
Deep Neural Networks for Improved, Impromptu Trajectory Tracking
of Quadrotors

Qiyang Li, Jingxing Qian, Zining Zhu, Xuchan Bao, Mohamed K. Helwa, and Angela P. Schoellig

Abstract— Trajectory tracking control for quadrotors is im-
portant for applications ranging from surveying and inspec-
tion, to film making. However, designing and tuning classi-
cal controllers, such as proportional-integral-derivative (PID)
controllers, to achieve high tracking precision can be time-
consuming and difficult, due to hidden dynamics and other
non-idealities. The Deep Neural Network (DNN), with its supe-
rior capability of approximating abstract, nonlinear functions,
proposes a novel approach for enhancing trajectory tracking
control. This paper presents a DNN-based algorithm as an add-
on module that improves the tracking performance of a classical
feedback controller. Given a desired trajectory, the DNNs
provide a tailored reference input to the controller based on
their gained experience. The input aims to achieve a unity map
between the desired and the output trajectory. The motivation
for this work is an interactive “fly-as-you-draw” application,
in which a user draws a trajectory on a mobile device, and
a quadrotor instantly flies that trajectory with the DNN-
enhanced control system. Experimental results demonstrate
that the proposed approach improves the tracking precision for
user-drawn trajectories after the DNNs are trained on selected
periodic trajectories, suggesting the method’s potential in real-
world applications. Tracking errors are reduced by around
40-50% for both training and testing trajectories from users,
highlighting the DNNs’ capability of generalizing knowledge.

I. INTRODUCTION

In recent years, quadrotors have been widely used for
civilian and law-enforcement purposes, such as providing
aerial surveillance, carrying out rescue missions, transporting
goods over distance, and performing surveying and inspec-
tion tasks [1]–[4]. In all these applications, the quadrotor is
required to precisely track a desired trajectory in order to
perform the task safely and effectively.

Trajectory tracking for quadrotors poses a challenge on
controller design. First, quadrotors are underactuated sys-
tems with nonlinear dynamics, making it a difficult control
problem. Second, trajectory tracking precision of quadrotors
can be affected by many factors, including uncertainty in
the turn-rate-to-thrust map, time delays that are difficult to
quantify, aerodynamic effects and other unpredictable factors
such as friction in the actuators. Third, even in a perfect
world, where the system dynamics are known exactly, a given
classical controller cannot achieve perfect tracking for any
arbitrary, feasible, desired trajectory.

Our goal is to achieve improved trajectory tracking control
for quadrotors while taking into account three features that

The authors are with the Dynamic Systems Lab
(www.dynsyslab.org) at the University of Toronto Institute
for Aerospace Studies (UTIAS), Canada. Email: {qiyang.li,
jingxing.qian, zining.zhu, xuchan.bao}@mail.utoronto.ca, mo-
hamed.helwa@robotics.utias.utoronto.ca, schoellig@utias.utoronto.ca.

Fig. 1. Block diagram of our interactive “fly-as-you-draw” demo. The
user draws an arbitrary trajectory on a mobile device. Upon receiving
the new trajectory, the quadrotor immediately takes off and follows the
signal, processed by the pre-trained Deep Neural Network (DNN) in the
(x-z)-plane. The overhead camera system provides state feedback and also
performance feedback to the user. A demo video can be found at
http://tiny.cc/DNN-ImpromptuTracking.

are crucial for most real-world trajectory tracking applica-
tions (Figure 1 shows our specific application):

1) Stability of the control system and robustness to rea-
sonable disturbances must be guaranteed to ensure
safety of the operation.

2) The system should be able to precisely track a new
trajectory without adaptation.

3) The computational resources needed for the control
system should be manageable such that the algorithm
can be applied to small vehicles with limited compu-
tational power.

Simple controllers such as typical proportional-integral-
derivative (PID) controllers can achieve adequate perfor-
mance under certain conditions, for example low speeds and
accelerations, while having all the crucial features mentioned
above [5], [6]. However, PID controllers are difficult to tune
and they tend to behave poorly on more aggressive trajec-
tories. There exist previous works on improving control for
quadrotors or other robots, such as learning the dynamics or
the inverse dynamics, iterative learning control and Gaussian
Process learning. However, we show in Section II that these
approaches have drawbacks with respect to the three crucial
features we identified above, which are relevant for real-time
trajectory tracking.

In this paper, we propose a DNN-based control system
which improves the trajectory tracking performance by uti-
lizing past flight experiences. After offline training from
relevant flight examples, a generalized model is obtained
with the DNN. This model can be evaluated in real-time



to modify the reference signal given to the controller. With
no prior knowledge of the system other than the training
data, the proposed method demonstrates its ability to reduce
trajectory tracking error by compensating for controller im-
perfections and unknown dynamics. Also, the DNN model
is computationally efficient for real-time evaluation and
effective even on arbitrary trajectories, not trained on before,
making it applicable to impromptu tracking tasks.

To validate the effectiveness of the proposed method and
motivate this work, we implement an interactive fly-as-you-
draw application, where the quadrotor takes off to follow an
arbitrary, hand-drawn trajectory immediately after the user
finishes drawing the trajectory. The application uses neural
networks, pre-trained with quadrotor flight data collected
from periodic training trajectories, to obtain reference signals
in real-time for an off-board feedback controller. This process
is described in Figure 1. With this interactive application, we
evaluate different DNN features, and compare the DNN per-
formance with the baseline nonlinear controller performance.
Nine of the 30 user-drawn testing trajectories used in our
experiments are shown in Figure 2. Through the experiments,
we demonstrate that the proposed approach, with proper
feature selection for the DNN learning, is able to consistently
enhance trajectory tracking precision for complex, arbitrary
hand-drawn trajectories. Moreover, because the DNN serves
as a pre-block outside the feedback control loop, the pro-
posed method can be generalized as an add-on to any black-
box, stable feedback control system. These characteristics of
the proposed approach demonstrate its potential in real-world
applications that require highly precise maneuvering, such as
monitoring and inspection tasks, aerobatics, skywriting and
airborne filming.

The paper is organized as follows. Section II summarizes
related previous work on advanced trajectory tracking con-
trol. In Section III, we state the problem, followed by the
general methodology in Section IV. The experimental setup
is presented in Section V, and the corresponding results are
presented in Section VI. A brief summary and discussion of
the results are presented in Section VII.

II. RELATED WORK

Neural networks (NNs) are a generic approach for approx-
imating functions given a large amount of data. In previous
work, NNs have been adopted to introduce modifications to
feedback control loops.The papers [7] and [8] use NNs to
learn the dynamics of a helicopter and a quadrotor, respec-
tively. In [9], an NN is used for direct inverse control of a
quadrotor with promising initial simulated results for hover
flight. However, by involving NNs to modify the original
feedback control loop, the stability of the control system will
likely be affected. When previously unseen inputs are given
to the NN that is part of the feedback control loop, the NN
might generate unpredictable outputs, leading to instability
of the system. Instead, we use DNNs (multi-layer NNs) to
learn a model that directly determines the reference inputs
to the feedback control loop. The proposed DNNs act as a
pre-block outside the original feedback control loop, and run

Fig. 2. Nine of the 30 user-drawn trajectories used in testing the
performance of the DNN control system. For testing on the quadrotors,
the drawn trajectories were modified to ensure the trajectory is bounded by
maximum velocity (0.6 m/s) and acceleration (2.0 m/s2).

at a lower update rate, which makes the system much less
susceptible to instability.

Iterative learning control (ILC) is an approach of im-
proving the control precision by repeating the same task
and learning from previous executions [10]. Through the
repetition of one specific task, ILC learns an updated ref-
erence input and achieves high-precision tracking for this
particular task. Unlike simple controllers that can fail to
achieve aggressive maneuvers, previous work has demon-
strated ILC’s ability of achieving high control precision on
these tasks [11]. One significant drawback of this approach
is that the experience of learning one specific task is not
transferable to other tasks. Although [12] has shown that
linear maps can optimize ILC initialization from previous ex-
perience, ILC still has to re-learn through multiple iterations
before achieving high precision for a new trajectory. Our
approach allows training ahead of time, and the trained model
generalizes to arbitrary trajectories without any adaption
process. This feature makes it suitable for applications that
require the vehicle to complete the desired task with high
precision in a timely manner.

Gaussian Process (GP) learning is receiving growing at-
tention in the control community and has been used in
various control problems. For instance, an accurate kinematic
control of a cable-driven surgical robot is implemented in
[13]. Similar to the idea of learning the reference input in
our proposed method, the GP learns the reference input to
the controller of the surgical robot, improving the tracking
precision of the end-effector. Our approach is different from
this GP learning approach in two ways: 1) we apply the
method on the quadrotor system which has different dynam-
ics compared to surgical robots; 2) we employ DNNs as our
learning technique instead of GPs. One advantage of using
DNNs is that DNNs can summarize data using a fixed-size
model. A GP model gets bigger as more data is collected,
making the model large in terms of required storage and



DNN Controller System

Disturbances

uTd sr error sc

sc

−
sc

ORIGINAL FEEDBACK CONTROL LOOP

Fig. 3. The modified control system with the DNN block in front of
the original baseline controller; the controller takes in the reference state
(produced by the DNN) and the current state to control the system.

computationally expensive to evaluate. In contrast, when the
size of the data set increases, DNNs adjust their parameters
to better fit the training data without increasing the model
size. Since modeling complex relations usually requires a
large set of training data, the invariant model size makes
the DNNs more promising on control systems with complex
dynamics, especially when computation is limited.

III. PROBLEM STATEMENT

For a given dynamic system with a baseline feedback
controller (see Figure 3), the problem is to learn a mapping
from the desired trajectory Td and the current state sc to
the reference input sr of the baseline controller, in order
to enhance the tracking performance of the overall system
for arbitrary desired trajectories. We define the desired tra-
jectory Td = {sd,1, sd,2, . . . , sd,N} as a sampled trajectory
containing N consecutive time steps, where sd,t represents
the desired state at the tth time step. Learning is done off-line,
and the learned mapping is applied in real-time.

IV. METHODOLOGY

A. Supervised Learning with Deep Neural Network Model

Our approach builds upon supervised learning with DNN.
This learning process requires the preparation of a large
number of labeled training examples and the training of DNN
on these examples. Each labeled training example consists
of an input and expected output pair to describe what the
function should output according to a specific input. The
training of DNN involves back-propagation to minimize the
loss over all training examples [14], defined as the Euclidean
distance between the network’s output and expected output.
After learning from the labeled training examples, the DNN
can summarize a mapping from the training inputs to the
training outputs.

A feed-forward DNN with rectified linear units (ReLU)
is used to learn the mapping formulated in Section III. To
prepare the training examples for learning the target mapping
from the flying data, we use the actual trajectory as training
inputs and the reference signal as the labeled output. The idea
behind this selection is that if the actual trajectory was the
desired trajectory, then the DNN should provide this saved
reference signal to achieve perfect tracking. The specification
of input and outputs for the DNN will be discussed in detail
in Section V-D.

B. DNN as Reference Generator

The proposed method modifies the control system design
by adding a DNN block in front of the controller. At each
time step t, the trained DNN modifies the control signal in
real time by giving the reference input sr,t to the controller
based on the desired trajectory Td as well as the current state
of the quadrotor sc,t.

Figure 3 highlights the difference between the original
control system and the proposed one. The reference states
generated by the DNN over N consecutive time steps form
the reference trajectory Tr = {sr,1, sr,2, . . . , sr,N}, where
sr,t is the reference state generated by the DNN at the tth time
step. Also, the actual trajectory Tc = {sc,1, sc,2, . . . , sc,N}
completed by the vehicle over the N consecutive time steps
is observed. The actual trajectory Tc is expected to closely
match the desired trajectory Td.

In control systems, current state feedback enables the
control system to reject external disturbances if the controller
is designed properly. Similarly, the extra loop introduced in
our proposed system enables the DNN to adjust its output
reference according to the current state to compensate the
disturbances. We choose the feedback rate for this extra loop
to be much lower than the original control loop to ensure that
the stability of the original control system is not disrupted
by the DNN signals. For example, in our experiments on
the quadrotor control system, we design our DNN to send
reference states at 7 Hz, which is 10 times slower than the
control loop operating at 70 Hz. Therefore, DNN control
signals can be non-intrusive to the original control system.

C. Feature Selection for the DNN

Ideally, at each time step t, the DNN would receive all the
given information (both the entire desired trajectory Td and
the current state sc,t), and produce an optimal reference state
sr,t as the input to the controller to minimize the quadrotor’s
tracking error. However, this makes input dimension huge,
and requires exponentially increasing amount of training
data. Therefore, selecting proper state information for DNN
is crucial for making the DNN learning effective.

A minimum feature selection is to only use the current
desired state sd,t and the current state sc,t as the input, but
this configuration may not be able to provide information for
the DNN to model the hidden dynamics including time delay
which may deteriorate the tracking performance. Hence,
we consider including future desired states into the DNN
input. With the additional future information, the properly-
trained DNN is expected to plan the control ahead of time
by considering future desired states and improve control
performance. In this paper, we investigate the influence of
future states on DNN learning. It is hypothesized that the
DNN can give a better performance when the desired states
in the near future are introduced into the DNN input.

To validate this hypothesis, we conducted experiments
on a quadrotor in real-world environment to investigate 1)
the effect of selecting different state information, including
future desired states and current state feedback, as the
input of the DNN on the DNN performance, and 2) the



generalizability of this method for improving the tracking
performance for different trajectories overall.

V. EXPERIMENT SETUP

A. The Quadrotor Model and Experiment Platform

This subsection provides a glimpse of quadrotor dynamics
as well as the experiment platform. For more details about the
quadrotor dynamics and control, readers are referred to [5].

A typical quadrotor consists of a symmetrical cross-shaped
frame with four propellers mounted at the end of four arms.
The full state of the quadrotor consists of 12 components.
The translational position of the quadrotor’s center of mass is
defined as p = (x, y, z) and the attitude, represented by Euler
angles roll, pitch and yaw, is defined as (φ, θ, ψ). In addition
to translational position and attitude, the full state of the
quadrotor includes the translational velocity, v = (ẋ, ẏ, ż),
and the rotational velocity, ω = (p, q, r).

The experiments are conducted on a Parrot AR.Drone
2.0 quadrotor. This commercial quadrotor suits the needs of
this study as it features highly nonlinear dynamics, complex
aerodynamics that are hard to model, and most importantly,
an unmodified black-box, which is an on-board controller
that controls the vehicle’s roll, pitch and yaw by adjusting
motor forces. The quadrotor’s states are all measured by the
overhead Vicon motion capture system. The system features
eight 4-mega pixel Vicon cameras running at 200 Hz. A
similar experimental setup is described in detail in [6].
The baseline control system used in this paper consists of
two controllers: the on-board controller and the off-board
controller. The off-board controller is a nonlinear controller,
composed of a nonlinear transformation and standard PD
controller. It is implemented using the open-source Robot
Operating System (ROS). The controller runs at 70 Hz,
receives the quadrotor’s current state and the reference, and
outputs to the on-board controller the desired roll, pitch, yaw
velocity and z velocity (φcmd, θcmd, rcmd, żcmd). The on-
board controller runs at 200 Hz, receives the four commands
from the off-board controller, and adjusts the four motor
thrusts F1, . . . , F4 accordingly. The DNN feedback loop
runs at 7 Hz, which is 10 times slower than the off-board
controller.

B. Task Performance

Each task performed by the quadrotor involves following
one of the pre-defined, desired trajectories Td in the (x-
z)-plane, where these trajectories are hand drawn through
our interactive application (Figure 1). The error function for
each task is defined as the root-mean-square (RMS) error of
N pairs of (x, y, z)-coordinates sampled at 7 Hz, the DNN
feedback loop sampling rate, between the desired trajectory,
Td, and the observed trajectory, Tc:

E(Tc, Td) =

√√√√ 1

N

N∑
t=1

‖pc,t − pd,t‖2, (1)

where ‖pc,t − pd,t‖ is the Euclidean norm, while pd,t and
pc,t are the position coordinates sampled at the tth time step

from the desired trajectory Td and the observed trajectory
Tc, respectively. The quadrotor in the experiment repeats
each task with and without the aid of the trained DNN.
The percentage reduction in errors between corresponding
flights is identified as the improvement of our method on
this specific task:

I(Tw/ DNN, Tw/o DNN) =
(

1− Ew/ DNN

Ew/o DNN

)
× 100%, (2)

where Ew/ DNN and Ew/o DNN are the RMS errors in (1) with
and without the DNN, respectively.

C. DNN Input-Output Specification

In general, the trained DNN provide a mapping from the
current and selected desired states to the reference state:

{sc,t, sd,t1 , . . . , sd,tL} → sr,t, (3)

where sc,t is the vehicle’s current state at the tth time step,
and {sd,t1 , . . . , sd,tL} are L selected desired states from the
desired trajectory Td. Each of the states (sc, sd and sr)
mentioned above contains the full state of the quadrotor
along with the translational acceleration on z-direction, z̈.
Among all translational accelerations, ẍ, ÿ and z̈, only z̈ is
included in these states because the controller we used in
the experiment only requires z̈ along with the full state of
the quadrotor, {x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r}, as its inputs.
In summary, the state of the vehicle is defined as s =
{x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r, z̈}.

Based on this general input-output mapping provided by
the DNN, we explore three different configurations of the
DNN to investigate the influence of including the future
desired states and/or the current state feedback as inputs to
the DNN (as discussed in Section IV-C):

• DNN with future desired states and the current state
feedback;

• DNN with future desired states and without the current
state feedback;

• DNN without future desired states and with the current
state feedback.

All configurations consider one or more desired states at
different time steps over the entire flight path as part of the
input. Since we hypothesize that using future desired states
can enhance tracking performance, we focus on the scenario
where we only select the desired states {sd,t1 , . . . , sd,tL}
from the current desired state and the future desired states,
i.e., we select ti = t+ ∆i, where ∆i ≥ 0, for i = 1, . . . , L.

For the first configuration with the current state feedback,
the current observed state sc,t and the L selected desired
states, {sd,t+∆1

, . . . , sd,t+∆L
}, are given to the DNN at

each time step. The actual input to the DNN consists of
two major parts. The first part includes L + 1 sets of
{ẋ, ẏ, ż, φ, θ, ψ, p, q, r, z̈} from the current observed and the
selected desired states. The second part includes L sets of
desired positions relative to the current observed position
{pd,t+∆1

−pc,t, . . . ,pd,t+∆L
−pc,t}, where {pd,t+∆i

} and
pc,t are the position components from the selected desired



states and the current observed state, respectively1. The input
to the DNN for the second configuration is similar to the first
configuration with only sc,t being replaced by sd,t−1, and
consequently pc,t being replaced by pd,t−1, where pd,t−1 is
the position components from sd,t−1. The last configuration
is a special case of the first configuration, in which the
current desired state sd,t is the only selected desired state in
the DNN input (L = 1 and ∆1 = 0). For this configuration,
the DNN does not consider the future states, and generates
the reference state only based on the current observed state
and the current desired state.

The output of the DNN in the three configurations is
the reference state sr,t. In our experiment, we reduce data
complexity by only learning the difference between the
reference state sr,t and the current desired state sd,t in
translational position and velocity components.

D. Data Collection for DNN Training

To train the DNN, we need to collect the state data from
real-world flights and select the training data. To that end,
we design a 400-second trajectory that oscillates sinusoidally
in all the x, y and z-directions with different combinations
of amplitudes to cover the feasible state space as much as
possible. In particular, each of the three directions has its
own oscillating frequency (0.27 Hz, 0.20 Hz and 0.13 Hz
for the x, y and z-directions respectively). We also gradually
increase the amplitudes from 0 to 2 m in all directions. On
this trajectory, the quadrotor can reach a maximum velocity
of 1.5 m/s and a maximum acceleration of 4 m/s2. The
maxima for rotational velocity ω and rotational acceleration
ω̇ are 0.4 rad/s and 1 rad/s2 respectively.

Using the baseline control system to follow the designed
training trajectory, we collect a {s∗c,t, s∗d,t} pair at each time
step, where s∗c,t is the current observed state and s∗d,t is the
current desired state2. Approximately 10,000 raw data pairs
are collected at a 7 Hz rate from four flights on the training
trajectory, and then organized in the consecutive time order.

We select and re-organize these raw data pairs to es-
tablish the labeled training set. Recall that the DNNs
aim to learn a mapping from the current state sc,t and
L selected desired states {sd,t+∆1 , . . . , sd,t+∆L

} to the
reference state sr,t that should be given to the con-
troller at the current time step. For any pair {s∗c,t, s∗d,t}
in the data set, we consider {s∗c,t+∆1+1, . . . , s

∗
c,t+∆L+1}.

If we treat s∗c,t as the current observed state sc,t of
the quadrotor and {s∗c,t+∆1+1, . . . , s

∗
c,t+∆L+1} as the se-

lected desired states {sd,t+∆1
, . . . , sd,t+∆L

}, then s∗d,t may
be selected as the reference state sr,t, given that s∗d,t
is a point in a feasible reference sequence achieving
perfect tracking with one sample delay. The mapping
{s∗c,t, s∗c,t+∆1+1, . . . , s

∗
c,t+∆L+1} → s∗d,t, therefore, is an ap-

proximate mapping of {sc,t, sd,t+∆1 , . . . , sd,t+∆L
} → sr,t.

Thus, for each pair {s∗c,t, s∗d,t} in the data set, we can form
a training pair (a, b) for learning the approximate mapping,

1Relative position information, instead of absolute position information,
is used in order to reduce input data dimension.

2The superscript * indicates a state from the training data.

where a = {s∗c,t, s∗c,t+∆1+1, . . . , s
∗
c,t+∆L+1} is the input and

b = s∗d,t is the labeled output. A labeled data set can then be
obtained by collecting the training pairs (a, b). As a result
of training, using the supervised learning technique for our
DNNs with the labeled data (as discussed in Section IV-A),
the DNNs are expected to learn an approximate mapping
from the inputs to the output.

E. DNN Training

We train six different DNNs that share the same input
states to find the mapping in (3), one for each of the
position and velocity elements of the reference state sr,
{x, y, z, ẋ, ẏ, ż}. Other elements in sr, {φ, θ, ψ, p, q, r, z̈},
maintain intact. We construct the DNNs in such a way
because in preliminary experiments we observed that training
of the six outputs might require different number of iterations
to converge. For example, velocity and position in the z-axis
are easier to train whereas positions in x-y plane are much
harder to train. We also observe that the six DNNs demon-
strate comparable performance after 2,000 training iterations.
However, it is possible to merge them to jointly learn the
six outputs. We construct the DNNs using TensorFlow, an
open-source library originally developed by Google. Each
DNN consists of four fully connected hidden layers, and
each layer contains 128 neurons. 90% of the collected raw
data pairs are used for training, while the rest are used for
validation. Adam optimizer is used to tune the weight and
bias parameters in the DNNs, and the learning rate is set at
0.0003 [15]. To prevent over-fitting, a dropout rate of 0.5 is
used [16]. For each training iteration, 30 training pairs are
used. 2,000 iterations are done for training each output3.

VI. EXPERIMENTAL RESULTS

A. Impact of Future States on DNN Tracking Performance

The influence of introducing future desired states as part of
the input to the DNNs is investigated. It is expected that the
DNNs can use the future desired states information to better
“plan” the flying path for the future desired states while
compensating for the effect of hidden dynamics, including
time-delay and other factors. In Figure 4, we show that the
DNNs with future desired states and current state feedback
performs significantly better than the baseline control and the
DNNs with current state feedback but without future desired
states. Also, Figure 5 highlights that the reference trajectories
produced by the DNNs trained with future desired states
and the current state feedback effectively correct the tracking
error in both the x- and z-directions.

B. Impact of Feedback on DNN Tracking Performance

We also investigate the influence of removing the current
state feedback from the DNN inputs. Our experiments are
conducted on the DNNs trained with future desired states.
To remove the feedback loop, we keep the DNNs while
replacing the current state feedback with the desired state
from the previous time step during actual flight, as discussed

3The 30 training pairs are randomly selected from the 90% of the raw
data pairs used for training.



Fig. 4. Observed trajectories resulting from DNNs with two future desired
states (∆1 = 4, +0.6 s, and ∆2 = 6, +0.9 s, blue), DNNs without future
desired states (cyan), and the baseline control system (yellow). The desired
trajectory is Trajectory 5 in Figure 2. It consists of three hand-written letters
“DSL” (red dashed). The RMS tracking errors, E, are 0.1926 m, 0.758 m
and 0.434 m respectively. Overall, the proposed method with given future
states achieved 56% improvement over the baseline controller.

TABLE I
TRACKING ERRORS ON ONE TRAJECTORY FOR THREE DIFFERENT

CONTROL SYSTEMS

Baseline
Controller

DNN without
Feedback

DNN with
Feedback

RMS Error, E (m) 0.360 0.232 0.144
Peak Error (m) 0.605 0.497 0.356
Improvement, I (%) - 35.6 59.9

in Section V-C. Table I highlights that the DNN with current
state feedback performs better than the DNN without current
state feedback, while both obtain considerable improvements
over the baseline control system. The fact that the DNN
without the current state feedback can still have a compa-
rable improvement offers us an alternative offline method
of improving tracking performance. It makes our approach
more versatile, especially when computational resources are
not sufficient to support real-time calculations during flights.

C. DNN Tracking Performance on Arbitrary Trajectories

To investigate generalizability of the trained DNNs on dif-
ferent trajectories, we evaluate the performance of the trained
DNNs with future desired states and current state feedback
on various trajectories. On a 50s segment from the 3-D
training trajectory (as discussed in Section V-D), the DNNs
outperform the baseline controller by 36%. The performance
of the trained DNNs is also evaluated on unseen trajecto-
ries, including 30 different hand-drawn trajectories and one
specific trajectory (Trajectory 4 on Figure 2) with different
velocity profiles4. In Figure 7, we show that the DNNs with
future desired states and the current state feedback reduce
the RMS tracking errors by 43% on average over the 30
testing trajectories and training trajectory segment. Similar
improvement is also obtained on one specific trajectory with
different speeds as shown in Figure 6. Therefore, the DNNs

4The 30 drawn trajectories all have a maximum velocity of 0.6 m/s and
a maximum acceleration of 2 m/s2. For Trajectory 4, the speed is changed
by scaling the time domain along the desired trajectory.

Fig. 5. The x and z performances of Figure 4. With the aid of the DNNs
trained with future desired states, tracking error is significantly reduced in
both axes. Note that the green dashed line shows the reference trajectory
calculated by the DNNs. The graph of y performance is not shown since the
y-components of velocity and position in the desired trajectory are zero. The
RMS error for the proposed control system is 0.1481 m (x-axis), 0.0905 m
(y-axis) and 0.0833 m (z-axis). The RMS error for the baseline control
system is 0.401 m (x-axis), 0.1163 m (y-axis) and 0.1189 m (z-axis). The
percentage improvement on each axis is 63% (x-axis), 22% (y-axis), 30%
(z-axis).

trained with future desired states are capable of reducing
the tracking error for trajectories with various shapes and
speeds by a large margin, demonstrating its generalizability
on different unseen trajectories. Figure 8 presents a long-
exposure image of a quadrotor following the letters “DSL”
written by a visitor. Note that this is different from Trajectory
5 shown in Figure 2 since this is the write-up of another
visitor.

VII. CONCLUSIONS

In this paper, we have presented a DNN-based reference
learning method, able to learn from flight data and improve
trajectory tracking control in quadrotor systems. By introduc-
ing information about future desired states in training data,
the DNNs were able to account for system delay and hidden
dynamics as shown from the significant reduction in tracking
error overall. The main advantages of this proposed approach
shown from our experiments are that 1) this approach can be
applied to various control systems with complex dynamics
while ensuring stability of the systems; 2) it requires no
prior knowledge of the system to train the DNNs, and the
trained DNNs can be applied to any unseen trajectories
without any adaptation process; and 3) with wise feature
selection and sufficient DNN training, this approach can be
computationally efficient with a very small model, while
demonstrating good performance on general trajectories. We
have shown these advantages through the implementation
of an interactive “fly-as-you-draw” application, illustrating



Fig. 6. The average performance of the DNNs trained with two future
desired states (∆1 = 4, +0.6 s, and ∆2 = 6, +0.9 s ahead of the current
time) and the baseline control on Trajectory 4 in Figure 2 with different
speeds. The trajectories with different speeds were obtained from the drawn
trajectory by changing the velocity bound. For the same trajectory, DNNs
are able to obtain consistent improvement in tracking performance over
different speeds.

Fig. 7. The improvements, I, made by the proposed control system trained
with two future desired states (∆1 = 4, +0.6 s, and ∆2 = 6, +0.9 s
ahead of the current time) compared to the baseline control on 30 testing
trajectories and a 50 s segment from the training trajectory. DNNs achieved
36% improvement on the training trajectory segment and it is represented
by light-blue block on the graph. On average, 43% improvement is obtained
by the control system with DNNs.

that the proposed method was readily applicable to various
real-world trajectory tracking tasks. However, the overall
improvements of this method are still limited by training
data for the DNNs. Intelligent choices of learning targets and
effective neural network designs are potential extensions to
enhance the trajectory tracking performance.

REFERENCES

[1] “Central American Drug Compound Recon,” October 2010. [Online].
Available: https://www.aeryon.com/casestudies/centralamericadrug

[2] C. Gothner, “Deputies using drones as search-and-rescue tools,”
August 2016. [Online]. Available: http://www.channel3000.com/news/
deputies-using-drones-as-searchandrescue-tools/41297542

[3] S. Shaw, “7-Eleven Teams with Flirtey for First Ever FAA-
Approved Drone Delivery to Customer’s Home,” July 2016.
[Online]. Available: http://corp.7-eleven.com/news/07-22-2016-7-

Fig. 8. A long exposure image of a quadrotor following the letters “DSL”
with the aid of DNNs. The trajectory is drawn by a visitor. The DNNs take
in 2 future desired states (∆1 = 4, +0.6 s, and ∆2 = 6, +0.9 s) and the
current state feedback.

eleven-teams-with-flirtey-for-first-ever-faa-approved-drone-delivery-
to-customer-s-home

[4] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and
transportation with aerial robots,” Autonomous Robots, vol. 30, no. 1,
pp. 73–86, 2011.

[5] Q. Lindsey, N. Michael, D. Mellinger, and V. Kumar, “The grasp
multiple micro-uav testbed,” IEEE Robotics & Automation Magazine,
vol. 17, no. 3, pp. 56–65, 2010.

[6] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback,
and R. D’Andrea, “A platform for aerial robotics research and demon-
stration: The Flying Machine Arena,” Mechatronics, vol. 24, no. 1, pp.
41–54, 2014.

[7] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics mod-
els,” in IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 3223–3230.

[8] N. Mohajerin and S. L. Waslander, “Modular deep Recurrent Neural
Network: Application to quadrotors,” in IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), 2014, pp. 1374–1379.

[9] M. T. Frye and R. S. Provence, “Direct Inverse Control using an
Artificial Neural Network for the Autonomous Hover of a Helicopter,”
in IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2014, pp. 4121–4122.

[10] A. P. Schoellig, F. L. Mueller, and R. D’Andrea, “Optimization-
based iterative learning for precise quadrocopter trajectory tracking,”
Autonomous Robots, vol. 33, pp. 103–127, 2012.

[11] F. L. Mueller, A. P. Schoellig, and R. D’Andrea, “Iterative learning of
feed-forward corrections for high-performance tracking,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012, pp.
3276–3281.

[12] M. W. Michael Hamer and R. D’Andrea, “Knowledge Transfer for
High-Performance Quadrocopter Maneuvers,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2013,
pp. 1714–1719.

[13] J. Mahler, S. Krishnan, M. Laskey, S. Sen, A. Murali, B. Kehoe,
S. Patil, J. Wang, M. Franklin, P. Abbeel, et al., “Learning accurate
kinematic control of cable-driven surgical robots using data cleaning
and gaussian process regression,” in IEEE International Conference
on Automation Science and Engineering (CASE), 2014, pp. 532–539.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[15] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint, arXiv:1412.6980, 2014.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, pp.
1929–1958, 2014.


