk(vk, v

cmd
k ) + ηvk

µωk (ωk, ω
cmd
k ) + ηωk

]
︸ ︷︷ ︸

gk(·)

. (29)

We use different models for the GP and wBLR so that the
speed and turn rate for the GP-based model depends on the
control inputs before data is added to the GP. If it did not,
MPC would not be able to drive the vehicle for the first run.
For wBLR, we keep g0(·) = ξk which is a more natural

x
y

θ
v

ω

Predicted States with 3σ Uncertainty

0 1 2 3Time [s]

1
0

0.00

-0.25

0.1
0.0

-0.1

1

0

0.1
0.0

-0.1

wBLR
GP

Fig. 4: This figure shows the predicted state distribution from both the GP-
based (red) and wBLR-based (blue) models using the proposed ancillary
controller. The shaded regions are the predicted 3σ bounds. The proposed
ancillary controller is able to keep the 3σ uncertainty in y, which is
roughly equivalent to lateral uncertainty, at about 25 cm at the end of the
prediction horizon for both models, which is well below the maximum
lateral uncertainty used in our experiments.

choice for modelling dynamic systems. It should be noted
that the wBLR prior is equivalent to the GP prior for a certain
choice of w. In both cases, x is composed of ξ and u.

B. Ancillary Controller Design

We use a linear state feedback controller as an ancillary
controller for the learned dynamics. The main benefit of this
is that predicted uncertainty in the error the controller reacts
to can be straightforwardly used to tighten the constraints on
the control inputs using the method described in [19]. Here,
we present an ancillary controller design for both wBLR and
GP-based models and show simulation results demonstrating
the effectiveness of this approach.

We use the following ancillary controllers to reduce the
predicted speed and heading uncertainty and, as a conse-
quence, position uncertainty, which is linked to the maximum
path tracking error constraint. The turn rate and speed
dynamics with the ancillary controllers are[

vk+1

ωk+1

]
= g0(·) + dt

[
gvk(vk, v

cmd
k ) +Kv(vk − v̄k)

gωk (ωk, ω
cmd
k )︸ ︷︷ ︸

gk(·)

+Kθ(θk − θ̄k︸ ︷︷ ︸
π(·)

)

]
,

(30)

where gvk(vk, v
cmd
k ) and gωk (ωk, ω

cmd
k ) are the respective

wBLR or GP-based models and g0(·) is the corresponding
prior, either (28) or (29). The ancillary controller gains were
chosen manually because it was easy to find values that
worked well in practice.

Figure 4 shows the predicted uncertainty using the GP
and wBLR models with the proposed ancillary controller.
Each learning model was trained using data from the same
experiment and Kv and Kθ were set to -5. Here, we can see
that the proposed method is able to keep the uncertainty at a
reasonable level for the duration of a typical MPC prediction
horizon for both GP- and wBLR-based models.

VI. RESULTS

The purpose of this section is to compare the performance
of the stochastic MPC when using the GP- and wBLR-based



models. To test both methods in a challenging environment
where the robot dynamics change, we drove the vehicle
around a 43 m muddy path (depicted in Fig. 3) with varied
target speed. As the target speed was increased, the vehicle
incurred more slip which noticeably changed the dynamics.
The speed was increased gradually to ensure that the most
relevant data was from the last run for the GP.

First, we compare the tracking performance at various
target speeds. Next, we compare the model performance to
link the mean and uncertainty estimates from each model to
the resulting closed-loop performance.

A. Experimental Setup

Our experimental platform was the Clearpath Grizzly
depicted in Fig. 3. The controller was the stochastic MPC de-
scribed in [12]. The controller parameters were kept constant
and only the learning model and target speed were changed
during the experiment. Two sets of GP hyperparameters were
determined from a dataset where the wBLR-based controller
drove the vehicle on the muddy test track: one with the
vehicle driving with a target speed of 1.0 m/s (GP 1); and
the other from the vehicle driving with a target speed varied
between 1.0 and 2.5 m/s in increments of 0.5 m/s (GP 2). The
hyperparameters were chosen to maximize the likelihood of
a randomly chosen validation set. A constant prior was used
to initialize wBLR that was identified from another dataset.
This prior only matters for the first few seconds because it
is constantly updated using data from the current run.

Our algorithm was implemented in C++ on an Intel i7
2.70 GHz 8 core processor with 16 GB of RAM. The solver
used in MPC was CPLEX [24]. The controller runs at 10 Hz
with a look-ahead of 2 seconds, which is discretised with 20
points. The local GP was constructed using ngp = 50 past
data points and np = 5. For wBLR, n0 was set to 200. The
maximum lateral error was set to 1.0 m and Kv and Kθ were
set to -5. We rely on a vision-based system for localization
[23], which runs on the same laptop.

B. Closed-Loop Performance Comparison

Figure 5 shows that both models enabled the controller
to perform well at low speed. However, for the GP-based
models, the tracking error increased quickly with the target
speed. GP 1 failed during run 6 at a target speed of 1.5 m/s
and GP 2, trained on data from higher speeds, failed during
run 7 with a target speed of 2.0 m/s. When the controller used
the wBLR-based model, the tracking error increased with the
desired speed, but the vehicle was able to traverse the path
safely and reliably for all target speeds. In the next section,
we analyse the prediction accuracy of the two models and
show how it is linked to the difference in performance.

C. Multi-Step Prediction Performance

In this section, we compare the prediction performance of
the best GP-based model (GP 2) and the wBLR-based model
offline. Our performance metrics are the Multi-step RMSE
(M-RMSE), which is the RMS prediction error over the MPC
look-ahead horizon, and the Multi-step RMSZ (M-RMSZ),

wBLR
GP 1
GP 2

Lateral Error Distribution by Run

A
bs

ol
ut

e
Tr

ac
ki

ng
E

rr
or

[m
]

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12
Run Number

1.0 m/s 1.5 m/s 2.0 m/s 2.5 m/s

Fig. 5: This figure shows the 25th, 50th, and 75th percentiles of absolute
lateral tracking error when the controller used each model as the target
speed was increased. When the controller used the wBLR-based model, it
was able to drive the vehicle at a significantly higher target speed while
maintaining low path tracking error. While the controller performed well at
low speed using the GP-based models, the performance quickly degraded
as the target speed was increased leading to failures on runs 6 for GP 1 and
7 for GP 2.

which is the RMS Z-score over the MPC look-ahead horizon
[2]. Ideally, the M-RMSE should be low and the M-RMSZ
should be close to 1.

Figure 6 shows that the predictive performance of both
models is comparable when the vehicle drives up to 2.0 m/s.
The GP takes one run to adapt because it only uses data from
previous runs. This slow adaptation is likely what caused the
failure for GP 2 at 2.0 m/s. When the target speed is increased
to 2.5 m/s, the wBLR-based model clearly outperforms the
GP-based models. The M-RMSE is higher than previous runs
for wBLR as well, but the M-RMSZ is around 1.0 indicating
that the model uncertainty estimate is still realistic. This
indicates that while the wBLR-based model appears to make
stronger assumptions on the form of the model, being able to
adapt all model parameters including the uncertainty online
and use data from the current run enables this model to adapt
to novel scenarios better than the GP-based models.

D. Speed Comparison

Figure 7 shows the actual speed of the vehicle when
the controller used the GP 2- and wBLR-based models.
The average speed achieved by the better of the GP-based
controllers (GP 2) during runs 4-6 was 1.00 m/s. The wBLR-
based controller was slightly slower during runs 4-6 at
0.92 m/s, but increased this to 1.08 and 1.09 m/s during runs
7-9 and 10-12 respectively (9 % faster than the GP). The
fact that the speed did not increase much between runs
7-9 and 10-12 indicates that the controller is making use
of the uncertainty estimate to limit the maximum speed
of the vehicle in order to maintain safety. This shows that
the wBLR-based model enabled the controller to drive the
vehicle safely and reliably at equal or higher speeds than the
GP-based models in these challenging conditions.

VII. CONCLUSION

There are many choices for probabilistic models for robot
dynamics. Two common choices are GP regression and
various forms of local linear regression. There is a large body



wBLR
GP 2

Model Predictive Performance Comparison

1 2 3 4 5 6 7 8 9 10 11 12
Run Number

wBLR
GP 2

1.0 m/s 1.5 m/s 2.0 m/s 2.5 m/s

0

1

2

3

4

0.2

0.4

0.6
M

-R
M

SZ
M

-R
M

SE
[r

ad
/s

]

Fig. 6: This figure shows the 25th, 50th, and 75th percentiles of M-RMSE
and M-RMSZ for the GP and wBLR-based models at varied target speed.
These values are calculated offline based on the data from the wBLR-based
controller driving the vehicle. This shows that while both methods perform
well at low speed, the wBLR-based model continues to perform well at
high speed indicating better generalization to new conditions. The GP-based
model produces higher error and more overconfident error estimates (higher
M-RMSZ indicated by the red circles) when the speed changes and at higher
speeds because it does not have a fast adaptation term or adjust the estimate
of σ2 like wBLR. This likely contributed to the controller using the GP-
based model to fail during run 7 (see Fig. 5).

8

4

0

-4

Speed (GP-based Model)

y
[m

]

x [m]

Start/Finish

Failure during run 7

Speed (BLR-based Model) 2.0

1.5

0.5

0.0

1.0

Sp
ee

d
[m

/s
]

-10 -5 0 5
x [m]

Start/Finish

-10 -5 0 5

Fig. 7: A top-down view of the path taken by the vehicle coloured by
speed for each run over our 43 m test track when using GP 2 (left) and
wBLR (right) to model the robot dynamics. This shows that the wBLR-
based method was able to drive the vehicle faster than the GP-based method
consistently as well as maintaining low path-tracking error. The black line
indicates the reference and the arrows along the path indicate the direction
of travel.

of work that shows that GP regression is useful for modelling
robot dynamics in relatively controlled environments. In
this paper, we have shown that a wBLR-based approach
can generalize better than GP regression in challenging and
changing conditions. This allows the stochastic MPC to
continue operating as conditions become more challenging
and increasingly different from previously seen conditions.
This enables safe control in such environments. We hope
the reader will consider methods such as wBLR, which
enables fast adaptation and online parameter updates, good
candidates for modelling robot dynamics, especially when
the robot is deployed in a wide range of operating conditions.

REFERENCES

[1] L. Hewing, A. Liniger, and M. N. Zeilinger. Cautious NMPC with
Gaussian Process Dynamics for Miniature Race Cars. In Proc. of the
European Control Conf., pages 1341–1348, 2018.

[2] C. D. McKinnon and A. P. Schoellig. Experience-Based Model
Selection to Enable Long-Term, Safe Control for Repetitive Tasks
Under Changing Conditions. In Proc. of the Intl. Conf. on Intelligent
Robots and Systems (IROS), pages 2977–2984, 2018.

[3] C. Ostafew, A. P. Schoellig, and T. Barfoot. Robust Constrained
Learning-based NMPC Enabling Reliable Mobile Robot Path Track-
ing. Intl. Journal of Robotics Research (IJRR), 35(13):1547–1563,
2016.

[4] A. Akametalu, J. Fisac, J. Gillula, S. Kaynama, M. Zeilinger, and
C. Tomlin. Reachability-based Safe Learning with Gaussian Processes.
In Proc. of the Conf. on Decision and Control (CDC), pages 1424–
1431, 2014.

[5] L. Jamone, B. Damas, and J. Santos-Victor. Incremental Learning of
Context-dependent Dynamic Internal Models for Robot Control. In
Intl. Symp. on Intelligent Control (ISIC), pages 1336–1341, 2014.

[6] J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal. A Bayesian
Approach to Empirical Local Linearization for Robotics. In Proc. of
the Intl. Conf. on Robotics and Automation (ICRA), pages 2860–2865,
2008.

[7] V. Desaraju, A. Spitzer, and N. Michael. Experience-driven Predictive
Control with Robust Constraint Satisfaction under Time-Varying State
Uncertainty. In Proc. of the Robotics: Science and Systems Conf.
(RSS), 2017.

[8] F. Meier, D. Kappler, N. Ratliff, and S. Schaal. Towards Robust Online
Inverse Dynamics Learning. In Intl. Conf. on Intelligent Robots and
Systems (IROS), pages 4034–4039, 2016.

[9] F. Meier and S. Schaal. Drifting Gaussian processes with varying
neighborhood sizes for online model learning. In Proc. of the Intl.
Conf. on Robotics and Automation (ICRA), pages 264–269, 2016.

[10] D. Nguyen-Tuong, M. Seeger, and J. Peters. Model Learning with
Local Gaussian Process Regression. Advanced Robotics, 23(15):2015–
2034, 2009.

[11] C. Xie, S. Patil, T. Moldovan, S. Levine, and P. Abbeel. Model-
based Reinforcement Learning with Parametrized Physical Models and
Optimism-Driven Exploration. In Proc. of the Intl. Conf. on Robotics
and Automation (ICRA), pages 504–511, 2016.

[12] C. D. McKinnon and A. P. Schoellig. Learn Fast, Forget Slow: Safe
Predictive Learning Control for Systems with Unknown and Changing
Dynamics Performing Repetitive Tasks. Robotics and Automation
Letters, 2019.

[13] C. D. McKinnon and A. P. Schoellig. Learning Multi-Modal Models
for Robot Dynamics with a Mixture of Gaussian Process Experts. In
Proc. of the Intl. Conf. on Robotics and Automation (ICRA), pages
322–328, 2017.

[14] C. Rasmussen and C. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[15] C. Ostafew, A. P. Schoellig, and T. Barfoot. Learning-based Nonlinear
Model Predictive Control to Improve Vision-Based Mobile Robot
Path-tracking in Challenging Outdoor Environments. In Proc. of the
Intl. Conf. on Robotics and Automation (ICRA), pages 4029–4036,
2014.

[16] C. Ostafew, A. P. Schoellig, and T. Barfoot. Conservative to Confident:
Treating Uncertainty Robustly Within Learning-Based Control. In
Proc of the Intl. Conf. on Robotics and Automation (ICRA), pages
421–427, 2015.

[17] P. Bouffard, A. Aswani, and C. Tomlin. Learning-based Model
Predictive Control on a Quadrotor: Onboard Implementation and
Experimental Results. In Proc. of the Intl. Conf. on Robotics and
Automation (ICRA), pages 279–284, 2012.

[18] K. Murphy. Machine Learning: A Probabilistic Perspective. MIT
Press, 2012.

[19] L. Hewing and M. N. Zeilinger. Cautious Model Predictive Control
Using Gaussian Process Regression. In arXiv:1705.10702, 2017.

[20] A. Aswani, H. Gonzalez, S. Sastry, and C. Tomlin. Provably Safe
and Robust Learning-based Model Predictive Control. Automatica,
49(5):1216–1226, 2013.

[21] Y. Gao, A. Gray, H. Tseng, and F. Borrelli. A Tube-based Robust
Nonlinear Predictive Control Approach to Semiautonomous Ground
Vehicles. Vehicle System Dynamics, 52(6):802–823, 2014.

[22] A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli. Stochastic Predictive
Control of Autonomous Vehicles in Uncertain Environments. In Proc.
of the Intl. Symp. on Advanced Vehicle Control, pages 712–719, 2014.

[23] M. Paton, F. Pomerleau, K. MacTavish, C. Ostafew, and T. Bar-
foot. Expanding the Limits of Vision-based Localization for Long-
term Route-following Autonomy. Journal of Field Robotics (JFR),
34(1):98–122, 2017.

[24] IBM. IBM ILOG CPLEX Optimization Studio 12.7.1.


