Mechatronics 24 (2014) 41-54

journal homepage: www.elsevier.com/locate/mechatronics

Contents lists available at ScienceDirect

Mechatronics

Mechatronics

A platform for aerial robotics research and demonstration: The Flying

Machine Arena

@ CrossMark

Sergei Lupashin *, Markus Hehn, Mark W. Mueller, Angela P. Schoellig, Michael Sherback,

Raffaello D’Andrea

ETH Zurich, Institute for Dynamic Systems and Control, Sonneggstrasse 3, ML K 36.2, Zurich, ZH 8092, Switzerland

ARTICLE INFO ABSTRACT

Article history:

Received 15 November 2012
Accepted 15 November 2013
Available online 10 January 2014

Keywords:

Aerial robotics
Quadrocopters

Robotics testbeds
Networked control systems

platform.

The Flying Machine Arena is a platform for experiments and demonstrations with fleets of small flying
vehicles. It utilizes a distributed, modular architecture linked by robust communication layers. An esti-
mation and control framework along with built-in system protection components enable prototyping
of new control systems concepts and implementation of novel demonstrations. More recently, a mobile
version has been featured at several eminent public events. We describe the architecture of the Arena
from the viewpoint of system robustness and its capability as a dual-purpose research and demonstration

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Dedicated multi-vehicle aerial robotics test beds such as [1-3]
first appeared around a decade ago - the MIT Raven [1] test bed
being one of the first described in literature. A number of research
results have been enabled by such test beds such as aggressive
maneuvers [4], aerobatics [5,6], object manipulation [7,8], coordi-
nated construction [9], and others, expanding the field of aerial
robotics at an impressive pace. Traditionally limited to scientific
experiments, these systems are now reaching wider audiences at
installations such as the New Directors’ Showcase at Cannes [10],
the outdoor aerial light show at Ars Electronica 2012 [11], and
our own shows further detailed below.

Since 2007 we have been developing an aerial robotics test bed
called the Flying Machine Arena (FMA) (Fig. 1). Our goal is to create
software and hardware infrastructure reliable and robust enough
for regular public demos while also being sufficiently flexible for
research use. Given the research context, it is natural that a system
like the FMA undergoes continuous modification; yet to enable
public demonstration the FMA also has to meet the conflicting
requirement of being a reliable, predictable system, operating on
demand and with little forewarning. To meet these opposing
requirements, the Arena has been created as a strictly modularized
platform where flight-proven components are used for demonstra-
tions as a complete flight-ready system, or, for research, in near-
arbitrary combination with new, malleable experimental modules.

* Corresponding author. Tel.: +41 44 632 0608, mobile: +41 76 226 5145.
E-mail address: sergeil@ethz.ch (S. Lupashin).

0957-4158/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mechatronics.2013.11.006

The FMA infrastructure is mostly vehicle-agnostic and a variety
of dynamic systems have taken advantage of the platform. How-
ever, typical public FMA demos use small quadrocopters, mainly
because of their unique combination of simplicity, robustness,
and agility. Therefore algorithms and methodology in this work
will be presented in a generalized manner, though quadrocopters
will be used regularly to describe concrete details, with necessary
specific equations listed in the appendices.

In addition to the quadrocopter-specific work, the FMA has
found use in various other projects [12-14], mainly as a (i) distrib-
uted rapid-prototyping environment and for (ii) performance vali-
dation and evaluation. For example, a vision-based autonomous
multicopter [14] was flown in the FMA to collect ground truth
localization data, taking advantage of the protected space, the
motion capture system, and the networking middleware to simul-
taneously collect data and to provide a backup failsafe controller in
case the on-board autonomy failed.

In this work we take a different perspective from previous aerial
robotic test bed publications [1-3] and describe the FMA system
architecture (Section 2) and core components (Section 3) from
the viewpoint of system robustness and dual-use capability. Note
that here the term “robustness” refers to the concept of resilience
of a system as a whole under stress and non-ideal subsystem per-
formance. Again with a focus on resilience, we include a brief high-
level analysis of key system performance characteristics in
Section 4.

Public demonstrations enforce system robustness while dis-
seminating research results without requiring further dedicated
and possibly distracting commitments such as challenges and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechatronics.2013.11.006&domain=pdf
http://dx.doi.org/10.1016/j.mechatronics.2013.11.006
mailto:sergeil@ethz.ch
http://dx.doi.org/10.1016/j.mechatronics.2013.11.006
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics

42 S. Lupashin et al./ Mechatronics 24 (2014) 41-54

Fig. 1. The Flying Machine Arena at ETH Zurich.

competitions [15]. As both motivation and proof of its robustness,
we believe the platform is unique in the number of regular public
demonstrations conducted (e.g. over 100 events in 2011-2012). To
this end, we describe the operation of the system, with focus on
“graceful degradation”-type behavior under various non-idealities
and subsystem outages (Section 5). To provide a better sense of
how the FMA components are used in real life, we briefly describe
the regularly performed FMA demonstrations in Section 6.

Another aspect described in this work is the FMA as a mobile
platform: in 2011 the FMA has been extended from a permanent
dedicated 10 m x 10 m x 10 m installation in Zurich to a mobile
installation that has been exhibited in Europe and North America.
Setting up the system in multiple locations and under pressure of
public openings has taught us what processes and tools are impor-
tant to building up such systems in a quick yet repeatable manner.
We describe relevant details and experiences from our mobile
exhibits in Section 7.

Finally, we conclude and summarize the presented work in Sec-
tion 8 and present brief, compact, quadrocopter-specific details in
the appendices.

2. System overview

At the top level, the FMA is organized similarly to the MIT Raven
[1] and the UPenn GRASP test beds [3]. The combination of global
sensing and off-board computing has been used widely in multi-
vehicle research in the past, for example in Small-Size League

RoboCup systems and derivatives [16,17] and in multi-vehicle test
beds such as the UIUC HotDeC hovercraft test bed [18].

The data flow in the FMA is as follows (Fig. 2): vehicle/object
pose measurements are provided by a motion capture system to
software modules running on one or more standard computers
running consumer operating systems. Within task-specific mod-
ules (“user code”) and the Copilot safety/utility module, estimation
and control pipelines produce vehicle motion commands. The Copi-
lot picks which commands to issue based on failure detection code
and the appropriate commands are transmitted to the vehicles. On
board the vehicles, high-frequency controllers track these com-
mands using on-board inertial sensors in feedback. All intermodule
communication is via multicast UDP and the vehicles commands
are sent over a dedicated wireless channel.

Note that the critical information flow between the components
of the system is unidirectional. Bidirectional communication, e.g.
telemetry from the vehicles, is supported, but is not required for
controlled operation. All communication is done in a distributed,
one-way manner, such that data sources are not affected by the
corresponding listeners and there is no reliance on high-level code
to keep track of the various components, preventing unnecessary
interdependence. A set of core components with simple data
dependencies (Fig. 2) makes up a robust position controller that
can be depended on as a fall back during experiments and
demonstrations.

2.1. Modularity and networking

The FMA is a distributed system, both at a conceptual and phys-
ical level: it consists of independently running computational pro-
cesses that are arbitrarily distributed among one or more physical
computing platforms linked together by either an Ethernet net-
work or specialized industrial wireless channels (Fig. 3). Practi-
cally, the physical computing infrastructure ranges from a single
Linux or Windows laptop to two to six or more networked lap-
top/desktop computers.

protocol global sensing ’ﬁ i i
bridge p °© .
l multicast

UDP

{user code }- }{ copilot }

wireless
ink

--L--» 4

multicast
UDP protocol
bridge

vehicles

Fig. 2. The core control loop in the FMA. All data transmission is point to
multipoint, available for any listeners - only the typical data flows are depicted.

motion

t
L —"
I

command 7

bridge 'f’“’
network
‘//V switch =%
S E
wifi 3 :
bridge € B,5 ,

Fig. 3. Intermodule and wireless communication structure of the FMA. Solid lines
represent multicast UDP data streams. Dashed lines represent wireless broadcasts
(single-ended) and bidirectional connections (double-ended).

S. Lupashin et al./ Mechatronics 24 (2014) 41-54 43

All communication is done in a “send once to anyone that lis-
tens, unreliably but often” manner. This has the advantage of low
complexity in the transmitting and receiving software, and means
that for lossy communication channels, data is never buffered or
delayed due to retransmission attempts. There is no explicit clock
synchronization in the system, but all sensor data is time-stamped
against local hardware clocks, and whole-system communication
latencies are carefully characterized (Section 4.1).

Intermodule communication is implemented in the form of
multicast UDP streams, in a scheme evolved from the Cornell
Urban Challenge framework [19]. Each packet type has a matching
machine-readable blueprint, allowing for reception and processing
both programmatically by software modules and through GUIs by
users in real time. The multicast scheme is powerful in that there is
no bookkeeping involved of who is using what information: drop
rate tracking and basic filtering of duplicate/reordered packets
are the only processing steps required on the client side, with no
point to point communication or handshaking required for the
system to function.

2.1.1. Logging and playback

As a convenient side effect, data logging and playback is trivial:
for logging, a process subscribes to all of the multicast packets
known to the system and records them, in order and time-
stamped, to a file. To play back, these packets are read and resent,
at the appropriate time intervals, back to the same multicast
addresses, or tunneled to a specific host if the situation demands
it. From the perspective of most software FMA modules, there is
no difference between live operation, simulation, or playback: they
simply subscribe to a multicast address and start receiving packets,
if there are any.

2.1.2. Module inputs/outputs

In as much as practically possible, all intermodule communica-
tion associated with physical quantities is standardized as follows:
module control inputs are physically meaningful, uncorrected
quantities, and each module is responsible for making sure its
behavior matches these ideal quantities, e.g. through calibration.
Similarly, module outputs should be corrected, calibrated values.
For example, rate gyro telemetry from the vehicles is compensated
for bias and scaled to SI units, before being made available on the
network.

Similarly, controller commands are given in equally physically
meaningful terms: a zero attitude command means perfect align-
ment to gravity, even if the underlying control system actually
hovers the vehicle at an angle to compensate for non-idealities.
This approach creates a simple standard for intermodule commu-
nication involving physical quantities (ideal, SI units), and eases
system-level debugging and monitoring.

2.2. Hardware abstraction and simulation

Software modules are isolated from hardware by protocol
bridges that provide a system-wide hardware abstraction layer,
allowing for substitution of hardware without any changes to algo-
rithmic software modules. Only the corresponding bridges are
changed. Furthermore, this allows for the substitution of a simula-
tion environment in place of the physical system, enabling the test-
ing of binary-identical software in simulated and real-world
experiments (Fig. 4).

The simulation environment runs the on-board control, estima-
tion and state machine code and uses a numerical integrator with
the nominal equations of motion to simulate vehicle dynamics.
Various parameters control the specifics of the simulation, such
as disturbances, sensor noise, and simulation speed. The simula-

(a) Live (nominal, Copilot pass-through)

q (©)
global sensing

ws
@ 9
\J v : - 5
[user code@f [copilot I:I'% *b | vehicles
b) Playback protocol
[playbackk‘f [user codeﬁ @asynchronoug
process

(c) Single-threaded simulation @ event-driven

® process

simulation process
code

simulator module

user code
multicast

data stream

(d) Multi-process simulation

[user cod«% [copilot@ [simulator@j

Fig. 4. Common FMA usage modes: (a) with the physical vehicles through the
Copilot safety module, (b) playing back recorded data, (c) using a single-process
repeatable simulation mode, and (d) running with an external simulator. The
arrows represent the forward path of information through the system, though all
processes can access any data; feedback loops and utility processes are omitted for
clarity.

tion environment is commonly extended to include application-
specific physical objects such as chargers, balls and rackets.

In practice, it is often desirable to carry out exactly repeatable
simulations - something that is difficult to realize using an asyn-
chronous multi-process simulation setup. For this reason the same
simulation environment is also provided as a plug-in synchronous
code module (Fig. 4c). In this setup, the application integrates the
simulation modules directly in code, calling simulation functions
on demand as part of a single processing loop. The simulation
becomes synchronous, all random number generators in the simu-
lation are configured to use a repeatable seed, and the simulated
experiment is guaranteed to be exactly repeatable, allowing for
precise, breakpointable analysis and debugging.

2.3. Vehicles

Demonstrations in the FMA typically use small quadrocopters
based on the Ascending Technologies Hummingbird platform
described in [20]. We use custom wireless communication and
on-board electronics, assuring fine control over on-board estima-
tion and control hardware and software.

A first-principles model of the quadrocopter dynamics is
included for completeness in Appendix A and the on-board
controller is described in Appendix B.

These vehicles have proven to be agile and reliable platforms;
the typical operating quadrocopter in the FMA has sustained occa-
sional hard crashes, in addition to scores of mattress-softened col-
lisions, with the only observed consequences being propeller wear,
occasional broken frames, rare motor failures, and several dam-
aged gyros in the five-year operating history of the platform.

Other types (Fig. 5) of dynamic systems such as biplanes, tilt-
rotors, the Distributed Flight Array [13], the Balancing Cube [12],
and autonomous vision-guided multi-copters [14] have also used
the FMA platform. All of these projects took advantage of the mod-
ular architecture of the FMA for data manipulation and logging,
while some also used some of the vehicle-agnostic components
such as the off-board estimation modules to quickly prototype
control systems concepts.

44 S. Lupashin et al./ Mechatronics 24 (2014) 41-54

Fig. 5. While most work at the FMA uses quadrocopters (left), other dynamic systems such as the Distributed Flight Array [13] (center) or the Balancing Cube [12] (right) have
also used the FMA infrastructure to accelerate development and/or collect ground truth data.

3. Core components

A small subset of the system must function reliably and
robustly at all times to assure controlled operation. Failure of any
one of these “core components” leads to emergency failsafe behav-
ior, leading to a partial shutdown of the system and, if the situation
is unrecoverable, an emergency stop of the vehicles (in case of
flying vehicles, emergency descent, see Section 5.1).

The core components (Fig. 6) consist of global sensing (the
motion capture system), the Copilot safety/utility module, the
off-board estimation and control modules used by the Copilot,
the wireless command interface, and on-board sensing, actuation,
estimation and control.

3.1. Global sensing

We utilize a commercial motion capture system to measure the
pose of marked objects in the FMA. For single-marker objects such
as balls the information reported is the position of the object while
attitude and position is reported for any rigid bodies made up of 3
or more markers. All measurements are relative to a user-defined
“global” coordinate frame. The system is capable of producing
measurements at a rates exceeding 300 Hz, though 200 Hz is typ-
ically used.

The permanent installation in Zurich uses eight 4-megapixel
Vicon MX-F40 cameras. The angle of view of each camera is
66° x 52°. The mobile installation uses up to 20 Vicon T40 cameras,
equipped with the same imaging sensor/optics. In both cases we
use the standard near-infrared strobes in combination with retro-
reflective 3-4 cm markers to track objects. This combination
results in reliable marker detection at distances of up to 23 m away
from the camera. In practice, we typically use a higher marker
brightness rejection threshold (14 m detection distance) in order
to reduce false detections. Although only two cameras need to

global sensing

off-board off-board on-board
estimation estimation estimation
& control & control A | & control
'
'
custom code failsafe \V/ failsafe
user code copilot >0 firmware

Fig. 6. Typical arrangement of core components as used for operation with physical
vehicles. The arrows show the conceptual flow of information within the system.

Count

-1 -08 -06 -04 -02 0 02 04 06 08 1
Deviation (mm)

200

Count

100

-1 -08 -06 -04 -02 0 02 04 06 08 1
Deviation (°)
Fig. 7. Histogram representation of typical single-axis position and attitude

measurement precision (data set of 3160 measurements) for a static 3-marker
object in the 8-camera Zurich FMA system.

sty commands .
generation,

offboard
control

full state
estimate

latency
latency-corrected estimate| compensation

Fig. 8. High-level control and estimation components and relevant data flows in the
FMA.

see a marker to deduce its position, for robustness a minimum of
three cameras is required.

Fig. 7 shows the typical quality of localization data produced by
the Vicon system as it is used in everyday experiments in Zurich.

3.2. Off-board estimation and control

Off board, the motion capture output and vehicle commands are
fused into a latency-compensated full state estimate, to be used by
high-level control algorithms. The flow of the off-board estimation
and control is shown in Fig. 8.

3.2.1. Estimation
A predictor-corrector estimator uses a model of the system
dynamics and commanded control inputs to generate an expected

S. Lupashin et al./ Mechatronics 24 (2014) 41-54 45

state at the next measurement time, which is then fused with fresh
measurement data to yield a full six degree-of-freedom (6DOF)
state estimate.

To be more precise, let X[k] represent the 6DOF state of a vehicle
at time t,, consisting of the position, the velocity, an attitude rep-
resented by a quaternion and the angular velocity, with u[k] the
corresponding command inputs. The nonlinear function f describes
the nominal dynamics of the system, such that

xk + 1] = f(x[k], u[k]). (1)

The motion capture system provides measurements of the vehi-
cle’s position and attitude. This is augmented with velocity and
angular rate, derived by numeric differentiation, to yield x[k].

We denote our estimate of the state at time step k, using mea-
surements up to time step j, by X[k|j]. The estimate update rule is
then as follows:

x[k + 1|k] = f(x[k|k], u[k]),)
X[k + 1|k + 1] = Cx[k + 1|k] + I - O)x[k + 1], (3)

where C is a diagonal tuning factor matrix. The elements C; € [0,1]
represent the relative weight of the prediction and measurements,
and are tuned for by trial-and-error until acceptable performance
is achieved.

While a Kalman filter-like implementation (such as the ex-
tended Kalman filter) might improve performance (depending on
tuning), the above scheme is much simpler, avoiding partial deriv-
atives, strong assumptions on process and measurement noise, and
the issue of covariance adjustment in the face of quaternion renor-
malization. Furthermore, the presented scheme can be easily
understood and extended for different vehicle dynamics by replac-
ing the prediction function f.

The use of an accurate nonlinear prediction implies that the
estimation is robust to temporary measurement failures, such as
when a marker is occluded. In such cases the estimator pushes for-
ward the previous estimate using (2). Although this estimate will
eventually diverge from the true state, the system will be able to
continue operating in the face of short-term measurement
blackouts.

By looking at the velocity and angular rate measurements
(obtained through numerical differentiation), spurious measure-
ments can be rejected. These outliers occur mostly when the
motion capture system misidentifies an object in the space - due
to e.g. specular reflections in the space, or poor calibration.

3.2.2. Latency compensation

We compensate for the known average system latency by pre-
dicting forward the vehicle state by this latency. The general strat-
egy is to do all calculations on the state we expect when the
current command arrives at the vehicle (see also [21]).

We denote the measurement latency as N discrete time steps
and the control transmission latency as M steps. At time k the esti-
mator described previously will operate on measurements up until
X[k — N], and therefore yield an estimate X[k — N|k — N|. We store
the M + N most recent commands and apply them recursively to
the vehicle’s state using (2) to obtain X[k + M|k — N], and use this
to generate a control input ufk]. Because of the M step communica-
tion delay, this control will actually arrive at the vehicle when its
true state is x[k + M]. This true state will equal the predicted esti-
mate X[k + M|k — N] in the case of perfect prediction.

Because we assume the system to be time invariant in (2), we
do not need to know the values of M and N, but simply the total
latency M + N, allowing us to design controllers without explicitly
taking the latency into account. Assuming that there is no noise
and our models are perfect, the above scheme will completely
eliminate the effect of the latency. Fig. 9 shows this scheme in

353
(=]
T

= measured

Pitch angle (°)

= = predicted

K—1 30 ms latency

0 0.1 0.2 0.3 0.4 0.5
Time (s)

Fig. 9. Comparison of the measured vehicle pitch angle, and the estimator’s
latency-compensated prediction. Note that the prediction is done over the average
latency, shown to scale in the legend.

..... . - uncompensated
., | —compensated

y position (m)
(=}

X position (m)

Fig. 10. Example of effect of latency compensation for aggressive maneuvers for a
quadrocopter flying a circle.

action for the attitude of a quadrocopter, where it can be seen that
the latency-compensated angle correctly predicts the delayed
measurement.

The efficacy of this compensation is demonstrated in Fig. 10,
where a quadrocopter was tasked with flying a horizontal circle
of radius 1 m at a speed of 4 m/s. The quadrocopter was allowed
10 periods to settle into the trajectory, and then the mean squared
error of the position deviation was measured over a period of 40 s.
With the compensation this error was 0.273 m, compared to
0.806 m without the compensation.

3.2.3. Control

The control strategy is based on a cascaded loop shaping design
strategy. The controller design is therefore split into the design of
several controllers of lower-order dynamic systems. Each one of
these lower-order systems is designed using a loop shaping feed-
back linearization approach, under the assumption that the under-
lying control loops react to set point changes without dynamics or
delay. Individual control loops are shaped to respond to commands
in the fashion of linear, time-invariant first- or second-order sys-
tems. The tuning parameters for the control loops consist of time
constants and damping ratios, reducing the complexity of the tun-
ing process and giving the user values that are intuitive to modify.
Because only weak time scale separation exists between the cas-
caded loops, closed-loop performance and stability is verified by
considering the entirety of the control system including all cas-
caded loops (see appendices). An example of this is presented in
Section 4.2. This combination of simplified analysis used for tuning

46 S. Lupashin et al. / Mechatronics 24 (2014) 41-54

copilot
ﬁinternal logi; %
KA KA
A 3
internal
controller

failsafe
control

primitives
(e.g. takeoff)

user interface

L J

panic/
shutdown

Fig. 11. The high-level decision logic of the Copilot.

and full model verification for stability permits us to design high-
performance, yet tractable control laws.

3.3. Copilot safety and utility module

The Copilot program is usually used as a safety layer between an
experimental application and the physical vehicles. It enables
safety features such as vehicle control in case an external control
process quits, crashes, or freezes unexpectedly, or in case of a
user-initiated ‘panic button’ command (see Fig. 11). It also man-
ages persistent system functions such as reference frame or vehicle
calibration, and manages vehicle battery charge. To do this the
Copilot uses the standard estimation and control components with
a fixed known-stable set of parameters, in the case of flying vehi-
cles to implement hovering, translation around the space to reach
given positions, and takeoff/landing sequences.

A critical point is that any layers between an application and the
vehicle may easily cause additional, variable latency. Because of
this special care was taken in structuring the Copilot so that during
nominal operation (that is, if all faults are clear, the vehicle is fly-
ing, and an application is providing vehicle commands), the Copilot
forwards application commands, adding only an insignificant, fixed
delay. If a fault occurs, if the application stops sending commands,
or if a user commands the Copilot to take over control of the vehi-
cle, it switches to a parallel-running internal estimator and con-
troller and ignores further application commands until cleared to
do so.

3.4. Wireless communication

Vehicles in the FMA almost always rely on wirelessly transmit-
ted data for controlled operation; special care is therefore taken to
fortify the system against potential wireless failures. We use two
independent wireless systems to communicate with the vehicles:
(i) a low-level, low-latency, unreliable, single-direction broadcast
system for sending commands to the vehicles with minimum
latency/overhead, and (2) a bidirectional, variable-latency, semi-
reliable per-vehicle channel usually used for vehicle telemetry
and parameter communication.

The dual wireless approach provides robustness-relevant bene-
fits: firstly, the critical command link is as simple as possible and
completely separate from more complex, bidirectional communi-
cation. Conveniently, this leads to a more predictable command
latency behavior. Secondly, in case of wireless failure, we are able
to choose between two physically independent channels to try to
communicate with the vehicle.

The two wireless links may both operate in the 2.4 GHz band or
in various other RF bands, depending on the configuration. The
command wireless system uses frequency-hopping spread spec-

trum (FHSS) modules, while the bidirectional communications sys-
tem uses direct-sequence spread spectrum 802.11b/g. FHSS radios
“hop” many times per second within a part of the RF spectrum,
meaning it is unlikely for the command signal to be blocked com-
pletely even in highly RF-saturated environments. This makes a
FHSS radio ideal as a command channel, where moderate losses
are tolerated in absence of a total communication blackout.

3.4.1. Command link

The command transmission system operates at the hopping fre-
quency of the modules used (2.4 GHz Laird Technologies LT2510 or
915 MHz LT1110 or similar), e.g. 75.8 Hz for the LT2510. Each com-
mand is broadcast twice to decrease loss probability; the resulting
typical loss rates are on the order of 1-5%. We observed that for
typical flights there is little change to vehicle performance for
losses up to 60% (Fig. 12).

Due to bandwidth constraints, a single command link currently
supports up to 6 vehicles. However, since multiple command links
can coexist in the same space and the FMA networking system
allows for multiple coexisting bridges of the same type, there is a
natural way to scale up this limit.

3.4.2. Telemetry/parameter link

A second, independent wireless system is used for non-critical
communication such as feedback from the vehicle and on-board
parameter read/writes. This wireless system uses 802.11b/g via
the Roving Networks RN-131C modules, sending back packets at
arate of 80 Hz. Feedback includes battery voltage and current mea-
surements, rate gyro measurements, the command loss rate, and
other information useful for general diagnostics or for particular
experiments. Parameter read/write communication is done using
this wireless channel, via an acknowledge-retry scheme built on
top of the UDP multicast communication framework.

3.5. On-board estimation and control

The on-board estimator and controller is tasked with using any
locally available information (in this case, inertial measurements)
in feedback to follow given commands by generating the appropri-
ate commands for the motors. On vehicles used in the FMA the
on-board estimation/control loop typically runs at 800 Hz. The main
on-board processor is an NXP LPC2148 32-bit micro-controller and
the on-board inertial sensing unit is an Invensense MPU-6050.

The angular velocities of the vehicle are estimated using a pre-
dictor-corrector algorithm. We assume that the vehicle’s axes are
decoupled. As an example, consider an estimate of the roll rate
p[k] utilizing the gyro measurements p[k] and the gyro bias esti-
mate pP. The relative importance of the measurement is captured

Position (m)

| (1" RN RVRUOD RO O OO 1 |
8 9 10 11 12 13 14 15

Time (s)

Fig. 12. Plot of x (solid) and y (dashed) vehicle coordinates of a quadrocopter flying
a circle at 3 m/s during a command loss test. Each red line indicates a lost
command. At 11 s the loss rate is artificially raised by 60% by probabilistically
blocking packets. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

S. Lupashin et al./ Mechatronics 24 (2014) 41-54 47

by ¢, € [0, 1]. Prediction is done using the on-board sampling time
At,p, and the commanded moment around that axis - see (A.3).

plk + 11k] = plk|k] + Atop 1(f2 — f4) /T
Pk + 1k + 1] = copa[k + 11k + (1 — ¢, (P[k] — P°).

The on-board control laws are designed in a similar fashion to
the off-board control laws, using feedback linearization and loop
shaping to nominally achieve dynamics of cascaded first-order sys-
tems with specified time constants. This approach allows the use of
physically different vehicles (e.g. vehicles carrying extra load, or
different in size) without modifications to the off-board control
algorithms. The differences between vehicles are nominally com-
pensated for by the on-board control algorithms.

It should be noted that, during nominal operation, the control
loops running on board the vehicle only perform feedback control
on states which are observable from local (i.e., inertial) measure-
ments. This avoids the necessity to transmit accurately timed glo-
bal sensing data to the vehicle data at high rates.

When the vehicle is in hover, on-board calibration performs
sensor bias and motor performance estimation, allowing for higher
overall vehicle performance (see Appendix C).

(4)

4. System analysis

In order to confirm the validity and effectiveness of the algorith-
mic approaches presented in the previous chapter, a number of
experimental and analytic tests were carried out. In this chapter,
we present parts of this analysis as a reference point on the flight
performance achieved.

4.1. System latency

We have found latency in the system to be important to both
repeatability and achievable performance. Communication latency
from observing objects to vehicles receiving wireless commands is
approximately 30 ms (Fig. 13), as measured by a light-detection
test. To perform this test, an infrared LED, connected to a vehicle,
is placed in the space. It is commanded to turn on through the
command transmission system. When lit, the LED is seen by the
motion capture system. The time between the command and the
reception of a motion capture packet confirming that the light
turned on is the measured full-loop communications latency of
the system. Similarly, the on to off transition of the LED is also
timed, as a check for intentional filtering/detection delays in the
motion capture system.

Ignoring effects of wireless packet drops, the system communi-
cation latency varies between 22 and 46 ms. This is on the order of
the expected delay: the 22 ms represents repeatable latency

500 | 13.19 ms

command rate

~ 600 | 5 ms

§ motion capture
S 400

1.25 ms

200 onboard loop

0
20 25 30 35 40 45 50
Latency (ms)

Fig. 13. Histogram of total system latency as measured by an infrared LED test
(11,000 measurements). The time periods of the major independent processes in
the FMA are shown for comparison.

@ 0]
=
= 20}
Q
el
Z o}
&
B -60 |
=

0
. -90F
N
o -180t+
2
e 270}

-360 |
107t 10° 10* 102

Frequency (rad/s)

Fig. 14. Frequency response of all linearized cascaded feedback control loops
(solid), compared to the loop shaping nominal design (dashed). It can be seen that
the full (fifth-order) system follows the nominal design well for frequencies up to
5 rad/s, with the underlying loops influencing its behavior at higher frequencies.

encountered in every trial due to buffer transfers and accumulation
delays, while the 24 ms varying component represents variable
delays due to the independent asynchronous loops in the system:
the known components consist of 13.19 ms for the period of the
wireless transmission loop, 1.25 ms for the on-board control loop,
and 5 ms for the motion capture system.

4.2. Cascaded control linear analysis

Controllers in the FMA rely on a strongly cascaded control
scheme, as was introduced in Section 3.2.3.

To demonstrate the validity of the cascaded control loop design
and its performance implications, we analytically evaluate the full
cascaded closed-loop quadrocopter feedback control loop near ho-
ver for controller parameters as they are typically used in the FMA.
We linearize all control loops about the hover point (defined by a
constant position and yaw angle) and neglect discretization, la-
tency, and estimator dynamics.

The frequency response of the resulting fifth-order system is
shown in Fig. 14, along with the nominal second order system re-
sponse that the loop shaping is designed for. It can be seen that, for
frequencies up to about 5 rad/s, the system dynamics match the
loop shaping design well. At high frequencies, interactions with
the underlying control loops become significant, with the system
response differing from the design.

5. Failure modes

We distinguish between graduated performance degradation
(e.g. a proportion of the radio command packets are lost) and abso-
lute outages (e.g. the radio channel as a whole is lost). In this sec-
tion we will focus on failures of the second kind, i.e. absolute
failures that render normal operation impossible. The modes were
selected based on experiences with the system, and the mitigation
strategy is designed to have a minimum impact on the operation of
the system, and to be completely transparent to the user in normal
operation.

5.1. Off-board outage failsafe

We consider two off-board outage failure modes: if the global
sensing fails, the off-board system can no longer accurately esti-
mate the state of the vehicles; while if the command wireless

48 S. Lupashin et al. / Mechatronics 24 (2014) 41-54

channel fails, the off-board system can no longer command the
vehicle. Because “do nothing and wait” is not a valid action for a
flying vehicle (as opposed to e.g. a ground vehicle), an on-board
emergency control was developed for the quadrocopters in the
FMA, to mitigate the danger of an off-board outage [22]. The goal
is to safely bring the quadrocopters to a standstill when there is
no external data to rely on.

This is done by periodically sending to the quadrocopter the
current off board state estimate over the bidirectional communica-
tion link. These state estimates are then pushed forward with mea-
surements from the on-board rate gyroscopes (Eq. (4)), which are
integrated to yield open-loop estimates for the vehicle attitude
and velocity (Eq. (A.1)). Because we are integrating a noisy, biased
signal, the angle and speed estimates will only be valid for short
periods of time.

A prerequisite for entering emergency on-board control is that
the on-board estimates for the quadrocopter’s angles and lateral
speeds are reasonable (not too large), and that these estimates
have been recently updated with external data. If the estimates fail
this test, the quadrocopter immediately switches off all propellers,
the idea being that the worst case scenario when taking no action
is better than that for executing an unpredictable action.

If an off-board outage occurs, and the quadrocopter’s on-board
state estimate is valid, the quadrocopter will attempt to achieve
and maintain a hover for a fixed period (specifically, 3 s), using a
linear near-hover controller. After this, the quadrocopter will
perform a “crash landing”, whereby it accelerates downwards at
1 m/s? for the time period required to reach the ground from its
last known height. These stages are illustrated in Fig. 15, where
part of a trajectory is shown for a quadrocopter starting with a hor-
izontal speed of 1 m/s when an outage occurs.

If the vehicle is in emergency on-board control mode, but the
original off-board outage is resolved (i.e. external communication
is restored, or the off-board estimate is reliable again), we immedi-
ately switch back to off-board control. In these cases the Copilot
enters a fault mode and commands the vehicle to hover at its
current location, and waits for user action. More information on
the emergency mode can be found in [22].

w ground truth 1
= .
g | N\ aweaas onboard estimate |
el
P [N O
O OF N TtttssasesepsennmnnnrrnennnnamaaaaE AR s s sy
&
)
<
L
20 ‘
=) :
& :
= N
S :
= N
A ; . i . .
E) [r———i———rTTTTTTT T s s st s SLTTNu g
.20 :
) : ",
a 1r : KX)
1 11 : T =,
0.5 i N i L (3 s
0 1 2 3 4
Time(s)

Fig. 15. An example of how the system responds to an off-board outage. Up to time
zero (phase I) the vehicle is under external control. In phase II the vehicle attempts
to maintain a hover using the emergency on-board controller, and executes a crash
landing in phase III. The vehicle had a speed of 1 m/s when the outage occurred, and
shown are the speed in the x-axis, and the pitch angle 0.

5.2. Low battery failsafe

Every healthy vehicle will eventually become uncontrollable
once its charge or fuel runs out. To protect against this, and to
increase system autonomy, we use a battery charge estimator that
provides the approximate state of the charge for each vehicle while
it is in flight. We use a simplified lithium polymer battery model
with two internal RC elements. Based on this model and the
on-board voltage and current measurement we use a Kalman filter
similar to [23] to estimate the state of charge.

This estimator is run as part of the Copilot, with the resulting
fuel level estimate available to internal fault-handling code (e.g.
trigger landing on low threshold) and to other software modules.

6. Demonstrations

The research results enabled by the FMA have led to a number
of regularly shown quadrocopter demonstrations (Fig. 16) that
showcase the capabilities of the developed methods. All of these
demonstrations build on the standard core components presented
previously in this paper; in some cases these components are used
as-is while in others they were extended to include new capabili-
ties and features. We briefly present the demos commonly shown
at the time of the writing of this article, to demonstrate the capa-
bilities of the FMA and how it is used in actual research and dem-
onstration projects.

6.1. Interaction with pointer/Kinect

Two demos enable visitors to quickly and intuitively control a
vehicle flying in the FMA. The first approach uses a “pointer”, con-
sisting of a pointing device that is held by the user and tracked by
the motion capture system. The direction of the pointer determines
the desired position of the vehicle, and some simple gestures allow
for commanding takeoff/landing and simple aerobatics (flips).

A more advanced interface, based on a student project [26], is
provided by taking advantage of the Microsoft Kinect sensor: the
sensor is labeled with markers and tracked by the motion capture
system; this allows the Kinect’s measurements to be transformed
into the global FMA reference frame, allowing for direct interaction
between a user that is tracked by the Kinect and a vehicle. A Kal-
man filter is used to filter user motion and to provide velocity
(feed-forward) commands to the vehicle. The result is that the
user’s hand motion is closely imitated by the vehicle (Fig. 16d),
times a scaling factor, enabling a three-dimensional, highly dy-
namic body control of the vehicle, in an experience that is some-
what akin to “force control” from the Star Wars franchise.

6.2. Adaptive aerobatics

This experiment demonstrates model-based policy-gradient
learning for high-performance open-loop aerobatics [6]. In partic-
ular, a quadrocopter demonstrates automatic learning of single-,
double-, or triple- flips (Fig. 16b) and aggressive translation
maneuvers. This method requires a first-principles model and a
way to observe the final state error of a maneuver, meaning that
the exact trajectory of the physical aerobatic motion does not need
to be known in advance.

6.3. Iterative motion learning

Another learning approach attempts to improve the tracking of
a nominal trajectory throughout the motion. Using an Iterative
Learning Control method [25], a given trajectory and model is
transformed to a lifted domain representation. After a vehicle

S. Lupashin et al./ Mechatronics 24 (2014) 41-54 49

Fig. 16. Some of the quadrocopter demonstrations built on the FMA platform: (a) ball juggling [24], (b) adaptive acrobatics [6], (c) iterative motion learning [25], (d)
interaction via Kinect [26], (e) cooperative ball throwing/catching [8] and (f) inverted pendulum [7].

attempts to fly the trajectory, its deviations are used to estimate
the model error along the trajectory, which is used in an optimiza-
tion to update trajectory feed-forward inputs. This allows the
vehicle to improve its trajectory tracking from iteration to itera-
tion. To demonstrate this method, a vehicle learns to fly through
a near-arbitrary slalom course (Fig. 16c).

6.4. Ball juggling

One or two quadrocopters equipped with badminton rackets
attempt to intercept and hit a ping-pong ball, covered in retro-
reflective tape to be tracked by the motion capture system, to hit
it towards each other or a target point (Fig. 16a) [24]. This involves
a trajectory planning problem as the vehicles must be able to reach
the intercept point at the right moment, with the right transla-
tional velocities and the proper attitude. All of these constraints
have to be met with high precision and accuracy to enable a
smooth “quadrocopter ping-pong” game. A learning layer built
on top of the basic intercept code enables automatic learning of
parameters such as ball drag and racket offsets.

6.5. Multi-vehicle transitions

This demonstration shows a sequential convex programming
approach for generating collision-free trajectories for a group of
quadrocopters attempting to translate through a shared airspace
[27]. A number of quadrocopters (typically four to six) are flown
in the space and given either a pre-programmed or random
arrangement of waypoints. The multi-vehicle trajectory generation
algorithm guides the vehicles to these waypoints, often across each
other’s paths, in a smooth (e.g. jerk-minimizing) manner. This
demonstration also acts as a test case for transition code that is
used in other projects, e.g. multi-vehicle dancing.

6.6. Cooperative ball throwing and catching

Three quadrocopters linked by a flexible triangular mesh
attempt to throw and to capture a ball (Fig. 16e) [8]. The dynamics
of the vehicles in this case are significantly different, since they
are physically linked with stretchable material. The simulation
environment was extended to allow the simulation of these
maneuvers, and custom failsafe behavior was implemented, since
the standard failsafe behavior leads to unpredictable results for
the case of physically linked vehicles, though standard monitoring
components, like the battery charge estimator, remained
unchanged.

6.7. Construction of brick structures

A fleet of quadrocopters equipped with grippers construct a
pre-specified structure from foam bricks in a coordinated fashion.
More detail about this project is given in Section 7.1.

6.8. Multi-vehicle dancing

This project aims to demonstrate coordinated multi-vehicle
flight performed to music [28]. One specific requirement in this
application is high temporal accuracy in the trajectory tracking
to synchronize motion to music. This project builds upon the esti-
mation algorithms and the control schemes mentioned previously,
allowing us to concentrate on higher-level challenges. For synchro-
nization, an adaptation method is used to adjust the feed-forward
input signal sent to the standard off-board trajectory tracking
controller (Appendix D). By relying on the performance of the
trajectory tracking controller, the multi-vehicle coordination prob-
lem at the core of this project is reduced to a trajectory planning
problem, thereby simplifying the task at hand.

50 S. Lupashin et al./ Mechatronics 24 (2014) 41-54

6.9. Flying inverted pendulum

This project aims to balance an inverted pendulum on a quadro-
copter (Fig. 16f) [7]. Internally, it is implemented as a task-specific
estimator and controller that interacts with the standard simulator
and the communication infrastructure. In simulation, the vehicle
dynamics are extended to include the equations of motion for
the inverted pendulum. The balancing task has more recently been
extended to allow a first vehicle to maneuver such that the pendu-
lum is thrown in the air for a second vehicle to catch it and to bal-
ance it again [29].

6.10. Physical human-quadrocopter interaction

The application of admittance control to quadrocopters is dem-
onstrated in this project [30]. The admittance controller allows a
user to define the apparent inertia, damping, and stiffness of the
robot, and interact with it by physically guiding it. The project uses
a custom estimator to include the estimation of external forces act-
ing on the vehicle, and leverages the standard trajectory tracking
controller by adjusting the reference trajectory applied to it such
that the desired admittance properties are achieved.

Fig. 17. A quadrocopter placing a foam brick as part of the FMA-enabled “Flight
Assembled Architecture” performance at Orléans, France in 2011. The resulting
structure is now part of the permanent collection of the FRAC Centre. (Photo:
Francois Lauginie).

7. Mobile FMA and external exhibits

A mobile version of the FMA system was built for performances
outside the lab. Physically, this is a set of laptops and a standard 19
in rack, housing two Vicon Giganet hubs for up to 20 Vicon
cameras and a managed smart switch (for example, a Cisco
SG300-series switch). The cameras are packaged in dedicated cases
and the rack is shock-proofed, resulting in approximately twelve
ship-ready cases, with a total weight of approximately 300 kg.
When running with 19 cameras, the total system consumes
approximately 600 W.

The current system has been used for flight spaces ranging in
size from 185 m> to 720 m>. The size of these spaces is largely de-
fined by the available space at the venue in conjunction with the
possible camera mounting points. In order to function properly,
the motion capture cameras must remain rigidly fixed relative
to each other, and, preferably, relative to the space. A good solu-
tion for this is a metal truss suspended from the ceiling, though
other solutions, such as mounting the cameras directly to mount
points on the ceiling/walls, have been used. Prior to arriving at
the venue, a camera simulation tool is used to predict the space
coverage of the motion capture system. The user then iterates
over the camera positions and orientations until a satisfactory
result is obtained, and defines the flight space based on the space
coverage results.

The truss may also serve a dual purpose as a mounting point for
safety nets, though in this case two trusses should be used to avoid
people on the ground from moving the camera-truss assembly. Gi-
ven a prepared suspended truss structure for the cameras and nets,
it currently takes four people approximately 6 h to properly set up
the mobile system, though this estimate depends on the specifics
of the setup.

After the initial set up of the system, a calibration of the motion
capture system is performed using a calibration wand (provided by
the manufacturer of the motion capture system), mounted on a
long, telescopic rod to allow the user to move the wand through
the entire flight space. The calibration algorithm computes,
amongst others, the position and attitude of each individual cam-
era. This data is then fed back into the camera simulation tool to
verify the predicted space coverage, and adjustments are made to
the camera placement if necessary.

7.1. Flight-enabled architecture exhibit

The mobile FMA was used for a demonstration in Orléans,
France in December 2011, where quadrocopters cooperatively con-
structed a foam brick tower (Fig. 17). The system to realize this

Fig. 18. The cooperative ball catching/throwing demo (Section 6.6) shown in front of a live audience at the 2012 Hannover Messe.

S. Lupashin et al./ Mechatronics 24 (2014) 41-54 51

performance built upon the components presented in this work,
with task-specific extensions such as specialized visualization
modules, brick gripping and placement hardware and software
modules, and a module for overall building coordination.

The system was deployed and tested in an unprepared space in
a span of a week, at the conclusion of which we were able to dem-
onstrate the system in front of the public, with showings spread
over four days. We used four quadrocopters and four automated
recharging stations to automatically maintain a controlled rate of
build for the tower. 1500 bricks were placed with centimeter accu-
racy to build a 6 m-tall, 4 m-diameter tower.

Nineteen Vicon T-40 cameras were used to cover the space,
carefully arranged to assure flight space coverage throughout the
performance. Because the tower build ran through several days,
and bricks had to be placed with high accuracy relative to the rest
of the structure, special care was taken to maintain a consistent
coordinate system, even as the cameras moved and drifted slightly
over time. This was accomplished by tracking several fixed refer-
ence markers in the space and calculating appropriate transforma-
tions from the current motion capture coordinate system to the
initial “ideal” one.

In addition, this demonstration was particularly challenging to
our safety features, since the space was crowded with unprotected
visitors. Due to various factors such as space lighting and reflec-
tors/lights in the crowds, the motion capture software dropped a
higher than usual number of data frames. In one case, the motion
capture software crashed, causing a complete global positioning
blackout; the failsafe features kicked in, automatically sounding a
warning alarm. The quadrocopters maintained blind flight before
descending giving the public time to react, turning a potentially
disastrous situation into an inconvenient, but safe, glitch.

7.2. Other exhibits

The Flying Machine Arena was also shown at the 2012 Han-
nover Messe (Fig. 18), at the 2012 Google 1/O at San Francisco, at
the 2012 Zurich.Minds and at the 2013 Edinburgh TEDGlobal
events. In these cases a 13-camera system was used to provide
motion capture coverage. Each installation took 4-6 h to set up
from shipped containers and 4 h to break down back to a packed
form.

Leveraging the distributed architecture, additional laptops
could be safely attached to the system at the last moment to run
non-critical tasks. For example, we showed a live 3D visualization
of the motion capture data to give visual feedback about the prin-
ciples behind the system to the public. In a similar vein, we used
the FMA plotting and real-time data manipulation tools to present
live examples of concepts such as feedback control or sensor noise.

8. Conclusions and future work

In this work we have presented the Flying Machine Arena plat-
form, including how robustness and reliability concerns affected
the design of the system and how the system handles various fail-
ure modes. As test beds such as the FMA grow more complex,
robustness and system-level design gain further importance. We
hope that this work may be useful as a reference point to current
and future designers, builders, and users of such platforms.

The demonstrations enabled by the FMA serve as both motiva-
tion and validation for the robustness of the system, even as many
of the underlying components change day to day as part of ongoing
research. We hope that in the long term FMA-enabled demonstra-
tions and performances will help further the field of aerial robotics,
especially in terms of reliability and system robustness.

We have omitted many of the more advanced features of the
FMA from this work such as multi-vehicle air traffic control or a

detailed description of the automatic high-rate charging stations.
These tools act in different ways to increase the robustness of
the system as well, but are more recent and less mature features
that have only been used in isolated scenarios. We are also inves-
tigating ways of reducing our reliance upon the high frequency,
high accuracy motion capture system by using different sensors
and more sophisticated estimation techniques, in which case the
existing FMA infrastructure is used to validate the proposed meth-
ods with ground truth data.

The safety/reliability features of the FMA are currently focused
on failures occurring in communication or in the off-board soft-
ware components. This is a reflection of our subjective experiences
and the fact that the on-board code and hardware are relatively
stable. We plan to investigate the treatment of hardware and on-
board software failures in the future.

Acknowledgments

The authors thank the many collaborators on this project, espe-
cially Federico Augugliaro, Fabian Miiller, and Thomas Kdgi; a com-
plete list of contributors can be found online at
www.flyingmachinearena.org.

This research was supported in part by the Swiss National Sci-
ence Foundation and through direct grants from ETH Zurich.

Appendix A. Quadrocopter dynamics

Translation in the global frame (Fig. A.19) is given by

X 0 0
j|=R|0|-]|0], (A1)
z c g

where R is the rotation matrix from the body frame to the global
reference frame, c is a mass-normalized acceleration due to thrust,
and g is acceleration due to gravity.

The evolution of R is governed by the angular velocity

o= (p,q,r) [31]:

0 -r g¢q
R=R|r 0 -—p (A2)
-¢ p O

The body rates as well as c evolve according to basic dynamics
(see, for example, [3]), driven by the current motor thrusts fi..4:

p I(fy —fa)
Jo=]|q|= I(fs - fr)

r Kfi —=fa+f3 —fa)
c=(fi+h+f+fa)/m,

- X Jo,

(A3)

Fig. A.19. Coordinate systems, propeller directions, and motor numbering used in
this work.

http://www.flyingmachinearena.org

52 S. Lupashin et al. / Mechatronics 24 (2014) 41-54

where J is the inertia matrix of the vehicle, [is the vehicle center
to rotor distance, k is an experimentally determined constant and
m is the mass of the vehicle. We model each motor as a first-
order system with constraints 0 < fuin <fi < fmax. The motors
cannot be reversed or stopped in flight. Experiments show that
the motors are quicker to spin up than to spin down:

fi= i~ fi. (A4)
!

where fi is the desired thrust command from the on-board feedback
controller as explained in Appendix B and 77 = 75, when f; > f; and
T5 = Ty q4n Otherwise.

Appendix B. On-board control

The commands send to the vehicle are desired body rates and a
desired mass-normalized thrust: p, g, -, and ¢. The on-board control
system is tasked with following these commands, using high-rate
on-board sensing such as rate gyros in feedback when available.

More concretely, given a desired command and estimated body
rates from the gyroscopic sensors, the on-board controller pro-
duces individual motor thrust commands, f;..4. With the dynamics
to be controlled, Eq. (A.3), being of first order, the control law is
chosen in a feedback linearizing loop-shaping approach with the
closed-loop dynamics of a first-order linear system. To find the de-
sired motor commands, we invert Eq. (A.3):

- - 1 /5

I(f2 — fa) 7 (P~ P)

Ifs —f1) =J|=(@-q

K(f1 —fa+f3—fa) %(f*r)
(f1+f2+f3+fa) =me.

It is then straightforward to solve for the propeller forces f; 4.
The closed-loop time constants 7, and 7, are tuned to provide fast
response, with a lower bound caused by stability requirements in
combination with the bandwidth of the motor speed control loop.

A lower control loop then performs speed control for each indi-
vidual propeller in order to produce the desired propeller forces
f1..4. This task is performed by the motor controllers, which are
off-the-shelf components [20]. Because access to the programs
running on these controllers is not available, we consider this con-
trol loop as given and have only identified it, as shown in (A.4).

+o x]Jo, B.1)

Appendix C. On-board calibration

The gyroscopes are initially calibrated for bias when the vehicle
is switched on. This initial calibration is then augmented by a more
comprehensive calibration routine, typically conducted in prepara-
tion for an experiment after first takeoff. Here the vehicle is com-
manded to a hover, from which point we can estimate gyro
biases, propeller efficiency factors and a measurement frame
misalignment.

The gyro biases are taken as the mean value of the gyro output,
since the mean angular velocity is known to be zero. Next we
define “propeller factors” y, ,, as the ratio between the true thrust
fi..4 and the nominally commanded thrust fl,,,4, ie fiqg= ylu,jl...‘l.
Taking (A.3) and setting the angular rates to zero and the collective
acceleration to gravity (c = g), we obtain a simple matrix equation
to solve for y; 4,

0 Ifa 0 —fs][y 0

—If 0 I 0

fr 0 s 0 i) |0 (€.1)
kfi —xfa Kfs —Kfa||7s 0

70

60

50

40

30

20

Hover error (mm)

Time (s)

Fig. C.20. Effects of static calibration on hover accuracy. The mean hover error is
reduced from approximately 89-16 mm after the static calibration routine, which
terminates at 5 s. Note that no form of integral control is used.

These factors are then used to scale all subsequent inputs to the
motor, and are a useful diagnostic tool: if the calibration routine
results in significantly differing factors, this is a strong indication
of damage to the motors/propellers.

Attached to each vehicle is a set of at least three uniquely con-
figured markers observed by the motion capture system. These
markers define a measurement frame, which is approximately
aligned with the body fixed frame. The pitch and roll components
of this misalignment are estimated during the static calibration, as
the z,-axis of the body fixed frame must align with gravity during
hover.

The calibration procedure significantly improves the tracking
performance of the vehicles: representative results are shown in
Fig. C.20, where the mean hover error is reduced to less than
20 mm. The propeller factors measured were
{1.02,1.25,0.84,0.95} respectively for the front, left, rear and right
propellers. The calibration also showed a measurement frame mis-
alignment of 0.6°, and gyro biases of (0.05, —0.02, —0.01) rad/s
around the (x,,y,,2,) axes.

Appendix D. Trajectory tracking controller

An overview of the cascaded controllers used for flying a qua-
drocopter is shown in Fig. C.21. This control scheme is most com-
monly used to follow desired vehicle position and yaw trajectories.

The off board control consists of four separate loops: horizontal
and vertical position control loops, a reduced attitude control loop
and a yaw control loop. The output of the four control loops are the
three body rate commands to the vehicle, and the collective thrust
command.

The estimation and latency compensation presented in Sec-
tion 3.2 allows us to do full state feedback controllers with no con-
sideration of latency. While the off-board controllers are executed
in discrete time to generate commands at the rate of vehicle-
ground communication (see Section 3.4), they are designed based
on the continuous-time system dynamics representation with no
consideration of the sampling rate. Because the communications
channel is significantly faster than the system dynamics, perfor-
mance losses from this are considered to be minor.

D.1. Vertical control

The vertical control loop is shaped such that it responds to alti-
tude errors like a second-order system with a time constant 7, and
damping ratio {,:

S. Lupashin et al./ Mechatronics 24 (2014) 41-54 53

Q¢

OFF-BOARD Vertical ON-BOARD
Controller
e P, fi.a
Horizontal Red'uced Body Rate Motor
Controller - Attitude Controller Controller
Y Controller 7,, —

Yaw
Controller

Fig. C.21. Overview of the quadrocopter cascaded control loops. Feedback signal flow is omitted for clarity.

1. 20, 5 . =
=2 T—Zz(z—z)—kz,

(D.1)
where z.z, and Z are the desired vertical position, velocity, and
acceleration, respectively.

Using the translational system dynamics (A.1) and the desired
dynamics, the collective thrust is found to be
. 1 /1 . 2, «

C=— 2(z-2)+2 D.2

R (mE-9+ 22— +21g), (02)
where the scalar Rs; is the (3,3) element of the vehicle rotation ma-
trix R.

D.2. Horizontal control

Similarly to the vertical control loop, the two horizontal control
loops are shaped to behave in the manner of a second-order sys-
tem, with time constant t,, and damping ratio {,,. However, no
control inputs are directly calculated. Instead, the commanded
accelerations ¥, j are given as set points to the attitude controller.

D.3. Reduced attitude control

The attitude controller controls the reduced attitude [32] of the
vehicle such that the commanded accelerations X, y are met.
Rewriting the translational dynamics Eq. (A.1), it can be seen that
two matrix elements determine the translational acceleration,
together with the collective thrust command:

Sl [l
,V R23
The commanded accelerations are converted to commanded rota-
tion matrix entries using the above relationship. To avoid the vehi-
cle losing altitude when large horizontal accelerations are
commanded, the rotation matrix entries are limited when the col-
lective thrust command ¢ reaches the maximum allowable value.
The attitude control loop is shaped such that the two matrix entries
react in the manner of a first order system with time constant .
Using the rotational kinematics Eq. (A.2), the rate of change of the
matrix entries can be used to compute the desired vehicle body
rates p and g:

o) =[x
q Rs3 [Ry,

D.4. Yaw control loop

(D.3)

_Rll :| R13 (D4)

_R12 Rzg

The above controllers fully define the translational behavior of
the quadrocopter vehicle. There is, however, a remaining degree
of freedom: Arbitrary rotations about the z,-axis of the vehicle
do not affect the above dynamics. To control this remaining degree
of freedom, we use the Euler angle parametrization [33] of the
rotation matrix R, commonly referred to as yaw-pitch-roll, and

consisting of a pure rotation about the global z axis (yaw), followed
by a rotation about the new y-axis (pitch), and a final rotation
about the new x-axis (roll).

The yaw controller is a proportional controller from the mea-
sured yaw angle to the yaw angle rate. The yaw angle rate is then
mapped to the vehicle body rate r using the kinematic relations of
Euler angles.

References

[1] How], Bethke B, Frank A, Dale D, Vian J. Real-time indoor autonomous vehicle
test environment. IEEE Control Syst Mag 2008;28(2):51-64. http://dx.doi.org/
10.1109/M(CS.2007.914691.

[2] Hoffmann GM, Huang H, Waslander SL, Tomlin CJ. Precision flight control for a
multi-vehicle quadrotor helicopter testbed. Control Eng Practice
2011;19(9):1023-36. http://dx.doi.org/10.1016/j.conengprac.2011.04.005.

[3] Michael N, Mellinger D, Lindsey Q, Kumar V. The GRASP multlple micro-UAV
testbed. IEEE Robot Autom Mag 2010;17(3):56-65. http://dx.doi.org/10.1109
MRA.2010.937855.

[4] Mellinger D, Michael N, Kumar V. Trajectory generation and control for precise
aggressive maneuvers with quadrotors. Int] Robot Res 2012;31(5):664-74.
http://dx.doi.org/10.1177/0278364911434236.

[5] Gillula JH, Huang H, Vitus MP, Tomlin CJ. Design and analysis of hybrid
systems, with applications to robotic aerial vehicles. In: 2009 International
symposium of robotics research; 2009.

[6] Lupashin S, D’Andrea R. Adaptive fast open-loop maneuvers for quadrocopters.
Auton Robots 2012;33:89-102. http://dx.doi.org/10.1007/s10514-012-9289-9

[7] Hehn M, D’Andrea R. A flying inverted pendulum. In: 2011 IEEE international
conference on robotics and automation (ICRA); 2011. p. 763-70. doi: 10.1109/
ICRA.2011.5980244.

[8] Ritz R, Miiller M, Hehn M, D’Andrea R. Cooperative quadrocopter ball throwing
and catching. In: 2012 IEEE/RS] international conference on intelligent robots
and systems (IROS); 2012. p. 4972-8. doi: 10.11 2012 .

[9] Lindsey Q, Mellinger D, Kumar V. Construction of cubic structures with
quadrotor teams. In: Robotics: science and systems; 2011.

[10] Saatchi & Saatchi new directors’ showcase at Cannes Lions; 2012. <http://
www.canneslions.com/saatchinewdirectors/>.

[11] Ars Electronica 2012: Spaxels; 2012. <http://www.aec.at/quadcopter/en>.

[12] Trimpe S, D’Andrea R. Accelerometer-based tilt estimation of a rigid body with
only rotational degrees of freedom. In: 2010 IEEE international conference on
robotics and automation (ICRA); 2010. p. 2630-6. doi: 10.1109/
ROBOT.2010.5509756.

[13] Oung R, DAndrea R. The distributed flight array. Mechatronics
2011;21(6):908-17. http://dx.doi.org/10.1016/j.mechatronics.2010.08.003.

[14] Achtelik M, Achtelik M, Weiss S, Siegwart R. Onboard IMU and monocular
vision based control for MAVs in unknown in- and outdoor environments, in:
2011 IEEE international conference on robotics and automation (ICRA); 2011.
p. 3056-63. doi: 10.1109/ICRA.2011.5980343.

[15] Smart B. Competitions, challenges, or journal papers? [competitions]. IEEE
Robot Autom Mag 2012;19(1):14. http://dx.doi.org/10.1109/
MRA.2012.2186709.

[16] D’Andrea R, Babish M. The RoboFlag testbed. In: Proceedings of the American
control conference, vol. 1; 2003. p. 656-60. doi: 10.1109/ACC.2003.1239094.

[17] Veloso M, Stone P, Han K. CMUnited-97: RoboCup-97 small-robot world
champion team. Al Mag 1998;19(3):61-9.

[18] Stubbs A, Vladimerou V, Fulford A, King D, Strick], Dullerud G. Multivehicle
systems control over networks: a hovercraft testbed for networked and
decentralized control. IEEE Control Syst 2006;26(3):56-69. http://dx.doi.org/
10.1109/M(CS.2006.1636310.

[19] Miller I, Campbell M, Huttenlocher D, Nathan A, Kline F-R, Moran P, et al. Team
Cornells Skynet: robust perception and planning in an urban environment. In:
Buehler M, lagnemma K, Singh S, editors. The DARPA urban challenge. Springer
tracts in advanced robotics, vol. 56. Berlin Heidelberg: Springer; 2009. p.
257-304. http://dx.doi.org/10.1007/978-3-642-03991-1 7

[20] Gurdan D, Stumpf], Achtelik M, Doth K-M, Hirzinger G, Rus D. Energy-efficient
autonomous four-rotor flying robot controlled at 1kHz. In: 2007 IEEE
international conference on robotics and automation; 2007. p. 361-6. doi:
10.1109/ROBOT.2007.363813.

http://dx.doi.org/10.1109/MCS.2007.914691
http://dx.doi.org/10.1109/MCS.2007.914691
http://dx.doi.org/10.1016/j.conengprac.2011.04.005
http://dx.doi.org/10.1109/MRA.2010.937855
http://dx.doi.org/10.1109/MRA.2010.937855
http://dx.doi.org/10.1177/0278364911434236
http://dx.doi.org/10.1007/s10514-012-9289-9
http://www.canneslions.com/saatchinewdirectors/
http://www.canneslions.com/saatchinewdirectors/
http://www.aec.at/quadcopter/en
http://dx.doi.org/10.1016/j.mechatronics.2010.08.003
http://dx.doi.org/10.1109/MRA.2012.2186709
http://dx.doi.org/10.1109/MRA.2012.2186709
http://refhub.elsevier.com/S0957-4158(13)00226-2/h0130
http://refhub.elsevier.com/S0957-4158(13)00226-2/h0130
http://dx.doi.org/10.1109/MCS.2006.1636310
http://dx.doi.org/10.1109/MCS.2006.1636310
http://dx.doi.org/10.1007/978-3-642-03991-1_7

54 S. Lupashin et al. / Mechatronics 24 (2014) 41-54

[21] Sherback M, Purwin O, D’Andrea R. Real-time motion planning and control in
the 2005 Cornell RoboCup system. In: Kozlowski K, editor. Robot motion and
control. Lecture notes in control and information sciences, vol. 335. Berlin/
Heidelberg: Springer; 2006. p. 245-63. http://dx.doi.org/10.1007/978-1-
84628-405-2 16.

[22] Mueller M, D’Andrea R. Critical subsystem failure mitigation in an indoor uav
testbed. In: 2012 IEEE/RS] international conference on intelligent robots and
systems (IROS); 2012. p. 780-5. doi: 10.1109/IR0S.2012.6385910.

[23] Plett GL. Extended Kalman filtering for battery management systems of LiPB-
based HEV battery packs part 1: background.] Power Sour 2004;134:252-61.

[24] Miiller M, Lupashin S, D’Andrea R. Quadrocopter ball juggling. In: 2011 IEEE/
RSJ international conference on intelligent robots and systems (IROS); 2011. p.
5113-20. doi: 10.1109/IR0S.2011.6094506.

[25] Mueller F, Schoellig A, D’Andrea R. Iterative learning of feed-forward
corrections for high-performance tracking. In: 2012 IEEE/RS] international
conference on intelligent robots and systems (IROS); 2012. p. 3276-81. doi:
10.1109/IR0S.2012.6385647.

[26] Ambiihl A. Human interaction with a quadrocopter using a Kinect sensor.
Bachelor thesis, ETH Ziirich; 2011.

[27] Augugliaro F, Schoellig A, D’Andrea R. Generation of collision-free trajectories
for a quadrocopter fleet: a sequential convex programming approach. In: 2012
IEEE/RS] international conference on intelligent robots and systems (IROS);
2012. p. 1917-22. doi: 10.1109/IR0S.2012 .

[28] Schoellig AP, Augugliaro F, D’Andrea R. A platform for dance performances
with multiple quadrocopters. In: Proceedings of the IEEE/RS] international
conference on intelligent robots and systems (IROS) - workshop on robots and
musical expressions; 2010. p. 1-8.

[29] Brescianini D, Hehn M, D’Andrea R. Quadrocopter pole acrobatics. In: Proc. of
the IEEE/RS] international conference on intelligent robots and systems (IROS);
2013.

[30] Augugliaro F, D’Andrea R. Admittance control for physical human-
quadrocopter interaction. In: European control conference; 2013.

[31] Hughes PC. Spacecraft attitude dynamics. John Wiley & Sons; 1986.

[32] Chaturvedi N, Sanyal A, McClamroch N. Rigid-body attitude control. IEEE
Control Syst 2011;31(3):30-51. http://dx.doi.org/10.1109/MCS.2011.940459.

[33] Zipfel PH. Modeling and simulation of aerospace vehicle dynamics. Second
ed. AIAA; 2007.

http://dx.doi.org/10.1007/978-1-84628-405-2_16
http://dx.doi.org/10.1007/978-1-84628-405-2_16
http://refhub.elsevier.com/S0957-4158(13)00226-2/h0150
http://refhub.elsevier.com/S0957-4158(13)00226-2/h0150
http://refhub.elsevier.com/S0957-4158(13)00226-2/h0155
http://dx.doi.org/10.1109/MCS.2011.940459
http://refhub.elsevier.com/S0957-4158(13)00226-2/h0165
http://refhub.elsevier.com/S0957-4158(13)00226-2/h0165

	A platform for aerial robotics research and demonstration: The Flying Machine Arena
	1 Introduction
	2 System overview
	2.1 Modularity and networking
	2.1.1 Logging and playback
	2.1.2 Module inputs/outputs

	2.2 Hardware abstraction and simulation
	2.3 Vehicles

	3 Core components
	3.1 Global sensing
	3.2 Off-board estimation and control
	3.2.1 Estimation
	3.2.2 Latency compensation
	3.2.3 Control

	3.3 Copilot safety and utility module
	3.4 Wireless communication
	3.4.1 Command link
	3.4.2 Telemetry/parameter link

	3.5 On-board estimation and control

	4 System analysis
	4.1 System latency
	4.2 Cascaded control linear analysis

	5 Failure modes
	5.1 Off-board outage failsafe
	5.2 Low battery failsafe

	6 Demonstrations
	6.1 Interaction with pointer/Kinect
	6.2 Adaptive aerobatics
	6.3 Iterative motion learning
	6.4 Ball juggling
	6.5 Multi-vehicle transitions
	6.6 Cooperative ball throwing and catching
	6.7 Construction of brick structures
	6.8 Multi-vehicle dancing
	6.9 Flying inverted pendulum
	6.10 Physical human–quadrocopter interaction

	7 Mobile FMA and external exhibits
	7.1 Flight-enabled architecture exhibit
	7.2 Other exhibits

	8 Conclusions and future work
	Acknowledgments
	Appendix A Quadrocopter dynamics
	Appendix B On-board control
	Appendix C On-board calibration
	Appendix D Trajectory tracking controller
	D.1 Vertical control
	D.2 Horizontal control
	D.3 Reduced attitude control
	D.4 Yaw control loop

	References

