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Abstract— 3D object-level mapping is a fundamental problem
in robotics, which is especially challenging when object CAD
models are unavailable during inference. In this work, we
propose a framework that can reconstruct high-quality object-
level maps for unknown objects. Our approach takes multiple
RGB-D images as input and outputs dense 3D shapes and 9-DoF
poses (including 3 scale parameters) for detected objects. The
core idea of our approach is to leverage a learnt generative
model for shape categories as a prior and to formulate a
probabilistic, uncertainty-aware optimization framework for
3D reconstruction. We derive a probabilistic formulation that
propagates shape and pose uncertainty through two novel
loss functions. Unlike current state-of-the-art approaches, we
explicitly model the uncertainty of the object shapes and poses
during our optimization, resulting in a high-quality object-
level mapping system. Moreover, the resulting shape and pose
uncertainties, which we demonstrate can accurately reflect
the true errors of our object maps, can also be useful for
downstream robotics tasks such as active vision. We perform ex-
tensive evaluations on indoor and outdoor real-world datasets,
achieving achieves substantial improvements over state-of-the-
art methods. Our code will be available at https://github.
com/TRAILab/UncertainShapePose.

I. INTRODUCTION
3D object-level mapping is an important problem in

robotics. A challenging task is to reconstruct the shape and
pose of objects in the scene observed with multiple RGB-D
views. Compared to traditional approaches that employ low-
level geometric primitives (e.g., points and voxels) [1], [2],
[3], object-level mapping provides a rich representation of
the scene and is extremely valuable for many downstream
tasks, such as navigation, planning and manipulation [4],
[5], [6]. Early approaches require pre-scanned CAD models
for each object and then construct an object-level map by
estimating an object pose for each CAD model [4], [7], [8],
[9]. However, these works cannot generalize to previously
unseen objects. When a CAD model is unavailable, some
works segment each object in the scene and reconstruct ob-
jects using multi-view depth fusion [10], [11]. These methods
can reconstruct arbitrary shapes, but the reconstruction often
remains incomplete as objects tend to be only partially visible
during robotic operation.

In this work, we take advantage of the recent advances in
deep learning for learnt shape representation to enhance the
reconstruction of the full object in object-level mapping [5],
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Fig. 1: Our approach takes RGB-D images as inputs and
builds a 3D object-level map with dense object models, 9-
DoF relative poses, and associated uncertainties.

[12], [6]. These approaches reconstruct objects with both
dense 3D models and their relative poses. While shape
priors can be used for building object-level maps for unseen
objects, most methods [5], [12], [6] only output a single
deterministic estimation for each object’s shape and pose. In
contrast, for many robotic applications (e.g., robot grasping),
capturing the underlying uncertainties associated with these
outputs is critical. Moreover, as demonstrated in recent CAD-
based works, estimating the uncertainty can improve the
system performance and build high-quality object maps even
in challenging scenes, where object symmetry and heavy
occlusions exist [8], [13], [7].

The above findings motivate us to build an uncertainty-
aware object-level mapping system to estimate the 3D model
and pose for foreground objects. For each object category,
we learn its shape distributions into a latent space through a
3D generative model [14]. The generative model can decode
the input latent code to a detailed 3D object shape. During
inference, we use the generative model to jointly optimize
the latent code and the object’s pose. To produce uncer-
tainty estimates, we design a novel probabilistic optimization
framework and use a combination of a 3D surface loss and
a 2D rendering loss for the optimization. The final outputs
of our system are dense 3D models, 9-DoF relative poses
(3D translation, 3D rotation, and 3 scales along each axis),
and associated state uncertainties for the target objects. We
present the following key contributions of this work:

• A novel probabilistic optimization framework that
jointly optimizes the object’s shape, pose, and associ-
ated uncertainties. Our optimization is fully differen-
tiable and can propagate uncertainties from shape prior
and object pose to different loss functions.

• A set of two probabilistic loss functions, a 3D surface
loss and a 2D rendering loss, that enable multi-view
optimization of the shape prior and the relative pose,

ar
X

iv
:2

30
9.

09
11

8v
1 

 [
cs

.C
V

] 
 1

7 
Se

p 
20

23

https://github.com/TRAILab/UncertainShapePose
https://github.com/TRAILab/UncertainShapePose


Initialization

Pose 

Estimator

Object Pose 𝝃𝟎

Depth

Masked Image
Optimization

𝑮𝜽
Latent Code 𝒛𝟎 𝒛, 𝚺𝒛

𝝃, 𝚺𝝃
2D Rendering Loss

3D Surface Loss

Optimizer

𝚫𝐳, 𝚫𝚺𝒛

𝚫𝝃, 𝚫𝚺𝝃
Estimation

Fig. 2: An overview of the proposed uncertainty-aware object-level mapping system. We take the RGB-D images as the
input and output the 3D models, 9-DoF poses, and the associated state uncertainties for the target unseen objects.

which accurately reconstructs unknown objects.
• An uncertainty-aware object-level mapping system that

can recover the 3D model, 9-DoF pose, and the state
uncertainties for target unseen objects.

We demonstrate our approach’s high accuracy and reliable
uncertainty estimation on two public datasets. We will release
the code of our approach and all baselines.

II. RELATED WORK

A. 3D Object-Level Mapping

Prior works tackle this task by either simultaneously
localizing camera poses and recovering objects, known as
object-level SLAM [4], [6], [7], [5], or by reconstructing the
objects with known camera poses [8], [9]. Early methods
build object-level maps using pre-scanned CAD models [4],
[15], [8], [13], [9], [7]. For example, the pioneering work,
SLAM++ [4], builds a CAD model database in advance
and estimates the 6D object poses [16]. These approaches
can reconstruct objects completely but cannot generalize to
unknown objects outside the database. Recent works have
dropped the requirement for CAD models and reconstructed
the object directly by fusing multi-view depth maps [10],
[11]. Although these approaches can reconstruct arbitrary
objects, the reconstructed shape is usually incomplete. In our
work, by exploiting a learnt shape prior, we build object-level
maps with complete shapes and can generalize to unknown
objects. We concentrate on the object mapping and assume
camera poses are known in advance for convenience.

B. 3D Reconstruction with Shape Priors

With the recent advances in deep learning, many ap-
proaches leverage learnt generative models as shape priors
to reconstruct objects [5], [12], [6]. Based on neural repre-
sentations at the category level [17], [18], [19], [14], these
methods can reconstruct unseen objects with complete de-
tailed shapes. For example, NodeSLAM [5] uses a variational
autoencoder [17] as the shape prior and builds an object-level
SLAM system capable of reconstructing full dense shapes
and relative object poses. DSP-SLAM is the most closely
related approach to ours. It uses DeepSDF [14] as the shape
prior and reconstructs the object-level map. While all these

methods perform well when reconstructing unseen objects,
they do not consider uncertainties underlying these estimates.

C. Uncertainty Estimation in Object-Level Mapping

In many robotic applications, it is important to estimate
state uncertainties before taking action, such as robot grasp-
ing [20] and active perception [21], [22]. To this end, in
many recent CAD-based approaches, the uncertainties are
incorporated when estimating object poses [23], [24], [8],
[7]. These works have demonstrated that modelling state
uncertainties can significantly improve object-mapping per-
formance. When leveraging shape priors for unseen objects,
NodeSLAM [5] develops a rendering function to incorporate
the uncertainty and improve the optimization. However,
NodeSLAM does not output the uncertainty for estimated
object shape or pose, limiting its use cases. In our work, we
explicitly estimate uncertainties for every object’s shape and
pose and integrate them into our optimization framework.

III. METHODOLOGY

A. Approach Overview and Problem Formulation

We summarize our overall framework in Figure 2. Our
framework takes as input the multi-view RGB-D images and
builds an object-level map of a scene. For each object, we
aim to estimate its 3D model (a dense mesh), Qo, in the
object canonical coordinate frame, O, and a 9-DoF relative
pose, Tow ∈ R4×4, from the global (world) coordinate frame,
W , to the object coordinate frame.

Parametrization and Notations. We parameterize the
object’s shape with an optimizable latent-shape code, z ∈
R64, which can be passed through a decoder network, Gθ,
to reconstruct its 3D canonical model, Qo. We employ the
DeepSDF [14] as the shape decoder, which takes the shape
code, z ∈ R64, and a 3D query point, po ∈ R3, under
the object coordinate, O, as inputs, and outputs the signed
distance function (SDF) value, s, of the 3D point:

s = Gθ (z,po) (1)

The SDF represents the distance to the nearest object’s
surface, which can be converted to a mesh via Marching
Cubes [25]. The decoder network, Gθ, was trained offline



on a large collection of CAD models [26], and the network
weights, θ, are fixed during the online mapping inference.
A 9-DoF pose, T ∈ R4×4, is constructed from a 3-DoF
translation vector, t ∈ R3, a 3-DoF rotation vector, ϕ ∈
so(3), and a 3-DoF scaling vector, s ∈ R3:

T =

[
exp (ϕ∧) t

0T 1

]
·
[
diag (s) 0

0T 1

]
(2)

where exp (·) is the exponential mapping from Lie Algebra
space to the corresponding Lie Group space. The operator
(·)∧ converts a vector to a skew-symmetric matrix. For
simplicity, we combine the translation, rotation, and scaling
vectors and represent the Lie Algebra space of the 9-DoF
pose, T ∈ R4×4, with:

ξ = [t,ϕ, s] ∈ R9 (3)

We assume camera poses, Twc ∈ SE(3), are known relative
to the world frame. This can be achieved using off-the-
shelf SLAM methods for a hand-held camera [2], or robot
kinematics when the camera is mounted on a robot arm [27].

Uncertainty Representation. Given object depth mea-
surements, D1:k, up to viewpoint k, we aim to estimate the
joint posterior distribution of the latent code and the object
pose, P (z, ξow|D1:k). To represent the uncertainties, we for-
mulate the distribution P (z, ξow|D1:k) with the following
Gaussian distributions:

z ∼ N (µz,Σz) , ξow ∼ N (µξow
,Σξow

) (4)

where (µz,Σz) and (µξow ,Σξow) are the mean and covari-
ance for the latent code, z, and object pose, ξow, respectively.
To simplify the problem, we assume each dimension of z and
ξow is independent, which allows the covariance matrices Σz

and Σξow
to be diagonal.

Optimization Formulation. We estimate all parameters,
X =

{
µξow ,Σξow , µz,Σz

}
, with a joint optimization for-

mulation and solve it in an iterative manner:

X∗ = argmin
X

(L3D + L2D) (5)

In our approach, we propose two probabilistic losses, a
3D surface loss, L3D, and a 2D rendering loss, L2D. The
3D surface loss minimizes the distance between the 3D
point cloud measurement and the object surface, but is
insufficient to fully constrain the object’s shape and pose.
As illustrated in DSP-SLAM [6], the reconstructed object
with 3D loss only may be much larger than its actual size
in the case of partial observation. To address this issue,
we introduce a novel probabilistic rendering loss function,
which considers the uncertainty, to penalize shapes that grow
outside the object mask and constrain its scale. Note that
our optimization framework is agnostic to the particular 2D
rendering function and can adapt to others [28], [5], [6].

In Section III-B, we first introduce a method to propagate
the distribution of the latent code, N (µz,Σz), and the
object pose, N (µξow ,Σξow), to the SDF, N (µs,σs). Then,
in Section III-C and Section III-D, we will describe how to
use the propagated SDF distribution, N (µs,σs), to compute
the 3D and 2D losses.

B. Uncertainty Propagation

In our mapping system, each object has its latent code
distribution, N (µz,Σz), and the relative object pose dis-
tribution, N (µξow

,Σξow
). Given a 3D point measurement,

pw, defined in the world frame, W , we aim to estimate its
SDF distribution, N (µs,σs), in the object frame, O.

For a 3D point, pw, we compute its SDF mean, µs, by
transforming it to the object frame, O, and then passing it
through the decoder network, Gθ, following Equation 1:

µs = Gθ (µz , po) = Gθ (µz , µξowpw) (6)

To acquire the SDF variance, σs, we linearize the entire
system (Equation 6) and propagate the covariance of the
latent code, Σz , and object pose, Σξow

. Specifically, we
derive the Jacobian of the SDF value with respect to the
latent code, Jz , and object pose, Jξow

, as:

Jz =
∂s

∂z
=

∂Gθ (z,po)

∂z
(7)

Jξow
=

∂s

∂ξow
=

∂Gθ (z,po)

∂ξow
=

∂Gθ (z,po)

∂po

∂po

∂ξow
(8)

where the terms ∂G(z,po)
∂z and ∂G(z,po)

∂po
can be obtained via

the back-propagation of the decoder network, Gθ. With the
linearization of Equation 6, the SDF variance, σ2

s , is finally
acquired via the following forward-propagation:

σ2
s = [Jz , Jξow

]

[
Σz 0
0 Σξow

]
[Jz , Jξow

]
T (9)

C. Uncertainty-aware 3D Surface Loss

We construct the 3D surface loss, L3D, by matching the
object’s depth measurements against the SDF field of the
target object model. For each pixel’s depth, we compute its
SDF distribution, N (µs,σs), for the optimization.

Given the input depth image, Dk(u), from the kth camera
frame, we first segment the object’s mask, Vk, and obtain the
object’s point cloud, Pc,k, via back-projection:

Pc,k =
{
Dk(u)K

−1 uT , u ∈ Vk

}
(10)

where K denotes the camera intrinsic matrix and u rep-
resents the pixel from the object mask. The multi-view
acquired point cloud is finally transformed to the global
world frame, W , with the known camera poses, Twc,k:

Pw =
{
Twc,k Pc,k , k = 1 : K

}
(11)

where Pw is the point cloud in the world coordinate.
Ideally, the point cloud, Pw, should perfectly align with

the object surface, resulting in a zero SDF mean, µs = 0,
when applying the Equation 6 on each 3D point, pw ∈ Pw.
For a 3D point, we measure the loss between the SDF
distribution, N (µs,σs), and the target measurement (zero
SDF value). Following our previous work for the shape
reconstruction only [29], we use the Energy Score (ES),



which shows to be a proper scoring rule [30]. We use it
with the Monte Carlo approximation:

ES3D =
1

M

M∑
m=1

∥sm − s∥ − 1

2(M − 1)

M−1∑
m=1

∥sm − sm+1∥

(12)
where s = 0 is the target SDF, and sm denote the mth

i.i.d sample from the SDF distribution, N (µs,σs). We set
M = 1000 in the optimization with very little computational
overhead. Considering a point cloud that has N points,
we compute the energy score, ES3D,n, for each 3D point
measurement, and acquire its 3D loss, L3D, with:

L3D =
1

N

N∑
n=1

ES3D,n (13)

D. Probabilistic Differentiable Rendering

We design our 2D loss function via the differentiable
SDF rendering, illustrated in Figure 3. Compared to most
previous approaches [6], [28], which are deterministic, our
rendering function, R (·), optimizes the object shape, pose,
and state uncertainties from rendered views. It takes as input
the distributions of latent code, N (µz,Σz), object pose,
N (µξow

,Σξow
), and the known camera pose, Twc, and

renders a depth map with uncertainties:

D̂µ , D̂σ = R (µz,Σz,µξow
,Σξow

,Twc) (14)

where D̂µ and D̂σ are the rendered depth map and uncer-
tainties from viewpoint, Twc. In the following sections, we
describe how to obtain pixel depths and uncertainties, which
will be used for computing the 2D loss.

1) SDF Sampling: Following [5], [6], we build our SDF
renderer with differentiable ray-tracing. For each pixel, u,
we sample M points uniformly along the back-projected
ray, r, within the depth range

[
d̂min, d̂max

]
. We denote each

sampled depth with d̂i = d̂min + i
M

(
d̂max − d̂min

)
. The

corresponding point under camera frame is pc
i = o + d̂ir,

with o being camera optical center. For a single point, pc,
we approximate its SDF with a Gaussian, s ∼ N (µs, σ

2
s),

by transforming it to the world frame, W . To achieve better
efficiency and accuracy, as in DSP-SLAM [6], we only
consider sampled points within a small fixed offset to the
predicted surface |µs| <= δ.

2) Occupancy Probability Estimation: To utilize SDF in
the volumetric rendering process, a common practice [6], [5]
is to convert the SDF prediction, s, to an occupancy prob-
ability, o. In comparison, we further model the occupancy
probability into a distribution. We propose to transform
the SDF distribution, s ∼ N (µs, σ

2
s), through a mirrored

sigmoid function with a slope parameter l:

o := sigmoid(−ls) =
1

1 + exp(ls)
(15)

where the l value encodes the cut-off threshold and controls
the smoothness of the transition. We use l = 400 in our
implementation such that the cut-off threshold is around 0.01
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Fig. 3: Probabilistic differentiable rendering. We model
uncertainty into the occupancy and termination probability
of each sampled 3D point along a camera ray. Then, we
generate a depth distribution of this ray (Sec. III-D).

meters as in [6]. When the Gaussian SDF is passed through
the sigmoid function, the resulting occupancy follows the
logit-normal distribution with the following continuous den-
sity function:

p(o | µs, σ
2
s) =

1

o(1− o)l
√
2πσ2

s

exp

(
−
(−logit(o)

l − µs

)2
2σ2

s

)
(16)

where the logit-normal density function, p(o | µs, σ
2
s), is

defined for o ∈ (0, 1) and logit represents the logit func-
tion. We illustrate the logit-normal occupancy distribution in
Figure 3.

3) Termination and Escape Probability: When tracing
points along the ray, r, the ray either terminates on a surface
point or escapes without hitting any point. Following previ-
ous works [5], [6], we compute the termination probability,
ϕi, for each sampled point, pc

i , and the escape probability,
ϕM+1, for a camera ray, r:

p(ϕi) = p(oi | µs,i, σs,i)

i−1∏
j=1

p(1− oj | µs,j , σs,j)

= p(oi | µs,i, σs,i)

i−1∏
j=1

p(oj | −µs,j , σs,j), i = 1, . . . ,M

p(ϕM+1) =

M∏
j=1

p(1− oj | µs,j , σs,j) =

M∏
j=1

p(oj | −µs,j , σs,j)

(17)
where p(1 − oj | µs, σs) = p(oj | −µs, σs) represents the
symmetry property of logit-normal distributions. Since the
logit-normal distribution is not closed under multiplication,
we propose to approximate the product with a Beta distri-
bution, q(ϕi), by matching the first and second moments.
Specifically, given the quantile function, Q(·), of the logit-
normal distribution with slope l:

Q(oi | µs,i, σs,i) = sigmoid
(
l
√
2σ2

s,ierf−1(2oi − 1)− lµs,i

)
,

(18)
where erf is the error function, we estimate the event
posterior mean µϕ,i, µϕ,M+1 and variance σϕ,i, σϕ,M+1 from
the SDF means and variances via Quasi-Monte Carlo with
the inverse transform method [31], [32]. We use 128 samples
from the Sobol sequence in our implementation.
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Fig. 4: The optimization process of the shape and pose of a
chair instance from ScanNet with different iterations.

4) Depth Estimation and 2D Loss Term: With the esti-
mated event probabilities, we acquire the depth distribution
by computing the expectation, µ̂d, and variance, σ̂2

d, over
the sampled points. As in 3D loss, for each pixel u, with the
rendered depth mean µ̂d, and variance, σ̂2

d, we compute its
2D loss, ES2D,u, using the energy score (Equation 12). The
final rendering term is defined as:

L2D =
1

|Vs|
∑
u∈Vs

ES2D,u (19)

where Vs = Vo ∪ Vb is the union of object surface pixels,
Vo, and background pixels, Vb. Object surface pixels, Vo,
are the set of pixels from the object’s mask. The background
pixels, Vb, are not on object surfaces but inside the object’s
2D bounding box. Following [5], [6], we assign background
pixels a depth of d̂M+1 = 1.1d̂max.

E. Optimization

Our final loss is the weighted sum of the 3D loss, L3D,
2D losses, L3D and a shape code regularization term, ||z||:

Lfinal = λsL3D + λrL2D + λc||z||2 (20)

where λs, λr and λc are the weights for each loss term. In our
approach, we initialize the shape prior with a code z = 0.
The initial object pose, Tow, is obtained by matching the
initial object shape (corresponds to the code z = 0) to the
object point cloud with the ICP algorithm. Note that the pose
initialization can be replaced with any 3D object detector.
We initialize the covariance matrix for shape code, Σz, and
object pose, Σξow

, by placing a constant value on their
diagonal elements. In our implementation, we set 1×e−6 and
1× e−4 for Σz and Σξow , respectively. In our work, we use
the Adam optimizer [33] to solve the optimization problem.
We use 0.005 learning rate and run the optimizer for 200
iterations. Figure 4 shows an example of our optimization
with different iterations.

IV. EXPERIMENTS

We evaluate our framework on two real-world datasets, in-
door ScanNet [34] and outdoor KITTI-3D [35]. The ScanNet
dataset provides RGB-D video sequences of multiple objects
in complex indoor scenes. The KITTI-3D dataset includes
different vehicles in outdoor environments and was captured
with a synchronized RGB camera and a LIDAR sensor.

Quantitatively, we compare our framework with the most
closely related approaches, DSP-SLAM [6] and Node-
SLAM [5]. DSP-SLAM estimates the object model and 7-
DoF pose with deterministic 3D and 2D loss functions. To
fairly compare, we extend the DSP-SLAM open source code
base to output a 9-DoF object pose, which we refer to
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Fig. 5: Qualitative results on the ScanNet dataset.

Views Methods Chair Table

9-DoF Pose IoU>0.25 CD<0.2 9-DoF Pose IoU>0.25 CD<0.2

1

Node-SLAM* 0.200 0.487 0.555 0.098 0.252 0.359
DSP-SLAM* 0.224 0.603 0.607 0.105 0.329 0.380
Ours w/ Det2D 0.225 0.631 0.636 0.103 0.339 0.380
Ours w/ Samp2D 0.226 0.621 0.633 0.140 0.316 0.439
Ours 0.214 0.635 0.655 0.123 0.332 0.395

2

Node-SLAM* 0.202 0.505 0.576 0.117 0.248 0.374
DSP-SLAM* 0.228 0.637 0.634 0.130 0.324 0.382
Ours w/ Det2D 0.236 0.660 0.662 0.119 0.345 0.396
Ours w/ Samp2D 0.231 0.648 0.666 0.144 0.328 0.432
Ours 0.224 0.669 0.656 0.138 0.360 0.430

3

Node-SLAM* 0.215 0.503 0.601 0.140 0.246 0.390
DSP-SLAM* 0.239 0.657 0.647 0.134 0.338 0.398
Ours w/ Det2D 0.253 0.696 0.695 0.128 0.349 0.417
Ours w/ Samp2D 0.252 0.675 0.692 0.143 0.339 0.426
Ours 0.226 0.682 0.662 0.132 0.332 0.449

TABLE I: Quantitative results on the ScanNet dataset.

as DSP-SLAM*. Node-SLAM is not open-sourced, so we
implement it from scratch and follow its original design of
using only the 2D rendering loss. Node-SLAM measures the
rendered depth uncertainties by computing the sampled depth
variance along the camera ray, and minimizes the NLL loss.
In our experiments, we notice that the NLL loss has limited
numerical stability, which makes it difficult to find converg-
ing hyperparameters. We therefore implement Node-SLAM
with the energy score as a loss, named as Node-SLAM*.
Since our optimization framework is adaptable to any 2D
rendering function, we additionally implement our approach
with two variants by exploiting other rendering functions:
deterministic rendering (from DSP-SLAM) and sampling-
based rendering (from Node-SLAM). We refer to them as
Ours w/ Det2D and Ours w/ Samp2D, respectively. For all
the baselines, variants, and our method, we use DeepSDF as
the shape model and Adam [33] as the optimizer. We provide
the same inputs, including depth, 2D masks, camera poses,
initial object poses, and latent code for all comparisons.

A. Results on ScanNet Dataset

We perform the evaluation on two common categories,
chair and table, with all video sequences. We use 954
chair instances and 256 table instances from the ScanNet
dataset [34]. For each object, it provides the ground truth
CAD model and 9-DoF object pose [36]. We visualize the
reconstruction results in Figure 5. Compared to the baselines,
our approach reconstructs the objects with far fewer artifacts
and better alignment to the point cloud.

For the quantitative evaluation, we calculate the correct
detection rate with three metrics: absolute 9-DoF pose, In-
tersection over Union (IoU) and Chamfer Distance (CD). The
9-DoF pose metric considers an object reconstruction correct
if the pose error is within thresholds of 0.2-meter translation,
20-degree rotation, and 20%-scale. We use IoU with 0.25
and CD with 0.2 meters as thresholds for the other two
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Fig. 6: Uncertainty and error correlation. Our estimated
uncertainty correlates with the true reconstruction errors.

Methods Ours w/ Det2D Ours w/ Samp2D Ours

Chair 0.738 0.740 0.749
Table 0.661 0.668 0.742

TABLE II: Uncertainty evaluation on the ScanNet dataset
with the Pearson correlation score metric.

metrics. For each category, we evaluate the correct detection
rate with 1, 2, and 3 viewpoints. We show quantitative
results in Table I. One of our approaches ranks first on all
numbers of views across all three reconstruction metrics.
This shows the benefits of our uncertainty-aware framework
for reconstructing the object shape and relative poses. It
is noteworthy that our approach exceeds other variants on
the single-view test set, where the task is challenging due
to incomplete depth and occlusions. However, with more
available views, the performance improvement is less notice-
able when compared with other variants. This is likely due
to using a uni-modal Gaussian distribution to approximate
the actual depth distribution, which is usually multi-modal.
This phenomenon is more obvious in multi-view cases. To
overcome this problem, we consider using a more advanced
modelling technique, such as Gaussian Mixture Model [13],
[37], as future work.

Although the accuracy improvement on multi-view cases
is less obvious when using our rendering function, its prob-
abilistically complete rendering process brings us a better
ability to estimate the uncertainty in pose and shape. To
evaluate the estimated uncertainties, we first generate GT
depth data by sampling 10K points from the GT object
model under the world frame, W . For each point, we
transform it to the object frame, O, using the estimated object
pose, ξow, and compute the SDF mean and variance with the
estimated latent code, z. A well-estimated variance should
correlate to the actual SDF error. Figure 6 first shows a
qualitative example of our estimated SDF variance, which
correlate well with the true SDF errors. Quantitatively, we
evaluate this correlation against our variants with the Pearson
correlation score. We evaluate on well-reconstructed objects
under the 3-view setup, including 145 chairs and 17 tables.
Table II shows the uncertainty evaluation on the ScanNet
dataset. Our approach achieves higher Pearson scores than
the other two variants, demonstrating the effectiveness of
our probabilistic rendering for uncertainty estimation.

B. Results on KITTI Dataset

We use the KITTI-3D object detection dataset [35] to
evaluate the system performance in the outdoor environment.
We obtain initial object poses using the PointPillars 3D de-

Fig. 7: Qualitative results on KITTI-3D.
Methods Mean IoU IoU>0.6 IoU>0.75

Node-SLAM* 0.677 78.6 21.4
DSP-SLAM* 0.690 80.2 25.7
Ours w/ Det2D 0.721 88.9 42.3
Ours w/ Samp2D 0.741 93.9 53.7
Ours 0.738 90.5 54.9

TABLE III: Quantitative results on KITTI-3D.

tector [38] and acquire object masks from the Mask2Former
segmentation algorithm [39]. To investigate the upper bound
of reconstruction accuracy of each method, we consider
an object for evaluation only if its initial 3D detection
error is within thresholds of 1.0-meter translation and 20-
degree heading. In total, we performed the evaluation on
253 vehicles from the validation set.

Since object shape annotation is not available, we evaluate
the performance with the IoU metric in Table III. Our
approaches, including two variants, exceed the baselines,
DSP-SLAM* and Node-SLAM*, by a large margin. We also
notice that our approach exceeds other variants when using a
more strict metric (IoU>0.75). Further qualitative results in
Figure 7 demonstrate the high performance when recovering
the shape and relative poses for different vehicles, even with
partial Lidar observations.

C. Computation Analysis

All experiments were performed on a 16GB V100 GPU.
For our approach, it costs 0.2s with each iteration. Depending
on the task, the shape resolution (currently 643), the sampling
number, and the iteration steps can be modified to trade-off
between the efficiency and accuracy.

V. CONCLUSION
In this work, we presented an object-level mapping ap-

proach that can recover the 3D dense models and relative
poses for unknown objects. The core idea of our approach
is leveraging a learnt category-specific shape prior to for-
mulate an uncertainty-aware optimization framework. We
introduce two probabilistic loss functions that model the
uncertainties of shape and pose in the optimization. We
compare our approach against the state-of-the-art approaches
on challenging real-world datasets, ScanNet and KITTI-3D.
The results demonstrate that our approach can reconstruct
higher-quality object-level maps. Moreover, our estimated
uncertainties accurately correlate with the true errors of our
estimated object shapes and poses, which is valuable for
many downstream robotic applications. This work represents
an important step toward our future development of an
uncertainty-aware object-level SLAM system that jointly es-
timates camera poses and actively selects camera viewpoints
for building detailed object-level maps in the open world.



REFERENCES

[1] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale di-
rect monocular slam,” in European conference on computer vision,
pp. 834–849, Springer, 2014.

[2] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,” IEEE transactions on
robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[3] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
2011 10th IEEE international symposium on mixed and augmented
reality, pp. 127–136, Ieee, 2011.

[4] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison, “Slam++: Simultaneous localisation and mapping at the
level of objects,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1352–1359, 2013.

[5] E. Sucar, K. Wada, and A. Davison, “Nodeslam: Neural object
descriptors for multi-view shape reconstruction,” in 2020 International
Conference on 3D Vision (3DV), pp. 949–958, IEEE, 2020.

[6] J. Wang, M. Rünz, and L. Agapito, “Dsp-slam: Object oriented slam
with deep shape priors,” in 2021 International Conference on 3D
Vision (3DV), pp. 1362–1371, IEEE, 2021.

[7] N. Merrill, Y. Guo, X. Zuo, X. Huang, S. Leutenegger, X. Peng,
L. Ren, and G. Huang, “Symmetry and uncertainty-aware object slam
for 6dof object pose estimation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14901–
14910, 2022.

[8] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox,
“Poserbpf: A rao–blackwellized particle filter for 6-d object pose
tracking,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1328–
1342, 2021.

[9] K.-K. Maninis, S. Popov, M. Nießner, and V. Ferrari, “Vid2cad: Cad
model alignment using multi-view constraints from videos,” IEEE
transactions on pattern analysis and machine intelligence, vol. 45,
no. 1, pp. 1320–1327, 2022.

[10] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leuteneg-
ger, “Fusion++: Volumetric object-level slam,” in 2018 international
conference on 3D vision (3DV), pp. 32–41, IEEE, 2018.

[11] M. Runz, M. Buffier, and L. Agapito, “Maskfusion: Real-time recog-
nition, tracking and reconstruction of multiple moving objects,” in
2018 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 10–20, IEEE, 2018.

[12] M. Runz, K. Li, M. Tang, L. Ma, C. Kong, T. Schmidt, I. Reid,
L. Agapito, J. Straub, S. Lovegrove, et al., “Frodo: From detections to
3d objects,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14720–14729, 2020.

[13] J. Fu, Q. Huang, K. Doherty, Y. Wang, and J. J. Leonard, “A multi-
hypothesis approach to pose ambiguity in object-based slam,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 7639–7646, IEEE, 2021.

[14] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“Deepsdf: Learning continuous signed distance functions for shape
representation,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 165–174, 2019.

[15] C. Wang, D. Xu, Y. Zhu, R. Martín-Martín, C. Lu, L. Fei-Fei, and
S. Savarese, “Densefusion: 6d object pose estimation by iterative dense
fusion,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 3343–3352, 2019.

[16] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match
locally: Efficient and robust 3d object recognition,” in 2010 IEEE com-
puter society conference on computer vision and pattern recognition,
pp. 998–1005, Ieee, 2010.

[17] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[18] M. Vakalopoulou, G. Chassagnon, N. Bus, R. Marini, E. I. Zacharaki,
M.-P. Revel, and N. Paragios, “Atlasnet: Multi-atlas non-linear deep
networks for medical image segmentation,” in Medical Image Com-
puting and Computer Assisted Intervention–MICCAI 2018: 21st In-
ternational Conference, Granada, Spain, September 16-20, 2018,
Proceedings, Part IV 11, pp. 658–666, Springer, 2018.

[19] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy networks: Learning 3d reconstruction in function space,”

in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4460–4470, 2019.

[20] J. Lundell, F. Verdoja, and V. Kyrki, “Robust grasp planning over
uncertain shape completions,” in 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 1526–1532,
IEEE, 2019.

[21] Z. Zhang and D. Scaramuzza, “Beyond point clouds: Fisher infor-
mation field for active visual localization,” in 2019 International
Conference on Robotics and Automation (ICRA), pp. 5986–5992,
IEEE, 2019.

[22] J. Yang, J. Yao, and S. L. Waslander, “Active pose refinement for
textureless shiny objects using the structured light camera,” arXiv
preprint arXiv:2308.14665, 2023.

[23] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-
wise voting network for 6dof pose estimation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4561–4570, 2019.

[24] B. Okorn, M. Xu, M. Hebert, and D. Held, “Learning orientation dis-
tributions for object pose estimation,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 10580–
10587, IEEE, 2020.

[25] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” in Seminal graphics: pioneering
efforts that shaped the field, pp. 347–353, 1998.

[26] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al.,
“Shapenet: An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[27] X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and D. Fox,
“Self-supervised 6d object pose estimation for robot manipulation,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3665–3671, IEEE, 2020.

[28] S. Tulsiani, T. Zhou, A. A. Efros, and J. Malik, “Multi-view supervi-
sion for single-view reconstruction via differentiable ray consistency,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2626–2634, 2017.

[29] Z. Liao and S. L. Waslander, “Multi-view 3d object reconstruction
and uncertainty modelling with neural shape prior,” arXiv preprint
arXiv:2306.11739, 2023.

[30] A. Harakeh and S. L. Waslander, “Estimating and evaluating regres-
sion predictive uncertainty in deep object detectors,” arXiv preprint
arXiv:2101.05036, 2021.

[31] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo
method. John Wiley & Sons, 2016.

[32] S. Raychaudhuri, “Introduction to monte carlo simulation,” in 2008
Winter simulation conference, pp. 91–100, IEEE, 2008.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[34] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5828–5839, 2017.

[35] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE conference
on computer vision and pattern recognition, pp. 3354–3361, IEEE,
2012.

[36] A. Avetisyan, M. Dahnert, A. Dai, M. Savva, A. X. Chang, and
M. Nießner, “Scan2cad: Learning cad model alignment in rgb-d scans,”
in Proceedings of the IEEE/CVF Conference on computer vision and
pattern recognition, pp. 2614–2623, 2019.

[37] J. Yang, W. Xue, S. Ghavidel, and S. L. Waslander, “6d pose estimation
for textureless objects on rgb frames using multi-view optimization,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2905–2912, IEEE, 2023.

[38] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 12697–12705, 2019.

[39] B. Cheng, A. Choudhuri, I. Misra, A. Kirillov, R. Girdhar, and
A. G. Schwing, “Mask2former for video instance segmentation,” arXiv
preprint arXiv:2112.10764, 2021.


	INTRODUCTION
	RELATED WORK
	3D Object-Level Mapping
	3D Reconstruction with Shape Priors
	Uncertainty Estimation in Object-Level Mapping

	METHODOLOGY
	Approach Overview and Problem Formulation
	Uncertainty Propagation
	Uncertainty-aware 3D Surface Loss
	Probabilistic Differentiable Rendering
	SDF Sampling
	Occupancy Probability Estimation
	Termination and Escape Probability
	Depth Estimation and 2D Loss Term

	Optimization

	EXPERIMENTS
	Results on ScanNet Dataset
	Results on KITTI Dataset
	Computation Analysis

	CONCLUSION
	References

