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Trajectory Generation for Multiagent Point-To-Point
Transitions via Distributed Model Predictive Control

Carlos E. Luis and Angela P. Schoellig

Abstract—This letter introduces a novel algorithm for multia-
gent offline trajectory generation based on distributed model pre-
dictive control. Central to the algorithm’s scalability and success
is the development of an on-demand collision avoidance strategy.
By predicting future states and sharing this information with their
neighbors, the agents are able to detect and avoid collisions while
moving toward their goals. The proposed algorithm can be imple-
mented in a distributed fashion and reduces the computation time
by more than 85% compared to previous optimization approaches
based on sequential convex programming, while only having a
small impact on the optimality of the plans. The approach was
validated both through extensive simulations and experimentally
with teams of up to 25 quadrotors flying in confined indoor spaces.

Index Terms—Motion and path planning, distributed robot sys-
tems, collision avoidance, model predictive control.

I. INTRODUCTION

G ENERATING collision-free trajectories when dealing
with multiagent systems is a safety-critical task. In mis-

sions that require cooperation of multiple agents, such as ware-
house management [1], we often must safely drive agents from
their current locations to a set of final positions. Solving this
task, known as multiagent point-to-point transition, is therefore
an integral part of any robust multiagent system.

There are two main variations of the multiagent point-to-
point transition problem: the labelled and the unlabelled agent
problem. In the former, each agent has a fixed final position that
cannot be exchanged with another agent [2], [3]; in the latter,
the algorithm is free to assign the goals to the agents, as to ease
the complexity of the transition problem [4]. This letter focuses
on the labelled agent problem.

A common approach is to formulate this as an optimization
problem. One of the first techniques developed relied on Mixed
Integer Linear Programming (MILP), modelling collision con-
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Fig. 1. A group of 25 Crazyflie 2.0 quadrotors performing a point-to-point
transition using our distributed model predictive control (DMPC) algorithm. A
video of the performance is found at http://tiny.cc/dmpc-swarm.

straints with binary variables [2]. This method is computation-
ally expensive and not suited for large groups of agents.

More recently, Sequential Convex Programming (SCP) [5]
has been used to achieve faster computation compared to MILP.
In [3], SCP is used to compute optimal-energy trajectories for
quadrotor teams. Although useful for small teams, the algorithm
does not scale well with the number of agents. A decoupled ver-
sion of that algorithm was proposed in [6], [7], which provides
better scalability at the cost of suboptimal solutions. However,
the required decoupling leads to a sequential greedy strategy
(i.e., turning agent trajectories previously solved for into obsta-
cles for subsequent agents) with decreased success rate as the
number of agents increases.

Discrete approaches divide the space into a grid and use
known discrete search algorithms [8], limiting the initial and
final locations to be vertices of the underlying grid. Other ap-
proaches combine optimization techniques and predefined be-
haviours to manage collisions in 2D [9].

Distributed optimization approaches can effectively include
pair-wise distance constraints [10]. Furthermore, the compu-
tational effort is distributed among the agents and therefore
reduced compared to centralized approaches. Optimal recipro-
cal collision avoidance (ORCA) leverages velocity obstacles to
guarantee collision-free trajectories for holonomic [11] and non-
holonomic [12] agents. While provably safe, the method may
be overly conservative by assuming a constant velocity profile
over the time horizon. Techniques based on potential fields have
been used for decentralized collision avoidance [13], but they
are susceptible to deadlocks.
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Distributed model predictive control (DMPC) [14] has been
used in coordination tasks such as formation control [15], [16],
but not explicitly for point-to-point transitions. Particularly
interesting are synchronous implementations of DMPC [17],
where the agents simultaneously update their predictions, re-
ducing runtime by parallel computing.

Previous DMPC approaches achieved collision avoidance by
either (1) using compatibility constraints that limit the position
deviation of agents between prediction updates [18] or (2) im-
posing separating hyperplane constraints between the agents at
every time step of the prediction horizon [15]. Both strategies
are not well suited for transition tasks: strategy (1) drastically
reduces the mobility of agents, especially in cluttered environ-
ments, while strategy (2) lacks scalability and is overly con-
servative, as demonstrated in Section V-A. In contrast, inspired
by the incremental inclusion of all collision constraints over an
infinite horizon proposed in [6], we introduce on-demand col-
lision avoidance in a DMPC framework, where we detect and
resolve only the first collision in the finite prediction horizon,
reducing computation time and increasing the success rate for
transition tasks. Our method is further enhanced by the use of
soft collision constraints, as in [19].

The key contributions of this letter are three-fold: we intro-
duce a novel on-demand collision avoidance strategy for DMPC,
present a fast DMPC algorithm for multiagent point-to-point
transitions, and provide a thorough empirical analysis of our
method via simulations and real quadrotor experiments, as well
as comparisons to existing approaches. To the best of our knowl-
edge, our method is the first to be fast enough for midflight tra-
jectory generation with 25 drones (computations are done upon
request during flight).

The rest of the letter is organized as follows: Section II states
the problem. Section III introduces the optimization formula-
tion to solve it. The algorithm is presented in Section IV and
demonstrated in simulation (Section V) and experiments with a
swarm of quadrotors (Section VI).

II. PROBLEM STATEMENT

The goal is to generate collision-free trajectories that drive
N agents from initial to final locations within a given amount
of time, subject to state and actuation constraints. We aim to
generate such trajectories offline and execute them with our
experimental platform, the Crazyflie 2.0 quadrotor.

A. The Agents

The agents are modeled as unit masses in R3 , with dou-
ble integrator dynamics. This simplified model of a quadrotor
with an underlying position controller is used to achieve faster
computations. Higher-order models can be accommodated with
minimum modifications in what follows. We use pi [k], vi [k],
ai [k] to represent the discretized x, y, z position, velocity and
accelerations of agent i at time step k, where accelerations are
the inputs. With a discretization step h, the dynamic equations
are given by

pi [k + 1] = pi [k] + hvi [k] +
h2

2
ai [k], (1)

vi [k + 1] = vi [k] + hai [k]. (2)

B. Constraints

We constrain the motion of the agents to match the physics
of the vehicle. First, the agents have limited actuation, which
bounds its minimum and maximum acceleration,

amin ≤ ai [k] ≤ amax . (3)

Secondly, the agents must remain within a volume (e.g., an
indoor flying arena). We impose:

pmin ≤ pi [k] ≤ pmax . (4)

C. Collision Avoidance

The collision avoidance constraint is designed such that the
agents safely traverse the environment. In the case of quadro-
tors, aerodynamic effects from neighbouring agents may lead to
crashes. Thus, we model the collision boundary for each agent
as an ellipsoid elongated along the vertical axis to capture the
downwash effect of the agents’ propellers, similar to [8]. The
collision constraint between agents i and j is defined using a
scaling matrix Θ,

∥
∥Θ−1 (pi [k] − pj [k])

∥
∥

n
≥ rmin , (5)

where n is the degree of the ellipsoid (n = 2 is a usual choice)
and rmin is the minimum distance between agents in the xy
plane. The scaling matrix Θ is defined as Θ = diag(a, b, c).
We choose a = b = 1 and c > 1. Thus, the required mini-
mum distance in the vertical axis is rz,min = crmin . Note that
the constraint in (5) checks whether agent j (or i), modelled
as a 3D point, is inside an ellipsoid centered around agent i
(or j).

III. DISTRIBUTED MODEL PREDICTIVE CONTROL

The problem formulated in Section II can be translated into
an optimization problem. In single-agent standard model predic-
tive control (MPC), an optimization problem is solved at each
time step, which finds an optimal input sequence over a given
prediction horizon based on a model that describes the agent’s
dynamics. The first input of that sequence is applied to the real
system and the resulting state is measured, which is the starting
point for the next optimization problem. In an offline planning
scenario such as ours, we do not measure the agent’s state after
applying an input (since there is no physical agent yet), instead
we apply the input directly to the model to compute the next
step of the generated trajectory. The same procedure is repeated
until the whole trajectory is generated. This methodology can
be applied in a distributed fashion, where each agent executes
the iterative optimization to generate trajectories, but with the
possibility of sharing information with neighbouring agents.

A. The Synchronous Algorithm

Our approach is based on synchronous DMPC, where the
agents share their previously predicted state sequence with their
neighbours before simultaneously solving the next optimization
problems. At every discrete-time index kt , each agent simultane-
ously computes a new input sequence over the horizon following
these steps:
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1) Check for future collisions using the latest predicted states
of the neighbours, computed at time step kt − 1.

2) Build the optimization problem, including state and actua-
tion constraints, and collision constraints only if required.

3) After obtaining the next optimal sequence, the first ele-
ment is applied to the model and the agents move one step
ahead. Future states are predicted over the horizon and
shared with the other agents.

Predicting collisions and including constraints only if needed
is the basic idea behind on-demand collision avoidance. We
only include those constraints associated with the first predicted
collisions. The process is repeated until all agents reach their
desired goals. Below we derive the mathematical setup of the
optimization problem.

B. The Agent Prediction Model

Using the dynamics in (1) and (2), we can develop a linear
model to express the agents’ states over a horizon of fixed length
K. First we introduce the notation (̂·)[k|kt ], which represents
the predicted value of (·)[kt + k] with the information available
at kt . In what follows, k ∈ {0, . . . , K − 1} is the discrete-time
index of the prediction horizon. The dynamic model of agent i
is given by
[
p̂i [k + 1|kt ]
v̂i [k + 1|kt ]

]

=
[
I3 hI3
03 I3

][
p̂i [k|kt ]
v̂i [k|kt ]

]

+
[
(h2/2)I3

hI3

]

âi [k|kt ],

(6)

with I3 being a 3 × 3 identity matrix and 03 a 3 × 3 matrix
of zeros. We select the acceleration as the model’s input (and
variable to optimize). A compact representation is

x̂i [k + 1|kt ] = Ax̂i [k|kt ] + Bûi [k|kt ], (7)

where x̂i ∈ R6 , A ∈ R6×6 , B ∈ R6×3 and ûi ∈ R3 (model in-
put). Define the initial state at instant kt , X0,i = xi [kt ]. Then we
can write the position sequence Pi ∈ R3K as an affine function
of the input sequence Ui ∈ R3K ,

Pi = A0X0,i + ΛUi , (8)

where Λ ∈ R3K×3K is defined as

Λ =

⎡

⎢
⎢
⎢
⎣

ΨB 03 . . . 03
ΨAB ΨB . . . 03

...
. . .

. . .
...

ΨAK−1B ΨAK−2B . . . ΨB

⎤

⎥
⎥
⎥
⎦

, (9)

with matrix Ψ =
[
I3 03

]

selecting the first three rows of the
matrix products (those corresponding to the position states).
Lastly, A0 ∈ R3K×6 reflects the propagation of the initial state,

A0 =
[
(ΨA)ᵀ (ΨA2)ᵀ . . . (ΨAK )ᵀ ]ᵀ

. (10)

C. Objective Function

The objective function that is minimized to compute the opti-
mal input sequence has three main components: trajectory error,
control effort and input variation. A similar formulation can be
found in [20].

1) Trajectory Error Penalty: This term drives the agents to
their goals. We aim to minimize the sum of errors between the
positions at the last κ time steps of the horizon and the desired
final position pd,i . The error term is defined as

ei =
K∑

k=K−κ

‖p̂i [k|kt ] − pd,i‖2 . (11)

This term can be turned into a quadratic cost function in terms
of the input sequence using (8),

Je,i = Uᵀ
i (ΛᵀQ̃Λ)Ui − 2(Pᵀ

d,iQ̃Λ − (A0X0,i)
ᵀ Q̃Λ)Ui ,

(12)
where Q̃ ∈ R3K×3K is a positive definite and block-diagonal
matrix that weights the error at each time step. A value of κ = 1
leads to Q̃ = diag(03 , . . . ,Q) with matrix Q ∈ R3×3 chosen
as a diagonal positive definite matrix. Higher values of κ lead
to more aggressive agent behaviour with agents moving faster
towards their goals, but may also lead to overshooting at the
target location.

2) Control Effort Penalty: We also aim to minimize the con-
trol effort using the quadratic cost function

Ju,i = Uᵀ
i R̃Ui . (13)

Similarly, R̃ ∈ R3K×3K is positive definite and block-diagonal,
R̃ = diag(R, . . . ,R), where R ∈ R3×3 weights the penalty on
the control effort.

3) Input Variation Penalty: This term is used to minimize
variations of the acceleration, leading to smooth input trajecto-
ries. We define the quadratic cost

δi =
K−1∑

k=0

‖ûi [k|kt ] − ûi [k − 1|kt ]‖2 . (14)

To transform (14) into a quadratic form, first we define a matrix
Δ ∈ R3K×3K ,

Δ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I3 03 03 . . . 03 03
−I3 I3 03 . . . 03 03
03 −I3 I3 . . . 03 03
...

. . .
. . .

. . .
...

...
03 03 03 . . . −I3 I3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (15)

and introduce the vector Ui∗ ∈ R3K to include the term
ui [kt − 1] (previously applied input),

Ui∗ =
[
ui[kt − 1]ᵀ 0ᵀ

3×1 . . . 0ᵀ
3×1

]ᵀ
. (16)

Finally, we write (14) in quadratic form as

Jδ,i = Uᵀ
i (ΔᵀS̃Δ)Ui − 2(Uᵀ

i∗S̃Δ)Ui , (17)

where S̃ ∈ R3K×3K is positive definite and block-diagonal,
defined as S̃ = diag(S, . . . ,S), where S ∈ R3×3 weights the
penalty on control variation. The cost function Ji is obtained
by adding together (12), (13) and (17),

Ji(Ui) = Je,i + Ju,i + Jδ,i . (18)
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D. Physical Limits

When computing the input sequence over the horizon,
the agents must satisfy constraints (3) and (4). Define
Pmin ,Pmax ,Umin ,Umax ∈ R3K to be

Pmin = [pᵀ
min . . .pᵀ

min ]ᵀ; Pmax = [pᵀ
max . . .pᵀ

max]
ᵀ

Umin = [aᵀ
min . . . aᵀ

min ]ᵀ; Umax = [aᵀ
max . . . aᵀ

max]
ᵀ.

(19)

The physical limits are formulated as
Pmin − A0X0,i ≤ ΛUi ≤ Pmax − A0X0,i

Umin ≤ Ui ≤ Umax .
(20)

Lastly, we can vertically stack both inequality constraints in (20)
to obtain a single expression: AinUi ≤ bin.

E. Convex Optimization Problem, No Collision Case

If agent i does not detect any future collisions, then it updates
its input sequence by solving:

minimize
U i

Ji(Ui)

subject toAinUi≤ bin. (21)
The formulation in (21) results in a quadratic programming

problem with 3 K decision variables and 12 K inequality con-
straints, which scales independently of N .

F. On-demand Collision Avoidance With Soft Constraints

The previous formulation is useful for scenarios where the
agents can follow straight lines to their goals without colliding.
In a more general setting, agents must avoid each other con-
stantly to reach their goals. To implement on-demand collision
avoidance, we leverage the predictive nature of DMPC to de-
tect colliding trajectories and impose constraints to avoid the
first predicted collision. This strategy differs from [6] since we
do not attempt to incrementally resolve all predicted collisions,
only the most relevant one.

Agent i detects a collision at time step kc,i of the previously
considered horizon whenever the inequality

ξij =
∥
∥Θ−1 (

p̂i [kc,i |kt − 1] − p̂j [kc,i |kt − 1]
)∥
∥

n
≥ rmin

(22)
does not hold with a neighbour j. Note that at solving time kt ,
the agents only have information of the other agents computed
at kt − 1, meaning that the collision is predicted to happen at
time kc,i + kt − 1. In what follows, kc,i represents the first time
step of the horizon where agent i predicts a collision with any
neighbour. We include collision constraints with the subset of
agents Ωi defined as

Ωi = {j ∈ {1, . . . , N} | ξij < f(rmin), i �= j},
where f(rmin) models the radius around the agent, which de-
fines the neighbours to be considered as obstacles when solv-
ing the problem. For example, we may include all agents
within a radius 3 times bigger than the collision boundary, then
f(rmin) = 3 rmin . Limiting Ωi to be the subset of neighbours
within a radius of agent i intends to safely reduce the amount of
collision constraints in the optimization.

If the agent detects collisions, it must include collision con-
straints to compute the new input sequence. To account for

infeasibility issues while solving the optimization problem, we
formulate the following relaxed collision constraint:

∥
∥Θ−1 (

p̂i [kc,i − 1|kt ] − p̂j [kc,i |kt − 1]
)∥
∥

n
≥ rmin + εij ,

(23)
where εij < 0 is a new decision variable that relaxes the
constraint. Note that at kt , we aim to optimize the value of
p̂i [kc,i − 1|kt ] to satisfy (23). The constraint is linearized using
a Taylor series expansion about the previous predicted position
of agent i at time kc,i + kt − 1, namely p̂i [kc,i |kt − 1],

νᵀ
ij p̂i [kc,i |kt ] − εij ξij ≥ ρij (24)

with νij = Θ−n (p̂i [kc,i |kt − 1] − p̂j [kc,i |kt − 1])n−1 and
ρij = rminξij + ξn

ij + νᵀ
ij p̂i [kc,i |kt − 1]. On the left-hand side

of (24), we note that the constraint is imposed on the position
at time kt + kc,i (p̂i [kc,i |kt ]), which is one time step after the
predicted collision. This choice was made based on an empirical
assessment of the algorithm’s performance on a wide range of
transition scenarios. It was found that by imposing the constraint
one time step after the predicted collision, the agents exhibited
more preemptive collision avoidance capabilities and were able
to complete the transitions faster on average.

To turn the collision constraint into an affine function of the
decision variables, first we augment the previous formulation
to include the relaxation variables. Consider Ei ∈ Rnc , i , with
nc,i = dim(Ωi), defined as the stacked vector of all εij . We
now introduce the augmented decision vector U i ∈ R3K +nc , i ,
obtained by concatenating vectors Ui and Ei . The matrices
derived above can be easily augmented to account for the aug-
mented decision vector, by completing them with zeros where
multiplied with the vector Ei . We turn (24) into an affine func-
tion of the decision variables,

μᵀ
ijΛUi − εij ξij ≥ ρij − μᵀ

ijA0X0,i , (25)

where μij ∈ R3K is defined as

μij =
[

0ᵀ
3(kc , i −1)×1 νᵀ

ij 0ᵀ
3(K−kc , i )×1

]ᵀ
. (26)

By stacking the inequalities in (25) for the nc,i colliding
neighbours, we obtain the complete collision constraint,

AcollU i ≤ bcoll. (27)

Additionally, we impose−εmax ≤ εij ≤ 0 in order to bound the
amount of relaxation allowed. We also consider the following
linear and quadratic cost terms to penalize the relaxation on the
collision constraint:

fε,i = �
[
0ᵀ

3K×1 1ᵀ
nc , i ×1

]ᵀ
,Hε,i = ζ

[
03K×3K 03K×nc , i

0nc , i ×3K Inc , i

]

where �, ζ > 0 are scalar tuning parameters, measuring how
much the relaxation is penalized. The augmented cost function
in the collision avoidance case is defined as

Jaug,i(U i) = J (Ui) + Uᵀ
i Hε,iU i − fᵀ

ε,iU i . (28)

Finally, the convex optimization problem with collision
avoidance for agent i is formulated as

minimize
U i

Jaug,i(U i)

subject to Ain,augU i≤ bin,aug. (29)

The subscript ‘aug’ indicates the use of augmented state ma-
trices, as outlined before. The inequality tuple (Ain,aug,bin,aug) is
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Fig. 2. Four-agent position exchange scenario in 2D solved using Algorithm 1. Circles and diamonds represent initial and final locations, respectively. Dotted
lines in (a)–(c) represent the predicted positions over a 3-second horizon, solid lines are the generated trajectories and dashed lines in (d) are the trajectories
generated by the centralized approach in [3]. Using the optimality criteria of the sum of travelled distances by all agents, the distributed plan is only slightly
suboptimal when compared to the centralized approach.

obtained by vertically stacking the physical limits, the collision
constraint and the relaxation variable bounds. The augmented
problem has 3 K + nc,i decision variables and 12 K + 3 nc,i

inequality constraints.

IV. THE ALGORITHM

The proposed DMPC algorithm for point-to-point transitions
is outlined in Algorithm 1. It requires as input the initial and
desired final locations for N agents (p0 ,pf ), and outputs the
trajectories that complete the transition. Variables p,v and a
are defined as the concatenation of the transition trajectories for
every agent, while Π is the concatenation of the latest predicted
positions for all agents.

In line 1, every Πi is initialized as a line from initial to final
location with a constant velocity profile. Each agent’s states are
initialized to be at the corresponding initial position with zero
velocity. The main loop (lines 3–11) repeatedly solves optimiza-
tion problems for the N agents, building the transition trajectory
until they arrive at their goals or a maximum number of time
steps is exceeded. Convergence of the transition (line 10) is de-
clared once all the agents are within a small radius of their goals.
Note that for kt = 0, we considerai [−1] = 03×1 . The inner loop
(lines 4–9) can be solved either sequentially or in parallel, since
there is no data dependency between the problems.

To build and solve the corresponding QP (line 5), first we
check for predicted collisions over the horizon, as described in
Section III-F. If no collisions are detected, we solve the reduced
problem in (21), otherwise we solve the collision avoidance
problem in (29). If the optimizer finds a solution to the QP,
then we can propagate the states using (7) and obtain the pre-
dicted position and velocity over the horizon (lines 6–9). Lastly,
if a solution for the transition was found, we interpolate the
solution with time step Ts to obtain a higher resolution tra-
jectory. An optional step is to scale the solution, as suggested
in [6], to push the accelerations to the maximum allowed. Fi-
nally, in line 15 we perform a collision check by verifying that
∥
∥Θ−1 (pi [kt ] − pj [kt ])

∥
∥

n
≥ rmin − εcheck holds for every i, j

and kt of the interpolated solution. The value of εcheck ≥ εmax
is user-defined and must reflect the safety limit of the physical
agents, such that the algorithm can decide whether the solution
is safe to execute or not. If the solution passes all sanity checks,

then the algorithm is deemed successful, otherwise an empty
solution is returned.

A. Example Scenario

To illustrate how DMPC manages colliding trajectories, Fig. 2
shows a transition problem for four agents in the plane. Initially,
as shown in Fig. 2a, the agents follow a direct path towards their
desired final locations. In Fig. 2 b, collisions are detected and
considered in the optimization problem. After a few time steps,
the agents obtain the non-colliding plan seen in Fig. 2c. The tra-
jectories generated with a centralized approach are quite differ-
ent than the DMPC trajectories, as shown in Fig. 2 d. However,
the sum of travelled distance of all agents is fairly similar in both
cases, with only a 1.7% increase for the distributed approach.

B. Limitations and Associated Mitigation Strategies

We now discuss the limitations of the proposed algorithm,
along with associated mitigation strategies to overcome them.

1) Infeasibility: the optimization problem becomes infeasi-
ble when the constraint (27) cannot be satisfied given the
acceleration and relaxation limits. Feasibility of the prob-
lem can be guaranteed, however, by locally increasing the
relaxation bound εmax until the constraint is satisfied. In
line 5 of Algorithm 1 we apply this technique to ensure
recursive feasibility of the problem. The variable εmax is
reset to its original value once a solution is found.

2) Collisions: the use of on-demand collision avoidance with
soft constraints does not guarantee collision-free trajec-
tories. The use of soft constraints may lead to partial vi-
olations of the collision constraints along the trajectory.
Moreover, since the trajectory is specified in discrete-time,
there may be collisions occurring between time steps [3].
Higher values of � and ζ penalize the violation of the col-
lision constraint more, rendering the agents more wary of
avoiding collisions.

3) Oscillations and deadlocks: oscillations occur due to a
lack of central coordination, where agents oscillate be-
tween possible trajectories to avoid a collision. An agent
may get trapped in a local minima where it oscillates indef-
initely and never reaches its goal (deadlock). Higher val-
ues of κ and Q encourage aggressiveness towards reach-
ing the goal.
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We observed that oscillations are often present in the pre-
dictions of agents, but vanish after a few MPC cycles and do
not appear in the generated trajectories. Failure to avoid colli-
sions can be minimized by tuning the cost function appropri-
ately, achieved by a good compromise between aggressiveness
towards the goal and penalization of the constraint relaxation.

V. SIMULATIONS

This section provides a simulation analysis of the DMPC
algorithm. Implementation was done in MATLAB 2017a (us-
ing a sequential implementation of Algorithm 1) and exe-
cuted on a PC with an Intel Xeon CPU with 8 cores and
16 GB of RAM, running at 3 GHz. The agents were mod-
elled based on the Crazyflie 2.0 platform, using rmin = 0.35 m,
amax = −amin = 1 m/s2 , and c = 2 (to avoid downwash).

A. Comparison of Collision Avoidance Strategies in DMPC

To validate our on-demand collision avoidance scheme with
soft constraints, we compared the performance to two other
methods: (1) using hard collision constraints in every time step
of the horizon (as in [15]) and (2) implementing our on-demand
collision avoidance with hard constraints (i.e., constraint (23)
without the relaxation variable). All methods were tested in sce-
narios with random sets of initial and final positions. We kept
the density of the workspace (defined as agent/m3) constant and
varied the amount of agents from 20 to 200. All three approaches
shared the time step parameters h = 0.2 s and Ts = 0.01 s. We
used a horizon length K = 15, parameter κ = 1, a maximum
relaxation of εmax = 0.05 m for the optimizer, a maximum re-
laxation of εcheck = 0.05 m for the safety check and a maximum
time to complete the transition Tmax = 20 s. Fig. 3a shows the
success rate of DMPC for point-to-point transitions using the
different collision avoidance schemes. If we use hard constraints

Fig. 3. Performance comparison of different collision avoidance strategies in
DMPC, for an increasing number of agents within a workspace with a fixed
agent density of 1 agent/m3 . For every swarm size considered, 50 different
random test cases were generated.

at every time step (blue lines), the success rate suffers due to
the inability of the agents to arrive at their final locations. The
agents display conservative behaviour to maintain collision-free
updates along their predictions, which may preclude progress
towards the goal. On the other hand, the use of on-demand col-
lision avoidance with hard constraints may lead to infeasible
optimization problems, since the agents may be unable to avoid
collisions within their acceleration limits. Our soft constraint
strategy resolves the problem and achieves more than 75% suc-
cess rate with up to 150 agents, clearly outperforming the other
two methods. The decrease in success rate for 200 agents is
partially due to insufficient time to complete the transition lead-
ing to 55% of the failures; with more agents and a fixed agent
density (i.e., a larger environment) the average time to complete
a random transition increases. This may mean that 55% of the
transitions are infeasible independent of the algorithm used. In
addition, the introduction of more decision-making agents leads
to more collisions (45% of the failures). In Fig. 3b we highlight
the reduction in computation time with our on-demand collision
avoidance strategy.

B. Comparison to SCP-Based Approaches

We compared the performance of our proposed DMPC
scheme with two state-of-the-art algorithms: centralized [3] and
decoupled [6] SCP. We used the same simulation parameters
as in Section V-A, but the volume of the workspace was kept
fixed at 4 m3 , and the number of agents ranged from 4 to 20.
We increased the value of κ to 2 to encourage agents to move to
their goals, which showed better performance for high-density
environments. Since the centralized and decoupled approaches
require a fixed arrival time, we first solved each test using DMPC
and determined the required time to complete the transition, and
then set that as the arrival time of the SCP methods. Similar re-
sults were obtained by setting a fixed arrival time for the SCP
methods for every trial (i.e., not based on the DMPC comple-
tion time), and are omitted. If DMPC failed to solve, the arrival
time was set to Tmax = 20 s. Both SCP methods were executed
until convergence was achieved or the problem was deemed
infeasible.

Fig. 4a shows the probability of success as the density of
agents increases. The proposed DMPC algorithm was able to
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Fig. 4. Performance comparison of DMPC against SCP-based approaches, in
a fixed 4 m3 volume. For every density considered, 50 different random test
cases were generated.

find a solution in more than 95% of the trials, for every density
scenario considered. The centralized approach was able to find
a solution in every case, while the decoupled approach failed
increasingly with increasing density.

As for the computation time, Fig. 4b shows a reduction of up
to 97% in computation time with respect to centralized SCP and
of 85% with decoupled SCP. The runtime variance observed in
the other two approaches is due to the test-by-test variance in
arrival time, as seen in Fig. 4d. Note that this DMPC implemen-
tation does not exploit the parallelizable nature of the algorithm
yet and already achieves significantly lower runtimes.

To measure the optimality of the generated trajectories we
analysed the sum of travelled distances by the agents, as high-
lighted in Fig. 4c. Our distributed approach produces longer
paths on average, with respect to both the centralized and decou-
pled SCP. The suboptimality increases with workspace density,
since the agents actively adjust their trajectories to avoid col-
lisions, and oftentimes those adjustments lead to non-optimal
paths towards their goals.

VI. EXPERIMENTS

In this section we present experimental results using Al-
gorithm 1 as an offline trajectory planner for a swarm of
Crazyflies 2.0. The algorithm was implemented in C++ us-
ing OOQP as the solver. A video of the performance is found at
http://tiny.cc/dmpc-swarm.

A. Parallel DMPC

Leveraging the parallel nature of the inner loop of Algo-
rithm 1, we can design a strategy that parallelizes the compu-
tation. The idea is to equally split the N agents into smaller
clusters to be solved in parallel using a multicore processor.
The optimization problems of the agents inside a cluster are
solved sequentially, but with the advantage of iterating through

Fig. 5. Average computation time for different numbers of clusters. For each
swarm size, we gathered data of 30 successful transitions and reported the mean
and standard deviation (vertical bars) of the runtime.

Fig. 6. A 25-agent transition scenario: (a) initial grid configuration, (b) target
‘DSL’ configuration. Circles and diamonds (of matching colour) represent initial
and final locations for all agents, respectively. The star in the middle represents
an agent acting as a static obstacle. The bounding box in dashed red lines
represents the workspace boundaries.

fewer agents. After all the clusters finish solving their QPs, they
exchange the updated predictions and repeat the process.

In Fig. 5 we compare different numbers of clusters tested
on a wide variety of transition scenarios. It was found that 8
clusters led to the best result for our computing hardware (CPU
with 8 cores). This parallel strategy (8 clusters) reduced the
computation time by more than 60% compared to using a purely
sequential execution (1 cluster).

B. Swarm Transition

To perform the pre-computed transition motion on the quadro-
tors, we communicated via radio link with each drone and sent
the following information at 100 Hz: (1) position setpoints and
(2) position estimates from an overhead motion capture system.
The setpoints were tracked using an on-board position controller
based on [21]. One transition scenario is depicted in Fig. 6, in
which the swarm was to transition from a 5 × 5 grid to a ‘DSL’
configuration. The difficulty of this particular scenario was in-
creased by the central agent acting as a static obstacle (i.e.,
obstacle with fixed position).

We required rmin = 0.25 m with εcheck = 0.03 m. The DMPC
algorithm was able to find a solution for this scenario in 1.8 sec-
onds. In Fig. 7 a, the curves delimiting the gray area correspond
to the minimum and maximum inter-agent distance at each time
instant for six independent executions of the transition. Al-
though trajectories are planned such that any inter-agent distance
must remain above the warning zone (yellow band), the experi-
mental curve goes slightly below that value. The warning zone
is, in practice, a safety margin to compensate for unmodelled
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Fig. 7. Experimental data from the transition depicted in Fig. 6, showing
maximum and minimum distance values over 6 independent trials: (a) pairwise
distances, (b) distances to target locations.

phenomena in our planning algorithm, such as imperfect trajec-
tory tracking, time delays, and aerodynamics. Taking all these
factors into account, it is natural for the minimum distance curve
to go farther below than planned; however, it still remains above
the collision zone. It is critical for the warning zone to be large
enough, as to absorb any mismatch between the idealized plan-
ning and the real world. Its size is directly controlled by rmin ,
which must be carefully chosen for robust trajectory executions.

Finally, Fig. 7b shows that the agents’ progress towards their
goal and are able to complete the transition up to some small
tolerance. Once the agents enter the tolerance region below the
dashed red line, they were commanded to hover in place. The
on-board position controller reported a maximum error of close
to 3 cm during hover, which explains why the maximum distance
curve remains slightly above the tolerance region after all agents
reached their goals.

In addition to the showcased scenario, the system has been
tested on many randomly generated transitions, as can be seen
in the video that accompanies this letter.

VII. CONCLUSIONS

The DMPC algorithm developed in this letter enables fast
multiagent point-to-point trajectory generation. Using model-
based predictions, the agents detect and avoid future collisions
while moving to their goal locations. We introduced on-demand
collision avoidance with soft constraints in a DMPC framework
to enhance the scalability and success rate over previous ap-
proaches. As compared to SCP-based methods, we drastically
reduce computational complexity, with only a small impact on
the optimality of the plans. Our formulation allows for parallel
computing, which further reduces the runtime.

We validated our method through an extensive empirical anal-
ysis using randomly generated transition tasks. Experimental re-
sults further validate our approach, which can be used to quickly
calculate and execute transition trajectories for large teams of
quadrotors, enabling new capabilities in applications such as
drone shows.
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