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Abstract— Inspired by biological swarms, robotic swarms
are envisioned to solve real-world problems that are difficult
for individual agents. Biological swarms can achieve collec-
tive intelligence based on local interactions and simple rules;
however, designing effective distributed policies for large-scale
robotic swarms to achieve a global objective can be challenging.
Although it is often possible to design an optimal centralized
strategy for smaller numbers of agents, those methods can
fail as the number of agents increases. Motivated by the
growing success of machine learning, we develop a deep learning
approach that learns distributed coordination policies from
centralized policies. In contrast to traditional distributed con-
trol approaches, which are usually based on human-designed
policies for relatively simple tasks, this learning-based approach
can be adapted to more difficult tasks. We demonstrate the
efficacy of our proposed approach on two different tasks, the
well-known rendezvous problem and a more difficult particle
assignment problem. For the latter, no known distributed policy
exists. From extensive simulations, it is shown that the perfor-
mance of the learned coordination policies is comparable to
the centralized policies, surpassing state-of-the-art distributed
policies. Thereby, our proposed approach provides a promising
alternative for real-world coordination problems that would be
otherwise computationally expensive to solve or intangible to
explore.

I. INTRODUCTION

Biological swarms can act in coordination to perform tasks
far beyond the capabilities of individuals [1]. In the absence
of a centralized control mechanism and global observation,
swarm intelligence emerges from the local behaviour of
individual agents governed by simple, unified rules [2]. The
distributed structure of swarm systems makes them less
vulnerable to individual failures. When this robust nature
is well-realized in robotic systems, robotic swarms can then
be relied upon to solve complex real-world problems such
as search and rescue, object transportation, and Mars explo-
ration, where centralized control can be extremely costly or
may be impossible [3]–[5].

To explore this domain, this work focuses on studying
distributed robotic systems with the following properties:
• All agents are identical (i.e., homogeneous).
• Each agent has only local interactions and observations.
• Each agent follows an identical distributed policy with

no presence of a leader.
To coordinate individual agents towards achieving a mutual
objective, a key challenge is to relay local actions and obser-
vations from agent to agent. A distributed policy, therefore,
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Fig. 1. The proposed approach learns distributed control and commu-
nication strategies from well-designed centralized policies for K identical
agents.

contains two main components: an action policy that deter-
mines what action the agent performs given its inputs, and a
communication protocol that defines how agents communi-
cate with each other. To achieve system-level coordination,
classical methods rely on human-designed policies, in which
communication protocols are usually predefined [6]. This
manual design process can be especially difficult for complex
coordination tasks with large swarms. Recently, learning-
based approaches, such as deep reinforcement learning, have
been able to successfully learn communication protocols
in coordination tasks [7]–[15]. The biggest drawback of
these approaches is the tremendous amount of data and
computational resources required for training.

In this paper, we propose a learning-based approach that
utilizes pre-designed centralized policies to train the dis-
tributed policies. Each agent follows an identical distributed
policy, which (i) interprets the agent’s observation and com-
munication information received, (ii) determines the action of
the agent, and (iii) generates the communication information
to be broadcasted to the neighbouring agents. This distributed
policy is modelled by a differentiable deep neural network
(DNN) called distributed policy network, where its inputs and
outputs are represented as fixed-sized vectors. The distributed
policy network serves as a part of a larger neural network
that maps from all agents’ multi-step observations to their
multi-step actions (see Fig. 4). We refer to this augmented
neural network as the multi-step, multi-agent neural network
(MSMANN). Since communication vectors sent from agent
to agent are hidden states of the MSMANN, we can perform
backpropagation on the MSMANN to capture the commu-
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nication protocols in addition to the action policies, which
completes the distributed policy we aim to learn. Since the
input and output vectors for the communication information
all have fixed sizes, the distributed policy network must learn
how to aggregate information for effective communication.
This also enables us to control the communication flow and
analyze the communication information sent from agent to
agent. This can be regarded as an analogy to controlling
the size of the representation layer of an auto-encoder and
analyzing the learned representation.

Our learning approach can be applied to a variety of
distributed robotic tasks, provided that a well-designed cen-
tralized policy is available. On a rendezvous task with limited
visibility, this approach consistently outperforms the state-
of-the-art distributed control law for systems consisting of
different numbers of agents. The generalizability of our
proposed approach to other robotic tasks is demonstrated in
a task for which no distributed solution exists. Our approach
provides a tangible alternative for complex robotic tasks for
which centralized policies can be designed. Moreover, we
analyze the learned communication protocols and provide
insights on their meaning. This analysis of learned coordi-
nation policies could potentially benefit the manual design
of communication protocols for complex robotic swarm
systems.

In the following sections, we begin discussions with a brief
overview of related literature in Section II. Upon defining the
control framework and the problem statement in Section III
and IV, our learning approach is discussed in Section V. The
simulation setup and the corresponding results are presented
in Section VI and VII.

II. RELATED WORK

In the distributed control literature, most work focused on
the manual design and analysis of distributed control laws
for simple robotic tasks [6]. For example, [16] and [17] both
study rendezvous and flocking tasks and analyze the perfor-
mance of various distributed control laws. However, these
studies are based on simplified robot dynamics (e.g., single
or double integrator). Adapting these approaches to more
complicated distributed robotic tasks can be challenging.

With little human expertise required, learning-based ap-
proaches provide alternatives for challenging distributed
robotic tasks. The majority of these works focus on only
learning the action policy, and assume pre-defined commu-
nication protocols or no communication among the agents at
all [18]–[20]. These approaches lack the flexibility to adapt
the communication information, thus, limiting the capability
of the distributed robotic system. Our approach learns both
the control policy and the communication protocols among
the agents, allowing the emergence of more effective inter-
agent communication.

Some recent work has explored learning communication
protocols through reinforcement learning. Specifically, [15]
and [7] perform independent learning where each agent
learns solely from its local observations. Others assume that
centralized learning can be performed [8]–[10] and [14]. In

particular, [14], [9] and [13] assume that the communication
channel can be differentiated during backpropagation. While
[14] employs multiple communication cycles at each time
step, [9] and [13] are similar to our control framework,
which assumes that the communication emitted can only be
received at the next time step.

Different from all the reinforcement learning approaches
above, our approach makes use of pre-designed centralized
policies and learns communication protocols by imitating
the behaviour of the centralized policies. Compared to the
reinforcement learning approaches, our approach can learn
communication and action policies more efficiently using
the guidance of the centralized policies. This approach is
inspired by [14], which performs supervised learning on a
simple lever-pulling task using multiple communication cy-
cles at each time step. We perform learning in the distributed
robotic domain using a different framework, which assumes
a single communication cycle at each time step.

III. DISTRIBUTED CONTROL FRAMEWORK

Consider a group of K homogeneous agents that are to
complete a task T with a dynamic connectivity network
defined by a bidirectional graph G(t) = (V,E(t)), where
t = {1, 2, · · · , L} is the discrete time index. Each vi ∈
V , V = {v1, v2, · · · , vK}, represents an agent and each
e(vi, vj) ∈ E(t) represents a connection between agent vi
and agent vj .

We define Ni(t) = {vj |e(vi, vj) ∈ E(t)} to be the
set of all the neighbours of agent vi. For each neighbour
vj ∈ Ni(t), we can define cij(t) to be the communication
information sent from agent vi to agent vj at time t. In this
work, we define cij(t) ∈ Rn as a communication vector,
where n is the size of the communication information.

For convenience, we also define

ciin(t) = {cji(t− 1)|vj ∈ Ni(t− 1)}, t > 1, (1)

to be the communication inflow to vi, with ciin(1) = ∅, and

ciout(t) = {cij(t)|vj ∈ Ni(t)} (2)

to be the communication outflow from vi. This means that
the communication information sent at the previous time step
(t − 1) is received at the current time step t. When vi and
vj are the same agent, the communication vector cij is a
special case, which allows the agent to leave information to
itself. In this work, we allow this self-talking behaviour.

At each time step, agent vi obtains an observation infor-
mation oilocal and receives information ciin. The agent then
sends information, ciout, to its corresponding neighbours Ni,
and performs an action ai ∈ A, where A is the unified action
space of all agents (see Fig. 2).

We define πd as a unified, distributed policy for all agents
with the following equations holding true for all vi ∈ V :

πd(oilocal(t), c
i
in(t)) = (Qi(t), c

i
out(t)) (3)

ai(t) ∼ Qi(t), (4)

where Qi(t) is the probability distribution over the action
space A used by vi at time t (see Fig. 3).



Fig. 2. The communication framework with three agents at two consecutive
time steps. The connectivity network is indicated by the arrows among the
agents. We show the neighbours and the communication associated with vi
for each time step. At time index (t−1), agent vi can only communicate to
agent vj and send information to itself. At time index t, agent vi receives
the information sent by vj from the previous time step and sends out
information to its neighbours, vj and vk , and to itself.

Fig. 3. Overall picture of the homogeneous, distributed control framework.
The agent receives the communication inflow ciin(t) from its neighbours
Ni(t−1) from the previous time step and observes the surrounding oilocal(t).
Given the inputs, the policy then provides the communication outflow ciout(t)
and the action probability distribution Qi(t). The communication outflow
is sent to the agent’s neighbours Ni(t). The action of the agent ai(t) is
sampled based on the probability distribution Qi(t).

IV. PROBLEM STATEMENT

Consider K agents with the homogeneous, distributed con-
trol framework described in Section III. The problem targeted
by this work is to learn a mapping from communication
inflow cin and local observations olocal to communication
outflow cout and action probability distribution Q. This
mapping is referred to as the distributed policy πd modelled
by a DNN, which interprets the communication inflow and
the local observations, and infers the communication outflow
and the action probability distribution. The goal is to find a
policy that optimizes the performance of the target task T .
During the learning process, robot actions and observations
of a centralized strategy are available (Fig. 1).

V. METHODOLOGY

A. Neighbour Discretization

The amount of communication inflow and outflow for
each agent is changing dynamically as the number of its
neighbours changes. Since learning a model that has variable
input and output dimensions can be challenging, we perform
a neighbour discretization to provide constant input/output
dimensions. In this process, each agent’s neighbours are

Fig. 4. Multi-step, multi-agent neural network (MSMANN) consisting
of identical components πd. This is an example of the MSMANN for the
three-agent example in Fig. 2. The grey arrows represent the communication
vectors, which are also hidden states of the MSMANN; the green arrows
represent the inputs (local observation olocal) of the neural network and the
red arrows represent the outputs (action probability distribution Q) of the
neural network.

partitioned into P groups based on a discretization rule D:

D(oilocal) : Ni → {Pi
1,Pi

2, · · · ,Pi
P },∀vi ∈ V, (5)

where each Pi
p ⊆ Ni, p ∈ {1, 2, · · · , P}, represents a subset

of neighbouring nodes and oilocal may be used to obtain
the discretization. To apply this discretization, we process
the communication inflow and average the communication
vectors within each group of agents. We also restrict the
communication outflow such that the communication vectors
sent to the agents in the same group are identical. To
formulate this, we define the communication inflow ci,Din and
outflow ci,Dout after the discretization as follows:

ci,Din (t) =
[
ci,Din,1(t)T ci,Din,2(t)T . . . ci,Din,P (t)T

]T
,

ci,Din,p(t) =


1

|Pi
p(t)|

∑
vj∈Pi

p(t)

cji(t− 1) , |Pi
p(t)| 6= 0,

0 , |Pi
p(t)| = 0,

(6)

ci,Dout (t) =
[
ci,Dout,1(t)T ci,Dout,2(t)T . . . ci,Dout,P (t)T

]T
,

cij(t) = ci,Dout,p(t),∀vj ∈ Pi
p(t),

(7)

with p ∈ {1, 2, · · · , P}, where ci,Din (t) and ci,Dout (t) are the
concatenations of P communication vectors after discretiza-
tion, and | · | represents the cardinality of a set. This renders
the dimensions of the communication inflow and outflow
constant. Thus, the distributed policy we aim to learn is
transformed into

πd(oilocal(t), c
i,D
in (t)) = (Qi(t), c

i,D
out (t)),∀vi ∈ V. (8)

In this work, we assume that the neighbour discretization
is pre-designed and task-specific. Learning the discretization
rule is left for future work.

B. Learning from a Centralized Policy

Using supervised learning, our approach builds upon a
pre-designed centralized policy πc, which defines the action



probability distributions of all agents based on global full
observations. This can be formulated as follows:

πc(oglobal(t)) = {Q∗i (t)|vi ∈ V }, (9)

where

• oglobal is the global observation, which includes all the
local observations {oilocal|vi ∈ V } in the global frame.

• Q∗i is the action probability distribution of agent vi
suggested by the centralized policy πc.

The objective is to make the learned distributed policy πd
behave as similar to the centralized policy πc as possible.

Directly learning the communication protocols among the
agents from the centralized policy is difficult because the
centralized policy does not provide correct and labelled
communication protocols among the agents. Based on the
problem setup, the communication vectors sent at the previ-
ous time step are received at the current time step, resulting
in a communication information flow across multiple time
steps. To learn such a flow of information, we require the
learning process to operate across multiple time steps as well.

To formulate the learning target, we first assume πd can
be parametrized by θ as πd,θ. Over the course of performing
task T with L time steps using a distributed policy πd,θ, we
can define the overall mapping we aim to achieve as

{oilocal(t)|∀vi ∈ V, t ∈ {1, 2, · · · , L}} →
{ai(t)|∀vi ∈ V, t ∈ {1, 2, · · · , L}}.

(10)

This mapping is modelled by a neural network consist-
ing of identical components connected by communication
vectors among the agents across multiple time steps (see
Fig. 4 for an example of the neural network). We recall
that this neural network is a multi-step, multi-agent neural
network (MSMANN), where the identical components are
the distributed policy network for every agent at each time
step. The backpropagation can be performed throughout the
MSMANN to optimize the distributed policy with respect to
a learning objective, which is minimizing J(θ):

J(θ) =
1

KL

∑
vi∈V

t∈{1,2,··· ,L}

L(Qi(t), Q
∗
i (t)), (11)

where K is the number of agents and L(Q,Q∗) is the loss
function for evaluating the difference between two action
probability distributions.

By minimizing J(θ), we can learn the distributed policy
πd such that it behaves similarly to the centralized policy.
With the guidance of the centralized policy, we hypothesize
that this supervised learning process is more efficient than
the reward-based learning, which has no direct guidance.
An interesting possibility is to use reward-based learning
for improvement after having completed supervised learning
from the centralized policy. This possibility is left as future
work.

Fig. 5. Radial discretization used in the rendezvous task. The visible area
is discretized into 9 components. The vectors {∆sD1 ,∆sD2 , · · ·∆sD9 } from
the agent to the center of each area represent the discretized action space.

VI. SIMULATION SETUP: TWO DIFFERENT TASKS

In order to demonstrate our proposed learning approach,
we consider two coordination tasks: (i) the rendezvous prob-
lem with limited vision range and (ii) the particle assignment
task. The former is well-studied in the control literature
and our solution is compared against the state-of-the-art
distributed control law; the latter is a task that has not been
solved in the framework of distributed control before.

A. Rendezvous with Limited Visibility

We demonstrate our learning approach on the rendezvous
task with limited visibility given (i) its simplicity, and (ii) its
assumption of local interactions which fit our framework.

1) Task Formulation: Consider K homogeneous agents
located in a 2-dimensional plane with the position vectors
{s1, s2, · · · , sK}. Each agent is governed by double inte-
grator dynamics and its position is controlled by a PD-type
controller. The input to the controller is the desired position
vector relative to the agent’s position, which corresponds to
the action a of the agent. We define dynamic connectivity
network G(t) = (V,E(t)) based on visibility:

E(t) = {e(vi, vj)|vi, vj ∈ V, ‖si(t)−sj(t)‖2 ≤ dlim}, (12)

where dlim is the visibility range.
We also define that each agent can only observe the

relative positions of all its neighbours to itself as oilocal.
1

To formulate the action space and observation space, we
discretize the 2-dimensional visibility space Si of each agent
into P different components: {Si1,Si2, · · · ,SiP } (see Fig. 5).
The observation of agent vi can be approximated by the
number of agents in each discretized component:

oi,D
local(t) =

[
ni1(t) ni2(t) . . . ni

P (t)
]T
,

where nip(t) = |{vj |sj ∈ Sip, vj ∈ Ni}|,
(13)

with p ∈ {1, 2, · · · , P}. Using the same discretization, we
restrict the action space to be the set of center points of the
discretized components (see Fig. 5):

A = {∆sD1 ,∆sD2 , · · · ,∆sDP }. (14)

1The local frame, however, has the same heading as the global frame.
This means that the local frame can be transformed to the global frame by
only a translational transformation.



The action probability distribution Qi(t) can be simplified
into a vector of probabilities qi(t) for choosing each dis-
cretized action:

qi(t) =
[
Qi(t, a = ∆sD1 ) . . . Qi(t, a = ∆sDP )

]T
, (15)

where Qi(t, a = ∆sDp ) represents the probability of agent vi
to choose action ∆sDp at time t for all p ∈ {1, 2, · · · , P}.

The objective of this task is to make all agents converge to
a common location as quickly as possible. We assume that
the dynamic connectivity network G(t) is connected initially.
The task performance is primarily evaluated based on the
rendezvous time tRV, which is defined as the smallest t ∈
{1, 2, · · · , L} that satisfies the following condition:

‖si(t)− sj(t)‖2 ≤ ε,∀vi, vj ∈ V, (16)

where ε is a small constant that defines the maximum dis-
tance of the two farthest agents. If the constraint can never be
satisfied, we classify this as a failure to converge (tRV =∞).
After evaluating the task for multiple trials, we can define the
convergence rate as follows: CR% = nsuccess/ntot × 100%,
where nsuccess is the number of successful trials and ntot is
the number of total trials.

2) Neighbour Discretization: The neighbour discretiza-
tion rule builds upon the space discretization performed
in the task formulation. Using the relative positions to the
neighbouring agents, we can define the partition as follows:

Pi
p = {vk|sk ∈ Sip,∀vk ∈ Ni}, (17)

for all p ∈ {1, 2 · · · , P}, vi ∈ V , where sk is the position
vector of agent vk and Pi

p is the pth discretization group of
agent vi’s neighbours Ni under the discretization rule D.

Under this rule, all the neighbouring agents in the same
discretized component belong to the same discretization
group. The intuition behind this is that the neighbouring
agents with similar relative positions should receive similar
communication vectors, and the communication vectors they
are sending back should also be similar.

3) Centralized Policy: The centralized policy we use
computes an optimal rendezvous coordinate soptimal that
minimizes tRV. It can be proved that soptimal is the center of
the smallest circle that encloses all the agents (the smallest
enclosing circle). By moving towards the optimal rendezvous
coordinate, the optimal solution can be achieved. To adapt
to the discrete action space A, the optimal action a∗i (t) for
each agent is the closest one to the optimal coordinate:

a∗i (t) = argmin
∆sDp ∈A

‖soptimal(t)− si(t)−∆sDp ‖2, (18)

Since this centralized policy is deterministic, we define the
probability distribution Q∗i over A as follows:

Q∗i (t, a) =

{
1 a = a∗i (t)

0 a 6= a∗i (t)
,∀a ∈ A, (19)

where Q∗i (t, a) is the probability of vi choosing action
a at time t suggested by the centralized policy πc. This
distribution can be represented by a vector q∗i similar to
Eq. 15.

4) Existing Distributed Policies: To the best of our knowl-
edge, the circumcenter law is the state-of-the-art distributed
policy for this task that guarantees convergence on single
integrator dynamics [16]. This result can be simply extended
to second-order systems with double integrator dynamics,
which we consider for this task. The circumcenter law is
defined as follows: At each time step, all agents pursue the
circumcenter of the point set consisting of its neighbours and
of itself (or the center of the smallest enclosing circle) [16].
To adapt this control law to our control framework described
in Section III, we choose the agent’s action ai based on the
relative position of the agent to the circumcenter, equivalently
to Eq. 18. The communication inflow ciin and outflow ciout
consist only of zero vectors at all time steps.

There are other existing distributed policies such as the av-
eraging law and cyclic pursuit. The averaging law requires all
agents to pursue the average coordinate of its neighbours and
of itself. However, it suffers from convergence issues [17].
Cyclic pursuit usually assumes a fixed connectivity network,
which is not given in this task [16].

B. Particle Assignment

We also propose a new distributed robotic task that has no
existing solution, to the best of our knowledge. The objective
is to move all agents to target points such that all target points
are covered by an agent using agents’ local observations of
the neighbouring agents and target points, and communica-
tion. Different from the cooperative navigation task defined
in [10] that assumes unlimited visibility range, we assume
limited visibility range.

1) Task Formulation: We consider K homogeneous
agents with position vectors {s1, s2, · · · , sK} in a 2-
dimensional plane. The agent dynamics, PD-controller, dis-
crete action space A, connectivity network G(t) and dis-
cretization rule D are the same as described in the ren-
dezvous task. Adding on top of these, we introduce K
target points V̄ = {v̄1, v̄2, · · · , v̄K} with the position vectors
{s̄1, s̄2, · · · , s̄K}. We can define Ḡ(t) = (V̄ , Ē(t)) as the
connectivity of the target points based on the visibility:

Ē(t) = {e(v̄i, v̄j)|v̄i, v̄j ∈ V̄ , ‖s̄i(t)−s̄j(t)‖2 ≤ dlim}, (20)

where dlim is the limited visibility range.
We define the set of covered target points V̄cov as follows:

V̄cov(t) = {v̄i|v̄i ∈ V̄ , ∃vj ∈ V, ‖sj(t)− s̄i(t)‖2 < ε}, (21)

where ε is a small constant that defines the distance require-
ment for covering a target point.

We assume that G(t), Ḡ(t) are both connected initially,
and at least one agent can observe one target point initially.
Each agent also has a pre-defined potential field layer as a
collision avoidance mechanism on top of the PD-controller.
For convenience, we can define the neighbouring target
points as follows:

N̄i(t) = {v̄j |v̄j ∈ V̄ , ‖s̄j(t)− si(t)‖2 ≤ dlim}. (22)

The observation of each agent is defined as the relative
positions of its neighbouring agents and target points to itself.



Using the same space discretization in Section VI-A, we
represent the observation as follows:

oi,D
local(t) =

[
ni1(t) ni2(t) . . . ni

P (t)

n̄i1,cov(t) n̄i2,cov(t) . . . n̄iP,cov(t)

n̄i1,uncov(t) n̄i2,uncov(t) . . . n̄iP,uncov(t)
]T
,

where nip = |{vj |sj ∈ Sip, vj ∈ Ni}|,
n̄ip,cov = |{v̄j |s̄j ∈ Sip, v̄j ∈ N̄i, v̄j ∈ V̄cov}|,

n̄ip,uncov = |{v̄j |s̄j ∈ Sip, v̄j ∈ N̄i, v̄j 6∈ V̄cov}|.
(23)

To evaluate the performance, we define tPA as the smallest
t ∈ {1, 2, · · · , L} such that V̄cov(t) = V̄ . If the constraint can
never be satisfied, tPA = ∞. The convergence rate CR% is
defined as in the rendezvous task.

2) Centralized Policy: We design our centralized policy to
be an optimal assignment of agents to target points so that the
maximum distance travelled by any agent is minimized. This
leads to the minimization of the completion time tPA. The
optimization is done by using the Hungarian algorithm [21].

VII. SIMULATION RESULTS

In this section, we demonstrate the training details and our
simulation results for the two distributed robotic tasks.

A. Training Details

To perform this learning task, we use a DNN as the
distributed policy network to model the mapping we aim
to learn:

(oDlocal, c
D
in )→ (q, cDout). (24)

where oDlocal is the local observation after discretization (see
Eq. 13 for the rendezvous task, Eq. 23 for the particle
assignment task), q is the action probability vector after dis-
cretization (see Eq. 15), cDin and cDout are the communication
vectors after discretization (see Eq. 6 and 7).

For both tasks, the DNN is a feedforward neural network
(2 layers with 32 neurons per layer for the rendezvous task;
and 4 layers with 128 neurons per layer for the particle
assignment task). The probability distribution q is obtained
by a softmax layer. The loss function between the two
probability distributions q and q∗ is the cross entropy. To
train the DNN, we run nbatch simulations in parallel with
different initial setups. During the simulations, each agent’s
action is sampled from the action distribution predicted by
the distributed policy network. After every ` time steps,
we construct the MSMANN model (using the DNN as the
identical components) based on the dynamic connectivity of
the agents in the past ` time steps. Using the action probabil-
ity distribution from the centralized policy, we perform the
Adam algorithm through backpropagation on this MSMANN
to minimize the average of loss functions over nbatch parallel
simulations [22]. Each cost function is an approximation of
the overall learning objective:

Jtruncated(θ) =
1

K`

∑
vi∈V

t∈{tc−`+1,··· ,tc}

L(Qi(t), Q
∗
i (t)), (25)

Fig. 6. Performance comparison of centralized policy, state-of-the-art
distributed policy, learned policy with communication enabled and learned
policy without communication on the rendezvous task with different number
of agents. Each data point is the average of 25 trials with random initial
conditions. We explicitly exclude the examples that fail to converge (tRV =
∞) since including these examples would blow up the average performance,
which is not desired for our comparison purposes. Instead, we show the
convergence rate. A video of the simulations is available online at: http:
//tiny.cc/DNNswarm.

where tc is the current time step and ` is the number of time
steps we back-propagate. In this work, we choose nbatch = 10
for both tasks and ` = 6 for the rendezvous task, and
` = 3 for the particle assignment task. For the rendezvous
task, we further simplify the communication inflow as the
sum of the P communication vectors after discretization
({ci,Din,1, · · · , c

i,D
in,P }) instead of the concatenation of these P

communication vectors as in Eq. 7. This allows us to better
analyze the communication content learned.

B. Rendezvous with Limited Visibility

For the rendezvous task, we train our distributed policy
network on 10 agents with random initial positions and limit
the size of the communication vector cij to be n = 25.
We evaluate the performance of the DNN on scenarios with
different number of agents where the agent density is similar
to the training cases. Agent density is defined as the ratio
of number of agents to the area of the smallest circle that
encloses all the agents.

We compare the performance of our learning approach
against the state-of-the-art circumcenter distributed control
law and the centralized policy described in Section VI-A.
We also show the performance of our learning approach
without communication (i.e., n = 0). In Fig. 6, we demon-
strate that our learning approach consistently outperforms
the state-of-the-art distributed policy for different numbers
of agents. However, the learning approach without com-
munication performs poorly under almost all circumstances,
which demonstrates the necessity of inter-agent communica-
tions in resembling the behaviours of the centralized policy
(see Fig. 7). Note that the circumcenter control law does
not require communication because it behaves qualitatively
different than the centralized strategy.

However, the convergence rate can drop significantly for
scenarios with large number of agents, not included in the
training data. This is a generalization issue of the DNN learn-
ing as it might over-fit to the simple situations that the model
is trained on. Provided this limitation, our learning approach

http://tiny.cc/DNNswarm
http://tiny.cc/DNNswarm


Fig. 7. Comparison of the centralized policy, the state-of-the-art distributed
policy, and the learned distributed policy with communication enabled and
disabled on a 100-agent rendezvous task. The dots are the agents; the circles
are the visible regions of the agents; the red line represents the distance of
the two farthest agents. We show that the learned distributed policy can
resemble the behaviour of the centralized policy significantly better when
communication is available.

Fig. 8. The performance of the learned policy for different communication
vector sizes on the rendezvous task. Each data point is the average of 10
trials with different random initial conditions. A sudden drop in performance
from n = 2 to n = 1 can be observed.

still demonstrates the ability to learn an effective distributed
policy with reasonable scalability on this rendezvous task:
we train with 10 agents and test on up to 100.

C. Analysis of Communication Learned

We demonstrate that reducing the size of the communica-
tion vectors leads to a decrease in task performance with
a significant drop from n = 2 to n = 1 (see Fig. 8).
To provide more insights into this result, we choose to
analyze the learned distributed policy with communication
size n = 2 because it is relatively easy to visualize while
achieving comparable performance. We keep the observation
input of the model cDin constant and observe the change in
the model output q with the changing communication input.
For the constant observation input, we assume a hypothetical

Fig. 9. The probability of choosing each discretized action (q1, q2, · · · , q9)
given the communication inflow values. We show five of them in this figure.
“Channel 1” represents c1 and “Channel 2” represents c2. It can be observed
that in each discretized area, the direction of the increasing action probability
is always opposite to the desired relative position of the corresponding action
in the discretized area.

situation where an agent has two neighbours that are located
in exactly the opposite direction. For convenience, we define
cDin (t) =

[
c1 c2

]T
and q(t) =

[
q1 q2 . . . qP

]T
. In

Fig. 9, we hypothesize that the two communication inflow
values can be transformed into a 2-dimensional vector that
is correlated to the tendency of choosing the action that
is closest to the vector’s direction. We can interpret the
communication vector as an “intent vector”, which influences
the tendency of the moving direction of the agent that
receives this “intent vector”. This explains the sudden drop
observed in performance from n = 2 to n = 1 since a one-
dimensional communication vector cannot fully represent a
2-dimensional direction vector.

D. Particle Assignment

For the particle assignment task, we also train our DNN
on 10-agent scenarios and test our approach on various
numbers of agents up to 20. Fig. 10 demonstrates some
examples of the performance achieved with 2 and 15 agents
and the emergence of distributed behaviours. In Fig. 11,
we also show that the average performance of our learned
distributed policy is comparable with the centralized policy
when there are fewer agents. This approach suffers from
convergence issues for larger swarms. We hypothesize that
this could be attributed to the inherent complexity of the
particle assignment task. There are multiple aspects of the
task that must be achieved: exploring, resolving assignment
conflict, and staying connected with other agents. Achieving
all aspects at once can be much more challenging as the
number of agents increases.

VIII. CONCLUSIONS AND FUTURE WORK

We present a DNN-based approach that learns distributed
action and communication policies from well-designed cen-
tralized policies for homogeneous, distributed robotic sys-
tem. The main advantages of our proposed approach are
summarized: (i) this approach can be applied to various dis-
tributed robotic tasks given pre-designed centralized policies



Fig. 10. A behaviour comparison of the centralized policy and the learned
distributed policy for 2-agent (top) and 15-agent (bottom) scenarios. Dots
represent the agents; lines represent the trajectories of the agents; small
circles represent the cover range ε of the agents; large dashed circles
represent the visibility of the agents; and diamonds represent the target
points. We demonstrate that agents controlled by our learned distributed
policy are able to (1) follow other agents who see the targets when there is no
target in its sight, (2) explore neighbouring targets rather than stopping at the
nearest target, and (3) resolve target assignment conflicts. These distributed
behaviours emerge from the learning of a centralized policy.

are available; (ii) it requires little human expertise for task-
specific control law and communication protocol designs;
and (iii) this approach is computationally efficient compared
to other reward-based learning approaches. Moreover, the
learned communication protocols reveal that meaningful
messages are conveyed, which could potentially inspire the
coordination and communication designs for real-world dis-
tributed robotic systems. Future work will address some
of the observed convergence issues in the more complex
scenarios, which may be due to over-fitting.
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