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Online Trajectory Generation With Distributed Model
Predictive Control for Multi-Robot Motion Planning

Carlos E. Luis , Marijan Vukosavljev, and Angela P. Schoellig

Abstract—We present a distributed model predictive control
(DMPC) algorithm to generate trajectories in real-time for multiple
robots. We adopted the on-demand collision avoidance method
presented in previous work to efficiently compute non-colliding tra-
jectories in transition tasks. An event-triggered replanning strategy
is proposed to account for disturbances. Our simulation results
show that the proposed collision avoidance method can reduce, on
average, around 50% of the travel time required to complete a
multi-agent point-to-point transition when compared to the well-
studied Buffered Voronoi Cells (BVC) approach. Additionally, it
shows a higher success rate in transition tasks with a high density
of agents, with more than 90% success rate with 30 palm-sized
quadrotor agents in a 18 m3 arena. The approach was experi-
mentally validated with a swarm of up to 20 drones flying in close
proximity.

Index Terms—Motion and path planning, distributed robot
systems, collision avoidance, model predictive control.

I. INTRODUCTION

ONLINE trajectory generation is key to execute missions in
dynamic or unknown environments. In particular, multi-

robot tasks are especially challenging due to a high number
of decision-making agents sharing the same space. In such
settings, the planning algorithms must compute collision-free
and goal-oriented trajectories, taking into account the state of
the environment and neighbouring agents.

A wide variety of techniques exist to tackle the multi-robot
trajectory generation problem. First, optimization-based tech-
niques such as Sequential Convex Programming (SCP) [1], [2]
and Distributed Model Predictive Control (DMPC) [3], [4] have
successfully solved point-to-point trajectory generation prob-
lems for multiple agents. Second, discrete planning strategies
such as Rapidly-exploring Random Trees (RRT) [5] have been
extended to the multi-agent case. Third, a combination of dis-
crete planning and continuous optimization has been developed

Manuscript received September 10, 2019; accepted December 18, 2019. Date
of publication January 6, 2020; date of current version January 20, 2020. This
letter was recommended for publication by Associate Editor Prof. Javier Alonso-
Mora and Editor Nak Young Chong upon evaluation of the reviewers’ comments.
This work was supported in part by the NSERC research and equipment Grants
RTI 2018-00847, CRDPJ 528161-18, CREATE 466088, and in part by the CFI
JELF/ORF Grant #33000. (Corresponding author: Carlos E. Luis.)

The authors are with the Dynamic Systems Lab, Institute for Aerospace
Studies, University of Toronto, Toronto, ON M5S, Canada (e-mail:
carlos.luis@robotics.utias.utoronto.ca; mario.vukosavljev@mail.utoronto.ca;
schoellig@utias.utoronto.ca).

This letter has supplementary downloadable material available at http://
ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/LRA.2020.2964159

Fig. 1. A ten-drone transition task through a hula-hoop solved using our
proposed online trajectory generation method. Our distributed computation
allows for real-time multi-robot motion planning, enabling complex tran-
sition tasks to be performed. A video of the performance is found at
http://tiny.cc/online-dmpc.

to coordinate multiple robots in cluttered environments [6].
GPU-accelerated approaches can reduce the runtime of these
offline planners [7].

Real-time trajectory generation is required for quick adap-
tation in dynamic environments, but it remains challenging to
implement for robot swarms. Optimal Reciprocal Collision
Avoidance (ORCA) and all its variants have pushed towards
real-time trajectory generation [8], providing experimental val-
idation with various robotic platforms in planar environments
[9]. A similar approach achieves collision avoidance through
the concept of Buffered Voronoi Cells (BVC) [10], showing
initial results of online trajectory generation in 2D with multiple
quadrotors operating at a fixed height. The BVC concept has
been recently used in tandem with discrete planners [11], pri-
marily to avoid deadlocks in scenarios where plain BVC would
get trapped and fail the task.

Robust MPC frameworks such as tube MPC have been de-
veloped for distributed multi-agent systems under uncertainty,
both with linear [12] and nonlinear [13] dynamics. Although
both approaches provide proofs and simulation results, they are
not real-time implementable with current hardware and solver
capabilities.

We present a novel real-time, multi-vehicle motion planning
framework that significantly outperforms existing methods in
terms of the success rate to complete transition tasks in agent-
dense environments, as shown in Fig. 1. To the best of our
knowledge, this letter presents the first results on real-time
motion planning for drone swarms of up to 20 drones, executed
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Fig. 2. Block diagram of the control system of agent i. Here we depict the
agent as a Crazyflie 2.0 quadrotor, which is our experimental platform.

from a single off-board computer. The proposed algorithm is
implemented in a centralized fashion, and relies on information
sharing between agents. We developed a DMPC formulation
of the problem that includes state feedback, which enables
online replanning and therefore increases overall robustness.
As such, our framework provides an essential functionality for
higher-level planners that specify complex team missions in
terms of goal locations to be visited by the agents. Compared to
our offline approach [4], our main contributions are threefold: (i)
a multi-agent motion planning framework based on distributed
model predictive control, which allows for real-time trajectory
generation, (ii) an event-triggered replanning strategy for robust
execution of plans and (iii) a thorough empirical evaluation of the
method.

Our approach contrasts from current online methods
(e.g., [11]) in that:
� It is purely optimization-based, in the form of a standard

and efficiently-solvable Quadratic Program (QP).
� It uses on-demand collision avoidance instead of the BVC

method for partitioning the free space, resulting in less
conservative movement and faster transition times.

The rest of the letter is organized as follows: Section II in-
troduces the problem. Section III formalizes the DMPC method
and Section IV introduces the trajectory replanning strategy. The
algorithm for input updates is presented in Section V. Finally,
Section VI and VII provide simulation and experimental results
of our approach with teams of drones.

II. PROBLEM STATEMENT

Given N agents with known linear dynamics, a finite 3-
dimensional workspaceW ⊂ R3, desired end positions pd,i ∈
W for each agent i and static obstacle set E ⊂ W , compute
inputs ui[k] ∈ R3 for each agent such that:
� the agents do not collide with each other or with the

obstacles;
� the agents remain withinW for all time;
� there exists a time Tf after which the agents remain suffi-

ciently close to their desired positions.

A. The Agents

We assume every agent i is equipped with a controller for
position trajectory tracking and ui is a position reference, as
shown in Fig. 2.

Furthermore, assume each agent i obeys some known trajec-
tory tracking dynamics given by a discrete linear system:

xi[k + 1] = Aixi[k] +Biui[k]. (1)

For example, in this letter we consider the system (1) to
represent a quadrotor with an underlying position controller
[14], for which the input (ui[k] ∈ R3) is a position reference
signal, and the states (xi[k] ∈ R6) are the position and velocity
of the vehicle, i.e., xi[k] = (pi[k], vi[k]). This results in a
second-order system defining the dynamics, with Ai ∈ R6×6,
Bi ∈ R6×3. One may adopt more complex inputs (e.g., adding
a velocity reference), or more complex systems (e.g., other dif-
ferentially flat robots) as long as the dynamics can be represented
by a linear system.

III. ONLINE DISTRIBUTED MODEL PREDICTIVE

CONTROL (DMPC)

In this section we formalize the MPC optimization problem
solved in real-time for each agent. The approach is based on the
offline method presented in [4].

A. Trajectory Parameterization

Our approach is based on receding horizon control, meaning
that at the discrete time step kt, corresponding to the continuous
time instant t0, we recompute the input sequence to be applied
over a finite horizon of K time steps. Given a desired discrete
time step durationh, we get the continuous time horizon duration
th = (K − 1)h. We parameterize the continuous input signal
ui(t) for t ∈ [t0, t0 + th] as a concatenation of l Bézier curves,
similar to [6]. For more details on Bézier curves we refer the
reader to [15].

We select Bézier curves since we can impose smoothness
requirements in the input and can easily represent its derivatives.
In order to define a Bézier curve in R3 of arbitrary degree p
and duration T , first we must construct the p+ 1 Bernstein
polynomials of degree p:

Sm,p(t) =

(
p

m

)
(1− t/T )p−m(t/T )m ∀t ∈ (0, T ), (2)

with m = 0, 1, . . . , p. Now, an n-dimensional Bézier curve of
degree p is defined asS(t) =

∑p
i=0 PmSm,p(t)withPm ∈ R3.

The set P = {P0,P1, . . . ,Pp} represents the p+ 1 control
points that uniquely characterize the curve. The control points
are a finite parameterization of the continuous curve and serve
as the optimization variables to compute the agents’ trajectories
over the horizon.

Samples of S(t) and its derivatives can be computed as a
linear combination of its control points [15], which will be used
in what follows to build a convex optimization problem.

B. The Agent Prediction Model

We introduce the notation (̂·)[k|kt], which represents the
predicted value of (·)[kt + k] with the information available at
kt and k ∈ {0, . . . ,K − 1}, where K is the horizon length. The
prediction model of agent i is given by

x̂i[k + 1|kt] = Aix̂i[k|kt] +Biûi[k|kt]. (3)
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Using (3) we can represent the (stacked) predicted state se-
quence over the horizon, Xi ∈ R6K , as

Xi = A0,ix̄i[kt] +ΛiUi, (4)

where Ui ∈ R3K is the stacked input sequence, x̄i[kt] is the
measured state at kt, and matrices A0,i ∈ R6K×6 and Λi ∈
R3K×3K . We note that Ui is a sampled representation of the
input, and it can be obtained from a linear combination of the
control points of a continuous Bézier curve. We define U i ∈
R3l(p+1) as the decision vector to optimize, which represents
the control points of the l Bézier curves of degree p.

C. Input Continuity

Trajectory smoothness is enforced through equality con-
straints. First, the initial control point of the input is chosen
to be equal to a constant vector; the way this constant vector is
constructed is the subject of Section IV. Second, continuity be-
tween the l Bézier curves is guaranteed up to a certain derivative
by forcing the endpoint of a curve to match the beginning of the
next curve, i.e., the difference between control points must be
equal to zero [11].

Using linear relationships between the control points of the
Bézier curve and the control points of its derivatives, we build a
tuple (Aeq,beq) that represents the input continuity constraints
of the form AeqU i = beq for each agent i.

D. Physical Limits of the Robot

Since the agents have limited actuation and the workspace
is limited as defined by W , we must encode such limitations
within the optimization. For dynamic feasibility we impose the
following constraints

γ
(c)
min ≤

dc

dtc
ui(t) ≤ γ(c)

max, c = {0, 1, . . . , r}, (5)

where γ
(c)
min and γ

(c)
max are the given maximum and minimum

values of the cth derivative of the input.
In general, imposing these constraints has posed difficulties

in past work. One option proposed in the literature is to exploit
the convex hull property of Bézier curves, although this may
impose overly conservative bounds [16]. A second option, as
suggested in [11], is to not impose the constraints at all and check
afterwards if the trajectories comply with the constraints; if not,
the problem needs to be resolved for constraint satisfaction. In
this work we propose a third alternative, in which we obtain
specific samples of the input and its derivatives (as a linear
combination of the control points) and limit those appropriately
through linear inequality constraints of the form AineqU i =
bineq. The procedure involves computing a linear transformation
between control points and polynomial coefficients in the power
basis [15], which then can be multiplied by vectors of the
form {1, t0, . . . , tp0} to obtain the exact value of S(t0) and its
derivatives.

This method avoids the conservativeness of using the convex
hull property and the potential need to resolve the problem
as in [11]. The values for γ(c)

min and γ
(c)
max were picked based

on experimental understanding of the specific robotic platform

being used. In the case of quadrotors we found that limiting the
acceleration (c = 2) led to good tracking performance of the
underlying controller.

E. Optimization-Based Collision Avoidance

For collision avoidance we require the following inequality
to hold throughout trajectory execution

∥∥Θ−1(pi[kt]− pj [kt])
∥∥
2
≥ rmin, ∀j �= i, (6)

where Θ is a scaling matrix to obtain general ellipsoid safety
boundaries, and rmin is the minimum distance between two
agents before collision.

We explored two approaches: Buffered Voronoi Cells (BVC)
[10], [11] and on-demand collision avoidance [4]. Both methods
rely on the same principle of imposing hyperplane constraints
that limit the available free space over which the agent is allowed
to optimize its future inputs. In Fig. 3(a) we present a simple
collision avoidance scenario with two agents in 2D.

In the BVC method, the agents are restricted to remain within
their own Buffered Voronoi Cell,Vi, for a time τ of their horizon.
In this work, we define a Buffered Voronoi Cell similar to [10]
but including the scaling matrix:

Vi=
{
p∈R3

∣∣∣∣ Θ−2(pi−pj)
ᵀ(p−pi)

di,j
≥ rmin−di,j

2

}
,∀j �= i,

(7)

where di,j = ‖Θ−1(pi − pj)‖2, and pi, pj are the measured
positions of agents i and j at time step kt. Fig. 3(b) shows the
BVCs calculated (shaded areas) for our two-agent example. The
condition in (7) defines a linear constraint on the position of
the agents to achieve collision avoidance. Let Pi,1 be the set
of control points of agent i corresponding to the first Bézier
curve of the input. To achieve collision avoidance we impose
the constraint Pi,1 ∈ Vi, which translates to p+ 1 constraints
on the control points.

Collision-free updates are achieved with this method, as
shown in Fig. 3(b).

On the other hand, the on-demand method of [4] relies on
a predict-avoid paradigm for collision avoidance. It assumes
communicative agents that share with the team a representation
of their future actions. In our case, since the input and the state
are closely related (reference trajectory and measured position),
we have two options for collision avoidance:
� State space: constraints are imposed on the predicted

states Xi of the agents, which can be obtained as
a linear combination of the optimal inputs using (4).
This results in collision-free predicted positions over the
horizon.

� Input space: constraints are imposed on the inputs Ui

directly, resulting in collision-free reference positions over
the horizon.

For the general dynamics in system (1), non-intersecting
trajectories in the input space would not necessarily achieve
collision avoidance.
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Fig. 3. Two-agent transition scenario in 2D. The agents are represented by a circle of certain radius. The X marks the intended goal of each agent. In (a) the dashed
lines represent the nominal (colliding) trajectories, where the translucent circles represent the position of each agent at time step kc in which the first collision
is predicted. In (b) we show the input update using the BVC method. The green dots represent the concatenation points of the Bézier curves. The first curve is
constrained to lie within the coloured zone for each agent. In (c) the agents update their inputs using on-demand collision avoidance, leveraging the predicted
collision information to build the separating hyperplanes. The star represents the sample of the updated input which was constrained to be within the coloured zone.

Agent i detects the first predicted collision (in the state space)
with any neighbour j at time step kc,i whenever

ξij =
∥∥Θ−1 (p̂i[kc,i|kt − 1]− p̂j [kc,i|kt − 1])

∥∥
2
≥ rmin,

(8)
does not hold. For input space detection it suffices to replace
predicted positions with predicted inputs (position reference).
We define a subsetΩi of neighbours of agent i for which collision
constraints are constructed, defined as:

Ωi = {j ∈ {1, . . . , N} | ξij < g(rmin), j �= i}, (9)

where g(rmin) models the area around the agent for which
collision avoidance is required. In this work we used g(rmin) =
2rmin. As proposed in [4], we can procure collision avoidance
in the state space by enforcing a first-order approximation of the
constraint∥∥Θ−1 (p̂i[kc,i − 1|kt]− p̂j [kc,i|kt − 1])

∥∥
2
≥ rmin + εij ,

∀j ∈ Ωi, (10)

where εij < 0 are slack decision variables for relaxation.
Note that on-demand avoidance only constrains a specific

sample of the curve at kc,i, as shown with the yellow stars in
Fig. 3(c). This sample must lie within a partition of the space
given by the linearization of (10), whereas BVC constrains a
complete segment of the curve. Comparing the resulting tra-
jectories in Fig. 3(b) and Fig. 3(c), it is clear that on-demand
avoidance leads to less conservative maneuvers than the BVC
method. In Section VI we analyze how these insights impact the
ability to complete multi-agent transition tasks.

In both cases, to implement collision avoidance we need
only add an inequality constraint tuple (Acoll, bcoll) that satisfies
AcollU i ≤ bcoll.

F. Cost Function

We search to minimize a cost function which results from the
sum of various terms. In this section we omit the subindex i for
the tuning parameters of each term of the cost function, but each
agent could have different values.

1) Error to Goal: this term drives the agent to its goal loca-
tion. We aim to minimize the sum of errors between the positions
at the last κ < K time steps of the horizon and the goal location

pd,i. The quadratic cost function is defined as

Ji,error =

K∑
k=K−κ

qk ‖p̂i[k|kt]− pd,i‖22 , (11)

where qk > 0 are the positive weights of each time step. This
expression can be formulated as a quadratic form in terms of the
inputs and the measured state at kt.

2) Energy: we minimize a weighted combination of the sum
of squared derivatives, as in [6], [17]. The cost is defined as

Ji,energy =
r∑

c=0

αc

∫ th

0

∥∥∥∥ dc

dtc
ûi(t)

∥∥∥∥
2

2

dt, (12)

where αc > 0 is a scalar weight for each derivative of the input,
until the rth derivative. This term can be evaluated in closed
form to get a quadratic form in terms of U i [17].

3) Collision Constraint Violation: we implement on-demand
collision avoidance as soft constraints, which requires a penalty
term to be added in the cost function to limit the amount of
relaxation of the constraints. For that we consider both quadratic
and linear penalty costs

Ji,violation = ζ ‖εij‖22 + ξεij , (13)

where ζ and ξ are the weights of each term.
A similar approach can be used to relax the constraints in the

BVC method, with the difference that for each neighbour j we
add penalty terms for the p+ 1 constraints on the control points
of the first Bézier curve segment.

All the elements previously mentioned compose the following
standard QP problem:

minimize
Ui,εij

Ji,error + Ji,energy + Ji,violation

subject to AeqU i = beq,AinU i ≤ bin,

AcollU i ≤ bcoll, εij ≤ 0 ∀j ∈ Ωi. (14)

IV. EVENT-TRIGGERED REPLANNING

Choosing the initial condition for the input at each planning
cycle to be equal to the current state of the robot was proposed
in [11], but it has certain limitations. First, if we require Cr-
continuity on the inputs, then we need to reliably measure the
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Fig. 4. Experimental data comparison of replanning strategies. Continuous
replanning creates discontinuities in the reference signals that cause jittering in
the state of the agent. The event-triggered strategy remedies this behaviour by
introducing discontinuities only when the agents are being perturbed.

rth derivative of the robot’s position. Second, for imperfect tra-
jectory tracking or systems with slow dynamics, this replanning
strategy consistently causes (potentially big) discontinuities of
the input to match the state of the robot, as shown in Fig. 4(a).
Such discontinuities cause undesired jittering in the robot and
slow down its progress to complete the task.

To address these concerns, we propose an event-triggered
replanning strategy, in which we reset the input to match the
states of the agent only whenever we detect the agent has been
perturbed. To detect such an event, we heuristically designed an
activation function that serves to detect disturbances to the agent.
An example of such an activation function for second-order
tracking dynamics is:

fn[kt] =
(pi,n[kt]− ui,n[kt])

5

−(vi,n[kt] + sgn(vi,n[kt])ε)
, n = 1, 2, 3 (15)

where the subscript n represents the spatial component
([x, y, z]) of the vectors associated with agent i. The term
(pi,n[kt]− ui,n[kt]) is the trajectory tracking error, and the term
sgn(vi,n[kt])ε with a small scalar ε	 1 is used to avoid singu-
larities in fn[kt]. We assume |vi,n[kt]| > 0, which is realistic in
real-world operation due to noise in state estimation.

The intuition behind (15) is that we want to reset our refer-
ence signal whenever the tracking error grows large. However,
designing an appropriate threshold value for the tracking error
is tricky due to its high variability during execution. Instead,
fn[kt] is designed to detect whenever the error is growing but
the velocity is either small or growing in the opposite direction
of the error. To detect these scenarios, we define the robot is
operating normally if the inequality

fmin < fn[kt] < fmax (16)

holds for every element of fn[kt]. The values of fmin and fmax

must be chosen by extracting the extrema of fn[kt] under normal
operation. If (16) does not hold, then the agent is being disturbed
and we set the initial position and velocity of the Bézier curve
to match the states of the vehicle, while setting higher-order
derivatives to zero. In summary,

u0,i[kt] =

{
ûi[1|kt − 1], if fmin < fn[kt] < fmax,

(x̄i[kt],0), else.
(17)

In order to validate the proposed replanning strategy, we con-
ducted an experiment with our quadrotor platform while a human

Algorithm 1: Input Updates for Agent i.

Input: Current states of all agents (x[kt]), target location
(pd,i)

Output: Commands to be applied from t0 to t0 + h
with sampling of Ts (ūi)

1: setTargetLocation(pd,i)
2: Π[kt − 1]← receiveAgentPredictions()
3: u0,i[kt]← getInitRef(x̄i[kt], ûi[1|kt − 1])
4: (Acoll, bcoll)← getCollision (x̄[kt], Π[kt − 1])
5: QP← buildQP (Acoll, bcoll, u0,i[kt], x̄i[kt])
6: U i← solve(QP)
7: Πi[kt]← broadcastUpdatedHorizon (U i,

x̄i[kt])
8: ûi[1|kt]← updateInitialReference (U i)
9: ūi← getSampledInput (U i)

10: return ūi

operator perturbed it along its path. The task of the quadrotor
was to reach a y-coordinate of −1 m. The reference signal and
state of the quadrotor are shown in Fig. 4(b), where the red
segments mean the agent was being disturbed. During these dis-
turbed stages we observe how the reference signal is frequently
reset to match the state of the robot. The replanning helps the
quadrotor continue its task whenever the disturbance is removed.
Under normal operation (white segments) the replanning is not
required, which leads to a smooth reference signal that avoids
the shortcomings observed in Fig. 4(a). Note that we assume that
the perturbations not detected by the activation function (15) can
be rejected by the underlying controller, which we validated ex-
perimentally. The video that accompanies this letter showcases
the strategy working in experiments with quadrotors. These
disturbances would have led to crashing and mission failure with
typical offline approaches (e.g., [4]), since there is no adaptation
of the pre-planned reference signal, and the underlying control
system would have been unable to reject the perturbations.

V. THE ALGORITHM

In this section we describe the core algorithm used to up-
date the optimal input sequence for each agent, outlined in
Algorithm 1. As stated, the algorithm is conceived to be executed
in a distributed fashion by a group of agents with communication
capabilities. It takes as inputs the measured state of each agent
and the desired location of agent i. For execution we consider
two different time bases: one with a coarse time step h, used
for the MPC planning, and one with a refined time step Ts used
for commanding the agents at a higher rate. With this definition,
the output of Algorithm 1 is the set of inputs for agent i in
the time frame in-between planning cycles, i.e., t ∈ [t0, t0 + h]
with sample rate Ts. In other words, the output are subsamples
of the input between ûi[0|kt] and ûi[1|kt]. This subsampling
process is exact and not an approximation, due to the chosen
continuous parameterization of trajectories.

In line 1 we build the error penalties given by (11), which is
only required if the setpoint pd,i of the agent changes. In line 2
each agent receives the latest predictions of all the other agents
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through some communication channel, which is considered ideal
in this letter, with no delays or packet drops. In lines 3–9 we
update the input sequence of each agent. Note that the first
time the algorithm is executed, the latest predictions may be
initialized trivially by assuming static neighbours. First, in line 3
we apply the event-triggered replanning strategy to decide the
value of the initial condition of the input. The collision avoidance
constraint (BVC or on-demand) is constructed in line 4. Note
that BVC would not require the prediction information, meaning
that there is no communication between agents, but instead it
would require the measured state of the agents. Conversely,
on-demand avoidance only requires the predictions and not the
measured states. Lines 5–6 build and solve the standard quadratic
programming problem outlined in (14). Once the solution vector
U i is obtained from the QP solver, we can then sample the
resulting Bézier curves to obtain a sampled representation of
the input (or the state). Line 7 updates the horizon for the agent
and broadcasts the information to the rest of the team. Line 8
updates the initial condition of the reference to be used in the
next planning cycle, in the case where replanning is not required.
Lastly, line 9 samples the resulting Bézier curve with period Ts

to obtain the sequence to be applied for t ∈ [t0, t0 + h].
Since our physical platform does not have inter-agent com-

munication capabilities, Algorithm 1 is implemented in a cen-
tralized manner from an offboard computer. The centralized
implementation of Algorithm 1 is executed in parallel for all
the agents, since there is no inter-agent data dependency for the
input updates.

VI. SIMULATION RESULTS

We created a simulation environment in MATLAB 2017a
and executed it on a PC with Intel Xeon CPU with 8 cores
and 16 GB of RAM, running at 3 GHz. The agents were
modeled after the Crazyflie 2.0 quadrotor, using rmin = 0.3 m
and Θ = diag([1, 1, 2]), but a collision was declared using
rcoll = 0.2 m (closer to the physical size of the quadrotor)
andΘcoll = diag([1, 1, 2.25]). The trajectory tracking dynamics
were identified by fitting a second-order model to experimental
data from the step response of the system depicted in Fig. 2. We
selected a step of h = 0.2 s, which means that trajectories are
replanned at only 5 Hz.

For the input sequence we chose Bézier curves with p = 5,
l = 3 and th = 3 s, where each segment had a fixed duration of 1
second. Additionally, we imposed actuation limits with γ

(2)
max =

−γ(2)
min = 1 m/s2. After tuning the cost function, we selected

κ = 3, qk = 100,α2 = 0.008, ζ = 1 and ξ = −5× 104. For the
replanning function in (15) we chose ε = 0.01, fmin = −0.01,
and fmax = 0.8. We also added noise in the measured state
x̄i[kt]based on empirical data gathered from an overhead motion
capture system.

A. Comparison of Collision Avoidance Methods

We compared four different optimization-based collision
avoidance methods in random transition scenarios: 1) BVC
as proposed in [11] (without the discrete planner component),

Fig. 5. Simulation performance comparison of various collision avoidance
strategies. We considered different numbers of agents in a fixed volume of 18 m3.
For each swarm size, 50 different random test cases were generated and averaged.

2) BVC using soft constraints, 3) On-demand collision avoid-
ance applied in the state space and 4) On-demand collision
avoidance in the input space. Discrete planning was removed
for comparison purposes, but it should be noted that, in general,
they can improve the performance of any of the methods. For
instance, discrete planners may provide intermediate goal points
for the agents to complete the transition task, fitting seamlessly
with our current setup.

We considered a fixed-volume, obstacle-free workspace of
18 m3 (roughly the size of our indoor flight arena), with ran-
domly generated initial and final locations for all agents. The
number of agents varied from 10 to 60, in order to test the
algorithms as the agent density increased. A trial was considered
successful if all agents were able to reach their goals without
collisions and within 20 seconds. After each simulation we ran a
collision check (using rcoll andΘcoll) and a goal check (allowing
10 cm distance from the target location) to determine if the test
was successful.

In Fig. 5 we show the performance obtained using each
method. The success probability for each swarm size considered
is highlighted in Fig. 5(a). We notice that as the number of
agents increases (ergo, a denser workspace) the effectiveness
of the BVC methods decay drastically. Using soft constraints
helps, but ultimately the approach is too conservative to resolve
transition scenarios with a high density of agents.

On the other hand, the on-demand collision avoidance strategy
shows better performance when applied in the input space,
especially in high agent density workspaces. Input-space col-
lision avoidance achieved more than 90% success rate with
swarm sizes up to 30 agents. We observe a significant decline
in performance after 30 agents in all the tested methods. This
is a weakness of our approach given the need to relax collision
constraints in order to find solutions. As the density grows, then
higher relaxations will be required to solve the transitions, which
may result in collisions.

One explanation to the performance difference between state
and input space avoidance resides on the agent model. In the
identified dynamics, the position of the agents is, essentially, a
delayed version of the input signal (with some overshoot). Thus,
by treating collision avoidance in the input space, the agents
are preemptively avoiding each other, which ultimately leads
to less collisions during execution. Also, by using the inputs
as opposed to predicted states, the collision avoidance is less
sensitive to the model’s accuracy. We note that for other linear
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Fig. 6. Comparison of the average runtime per agent to update the inputs using
our on-demand collision avoidance and the BVC method. The data shown is the
average over 50 randomly generated tests for each swarm size considered.

systems where the state and the input are completely different
quantities, performing input-space collision avoidance is not
guaranteed to be safe (since non-colliding inputs do not translate
into non-colliding positions) and state-space avoidance should
be preferred.

In the same order of ideas, Fig. 5(b) shows that, on average,
using on-demand collision avoidance leads to faster transition
times than the BVC methods, averaging around 50% transi-
tion time reductions. These numbers match the analysis made
on Section III-E using Fig. 3. We also analyzed the average
travelled distance by all the agents as a measure of optimality.
The simulation data suggested that all the methods produce
trajectories of almost the same length, with a slight advantage to
the soft BVC method which produces, on average, trajectories
around 3% shorter than the rest.

B. Runtime Benchmark

We compared the computation time per agent to update their
input sequence. In Fig. 6 the results are presented, where we
specifically show the average time per agent to solve the asso-
ciated QP problem.

To formally analyze the scaling of both algorithms, define
Ni,kt

to be the number of nearby neighbours of agent i to be
considered for collision avoidance at time step kt. The amount
of inequality constraints on both BVC and on-demand methods
scale with O(Ni,kt

). The soft BVC method adds additional
(p+ 1)×Ni,kt

slack variables to relax the constraints, while
the on-demand methods add only Ni,kt

new decision variables
to the problem. In Fig. 6 we observe the empirical runtime of
the considered methods. The soft BVC method has the slowest
runtime, due to the added slack variables and overall bigger
problems to be solved. For the other three methods the runtime
is fairly similar, with a slight advantage to the BVC method.

VII. EXPERIMENTAL RESULTS

The online generation method outlined in this letter (with
on-demand avoidance) was implemented in C++, using ROS
to manage the drone swarm and qpOASES [18] as the QP
solver. In this section we provide experimental results using
our Crazyflie 2.0 swarm testbed. All the inputs were computed
from a single computer and broadcast to the swarm through a
radiolink, alongside the estimated position of each individual
agent given by a motion capture system. The computer specs
and algorithm parameters are the same as Section VI, with

Fig. 7. A 10-drone transition passing through a hula-hoop (denoted by the
black circle). The forbidden space is defined by four ellipsoids acting as static
obstacles. The coloured circles denote the initial locations of the agents, and the
corresponding coloured lines are the followed trajectories towards the antipodal
goal locations (showing only four trajectories for clarity).

the exception of ξ = −1× 103 and the addition of Ts = 0.05 s
(trajectories were being sent to the swarm at 20 Hz).

A video summarizing the experimental results can be found
at http://tiny.cc/online-dmpc.

A. Obstacle-Free Transitions

We considered different swarm sizes, ranging from 2 to
20 drones. For each swarm size, three independent flights were
executed, where each flight consisted in 30 seconds of randomly
generated transitions. The agents were restricted to move in a
3× 3× 2 m3 volume, and we used rmin = 0.35 m as the safety
distance.

For each test, we recorded the average computation time
to execute Algorithm 1 and the minimum inter-agent distance
during the flight. The results are summarized in Table I. As
expected, the average computation time increases as we add
more agents to the problem, since all computations are being
executed by a single computer. The interesting result is that the
scaling we obtain in runtime is pseudo-linear, since we are able
to parallelize the computation thanks to the distributed nature of
the approach.

The minimum inter-agent distance decreases as we increase
the number of agents, i.e., there is less available space to move
collision-free. Since the optimizer is allowed to violate the
collision constraint, the original margin of rmin = 0.35 m is
violated if required. Such scenarios of violation appear more
often the higher the agent density in the workspace. Although
this is suboptimal from a safety perspective, experiments show
that as long as a sufficiently large rmin is chosen, the amount of
violation incurred while optimizing will still allow the agents to
move collision-free.

B. Transition Tasks with Static Obstacles

We tasked a group of drones to exchange positions with each
other by passing through a hula-hoop with a 85 cm diameter. The
environment was divided by an invisible wall with a passage-way
defined by the hula-hoop. In Fig. 7 we show the 10-drone transi-
tion scenario solved in experiments. Note that static obstacles are
added to the problem as new “neighbours” for each agent, with
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TABLE I
EXPERIMENTAL RESULTS SUMMARY FOR RANDOM TRANSITION TASKS INVOLVING INCREASING NUMBER OF AGENTS

Fig. 8. Distance to target envelope (minimum and maximum over time) of
the 10-drone hula-hoop transition task. The light green section near the bottom
represents the zone where transition success is declared: a 6 cm radius of the
target location. In this case the transition was completed in Tf = 28 s.

their own ellipsoidal parameters, which means that the runtime
complexity scales linearly with the number of static obstacles.

The restricted zone was modeled as the union of four ellip-
soids. They are shaped in such a way that they are intersecting
and provide a small gap of 30× 30 cm2 for the agents to pass
through. In the tracked trajectories we observe that some of
the agents were able to fly directly through the circle, while
others took detours in order to let other agents pass first. The
distance-to-goal envelope shown in Fig. 8 demonstrates how the
agents make progress over time to decrease the distance towards
their goal, eventually converging to it within some tolerance
region.

Several different tuning parameters were tried while solving
this particular task. While using input space collision avoidance,
a wide range of penalty gains and maximum accelerations
worked well to solve the task; the completion time Tf var-
ied from 20.1 to 48.4 seconds in 18 different trials, with ξ ∈
[−1.5,−0.5]× 103. In most cases, a penalty of ξ < −2× 103

resulted in oscillatory behaviour near the obstacles, which some-
times led to deadlocks. On the other hand, the success rate using
state space collision avoidance was much lower, resulting in
deadlocks much more frequently than with input-space avoid-
ance.

Non-convex obstacles could lead to agents getting stuck in
local minima, in which case the use of discrete planners to
provide intermediate waypoints may be required.

VIII. CONCLUSION AND FUTURE WORK

In this letter we presented a framework for multi-robot online
trajectory generation based on distributed model predictive con-
trol (DMPC). In transition tasks, our method has a higher success
rate and lower travel times than using the Buffered Voronoi Cells
method. The simulations indicated more than 90% success rate
with up to 30 palm-sized quadrotor agents in a 18 m3 arena.

The parallelization of the method leads to high scalability.
In experiments we were able to send trajectories in real-time

(20 Hz) for a swarm of 20 quadrotors. Our approach showed
satisfactory results in a complicated transition scenario passing
through a hula-hoop, and robust replanning in the presence of
unmodeled disturbances.

One interesting area of future work includes accommodating
a more realistic communication channel in the formulation, in
order to deal with delays and packet drops.
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