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A B S T R A C T   

Automated visual data collection using autonomous unmanned aerial vehicles (UAVs) can improve the acces-
sibility and accuracy of the frequent data required for indoor construction inspections and tracking. However, 
robust localization, as a critical enabler for autonomy, is challenging in ever-changing, cluttered, GPS-denied 
indoor construction environments. Rapid alterations and repetitive low-texture areas on indoor construction 
sites jeopardize the reliability of typical vision-based solutions. This research proposes a tag-based visual-inertial 
localization method for off-the-shelf UAVs with only a camera and an inertial measurement unit (IMU). Given 
that tag locations are known in the BIM, the proposed method estimates the UAV’s global pose by fusing inertial 
data and tag measurements using an on-manifold extended Kalman filter (EKF). The root-mean-square error 
(RMSE) achieved in our experiments in laboratory and simulation, being as low as 2 − 5 cm, indicates the po-
tential of deploying the proposed method for autonomous navigation of low-cost UAVs in indoor construction 
environments.   

1. Introduction 

Over the past few decades, computer-vision-based solutions have 
shown promising results in automating indoor construction progress 
monitoring and inspection tasks [1,2]. Despite these advancements, the 
required visual data are still mainly captured manually [3], which is 
costly and tedious, especially in large/high-rise buildings. Although 
automated fixed cameras can be helpful for outdoor visual data collec-
tion, their effectiveness reduces on most indoor construction sites as the 
layout changes with construction progress [4]. Thus, there is a need for 
an automated mobile visual data capture solution for indoor construc-
tion environments. 

Mobile robots, as sensor-carrying platforms, have attracted 
increasing attention in the construction community [5–12]. For 
instance, rotary unmanned aerial vehicles (hereafter UAVs) equipped 
with an onboard camera have shown great potential in automated visual 
data collection applications in both indoor [11,12] and outdoor con-
struction environments [7,9]. They can provide high-resolution images 
from versatile locations and fields of view in a fast and cost-efficient 
manner [12]. However, these UAV-based solutions still rely on tele-
operation for indoor navigation and data capture [11,12]. 

Localization is a crucial enabler for the deployment of autonomous 
mobile robots. Autonomous UAVs may take advantage of the Global 
Positioning System (GPS) for localization outdoors. However, GPS sig-
nals are unreliable in indoor settings. Specifically, indoor construction 
sites are cluttered and dynamically changing environments, which 
causes many more challenges in UAVs’ localization and autonomous 
navigation. 

A common technique for enabling autonomous navigation is incre-
mentally mapping the environment and simultaneously localizing the 
platform within the map. These techniques are referred to as simulta-
neous localization and mapping (SLAM)-based approaches. Solving the 
SLAM problem requires a computational process for locally building a 
map while relatively localizing the agent and another parallel process 
for recognizing a formerly visited location for updating the map and 
correcting the errors, also known as loop closure. SLAM-based methods 
can handle unstructured and unknown environments [13]. However, 
these techniques are often considered memory and computationally 
expensive in large environments where revisiting locations for loop 
closure becomes a technical and practical challenge [14]. 

Many state-of-the-art robotic platforms relying on SLAM-based 
methods use high-fidelity environment maps generated upfront to 
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reduce the computations during autonomous missions. This approach 
requires an operator to manually navigate the mobile robot to build a 
map of the environment for later autonomous operations [6,10,15]. 
However, since construction environments alter fairly rapidly, frequent 
teleoperated mapping sessions may be required. Another challenge in 
such ever-changing environments is the potential loss of track due to 
dynamic and temporary objects. Moreover, maintaining large maps re-
quires computational and storage resources, which are highly limited on 
aerial robots. 

SLAM can be mainly divided into light-detection-and-ranging-based 
(LiDAR-based) and vision-based (V-SLAM) categories depending on the 
onboard sensors. As LiDARs are inefficient in power consumption and 
cost, they are hardly found on low-cost UAVs [16]. However, RGB 
cameras are ubiquitous. They are lightweight, inexpensive sensors with 
low power consumption that provide rich environmental information. 

Vision-based SLAM (V-SLAM) techniques have been successfully 
adapted in autonomous navigation of UAVs in GPS-denied environments 
[13,17]. Nevertheless, they face particular challenges on construction 
sites. Indoor construction environments often include many low-texture 
and repetitive areas (e.g., white walls and studs). This factor reduces the 
robustness of the estimation techniques relying on natural landmarks (e. 
g., keypoints or textures) [14], including feature-based V-SLAM. 
Perceptual aliasing and feature scarcity in indoor construction envi-
ronments also decrease the effectiveness of loop closing approaches 
[18]. Without a reliable loop closure, SLAM reduces to odometry, which 
drifts over time and is unreliable for consistent long-term localization. 

In addition to technical challenges in indoor localization and au-
tonomy, the deployment of many cutting-edge robotic solutions that 
have been proposed in academia and the industry require special 
consideration. One of the main factors is the cost of these solutions, 
limiting their scalability and applicability in practice. The majority of 
commercial solutions and proposed custom-built prototypes in the 
construction literature [5,6,19] are costly. Commercial products may 
cost hundreds of thousands of dollars per platform [20], while custom- 
built platforms require robot assembly expertise. 

Despite these challenges, some characteristics in construction envi-
ronments can be helpful in indoor localization and autonomous navi-
gation. Indoor construction sites are not fully unknown, as a 
progressively updated 4D building information model (BIM) provides 
valuable prior knowledge about the actual progress and the planned 
layout alterations. Moreover, construction processes and practices such 
as frequent indoor layout surveying can be beneficial in indoor locali-
zation [21]. 

To enable autonomous navigation of low-priced UAVs in indoor 
construction environments, this research aims to present an online 
global localization method that: (1) is inexpensive; (2) requires low 
computation and storage resources; (3) can be used by multiple plat-
forms; and (4) can handle low-texture, ever-changing construction en-
vironments. Thus, this paper proposes a low-cost, versatile, and 
lightweight localization method that provides online six-degree-of- 
freedom (6-DoF) global pose estimates for a wide range of platforms, 

including commercial compact UAVs, with just an RGB camera and an 
inertial measurement unit (IMU). 

IMUs are proprioceptive sensors measuring external accelerations 
and angular velocities. Due to their low signal-to-noise ratio, IMUs alone 
are subject to accumulative errors in motion estimates. On the other 
hand, IMUs are scene independent, have a high output rate (up to 1000 
Hz), and provide scale information [16]. Therefore, IMUs are often used 
in combination with cameras to produce robust state estimates. 
Although stereo cameras can provide depth information for nearby ob-
jects, monocular cameras are more common in aerial robots due to their 
low weight and power consumption [16]. 

As illustrated in Fig. 1, the proposed tag-based visual-inertial indoor 
localization method estimates the full 6-DoF global pose of a UAV with a 
minimum suite of onboard sensors, i.e., a monocular camera and an 
IMU, in real-time. Given that tag locations are known in the BIM coor-
dinate system, it fuses inertial odometry velocity data with tag mea-
surements using an on-manifold extended Kalman filter (EKF). The 
proposed solution can ultimately enable low-cost off-the-shelf UAVs to 
navigate autonomously in GPS-denied indoor construction 
environments. 

The theoretical contribution and novelty of our work presented 
herein is the proposed on-manifold formulation for tag-based visual- 
inertial localization. Our effort to formulate the estimation problem at 
hand properly is motivated by the necessary accuracy, consistency, and 
stability in construction applications. The proposed formulation prop-
erly considers the manifold structure of the pose and the rotation groups 
in 3D and carefully deals with the representation and propagation of 
uncertainty over time. These are crucial theoretical aspects for achieving 
these goals, especially in 3D space. We also opted to incorporate tag 
corner measurements in our tightly coupled on-manifold formulation 
instead of direct camera-to-tag transforms, which results in more sta-
bility and higher accuracy of estimates. 

Collecting ground truth data in a large construction setting is not a 
trivial task, making the validation of localization methods extremely 
challenging in these environments. Moreover, conducting experiments 
on an actual construction site raises many safety and logistics issues. The 
third contribution of this work is developing and deploying a BIM- 
enabled, photo-realistic simulation environment, which allows for safe 
and efficient experiments supported by absolute ground truth data. 

Therefore, the main contributions of this work can be summarized as: 

1. Presenting a low-cost, lightweight, versatile, tag-based visual-iner-
tial localization method for UAVs equipped with a minimum sensor 
suite of an IMU and a monocular camera using AprilTags.  

2. Proposing an on-manifold extended Kalman filter formulation for 
tag-based visual-inertial localization that properly addresses the to-
pological structure of the rotation and the pose groups and the 
associated uncertainty propagations.  

3. Developing a BIM-enabled, photo-realistic simulation environment 
for preliminary validations and experiments. 

A compact, inexpensive, commercially available UAV, Parrot Bebop2 
[58], is used for method implementation. All developments are in the 
Robotic Operation System (ROS) [22] as an open-source standard 
communication platform. Experiments are designed and conducted in a 
laboratory setting (an arena equipped with a motion capture system to 
provide ground truth data) and a developed simulation environment to 
evaluate the method’s performance. The results demonstrate the feasi-
bility of real-time and accurate localization of UAVs, with an IMU and an 
RGB camera, for autonomous navigation in indoor construction settings. 

2. Background 

2.1. Indoor localization of autonomous mobile robots 

Autonomous mobile robots may rely on robust and accurate external 
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Fig. 1. Tag-based visual-inertial indoor localization: a schematic overview.  
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localization sources, such as GPS outdoors and motion capture systems 
(e.g., Vicon) indoors. Even though motion capture systems can provide a 
millimeter level of accuracy, they cover a limited area, require repetitive 
calibrations, and are incredibly costly. Although motion capture systems 
are usually a source of ground truth in indoor laboratory settings, they 
are impractical for indoor construction applications. 

Wave-based localization techniques such as wireless local area net-
works (WLAN) [23], radio-frequency identification (RFID) [24,25], and 
ultra-wideband (UWB) [26,27] have their own drawbacks. Due to wave 
interferences with metallic materials (e.g., RFID [28] and UWB [29]), 
propagation condition variations (e.g., UWB [30]), and more impor-
tantly, their inadequate accuracy [31], they are still unsuitable for in-
door navigation of UAVs during construction. 

Autonomous robots operating in GPS-denied environments may rely 
on dead reckoning or odometry techniques for localization. Visual and 
visual-inertial odometry (VO [32] and VIO [33,34]) techniques are the 
most popular methods for local pose estimation in aerial robots [16]. 
However, without corrections, odometry estimates are subject to quick 
drifts and are only suitable for short-time relative localization. Revisit-
ing locations and loop detection in SLAM-based solutions can correct 
this drift. 

Solving the SLAM problem has been the focus of many studies in the 
last few decades [35]. Monocular visual SLAM was first solved using an 
EKF and Shi-Tomasi points by tracking key-points in subsequent images 
[36]. Due to their high computational cost, alternative approaches were 
proposed to solve the problem more efficiently and for large environ-
ments. Above all, two central notions and their variants attracted the 
scholars’ attention, namely sliding-window filters and keyframe-based 
pose-graph optimization [33,37]. Sliding-window filters iterate over a 
window of time-steps and slide the window along. By discarding the 
intermediate frames, keyframe-based approaches estimate the map 
using a few selected frames. Some analysis showed that keyframe-based 
techniques are more accurate than filtering for the same computational 
cost [38]. In contrast, others believe that filter-based methods such as 
the smooth variable structure filter (SVSF) provide more stable esti-
mates [39–41] as they are robust to modeling uncertainties and errors. 

In the context of autonomous navigation, most of the existing 
localization solutions rely on accurate maps generated upfront via SLAM 
techniques [39]. The mapping process is typically performed by robot 
teleoperation in the workspace (e.g., [5,40]), which poses time and cost 
constraints in large, ever-changing indoor construction settings. For a 
large construction site, in addition to repetitive mapping sessions, active 
map maintenance is also essential. Active maintenance of these maps 
requires computation and storage resources, which increases the 
payload, reducing aerial robots’ flight time. Additionally, loop closure in 
SLAM requires revisiting locations and accurate place recognition. 
However, poorly-featured or repetitive areas on indoor sites can impact 
the global consistency and robustness of the maps and place recognition 
algorithms. Thus, substantial knowledge is required to evaluate whether 
the generated map quality is adequate for the desired application before 
any autonomous mission. In contrast, the proposed tag-based visual- 
inertial localization approach requires no mapping sessions. Moreover, 
the pre-installed AprilTags allow reliable global visual measurements, 
enabling drift-free and lightweight global indoor localization. 

2.2. Robotic data collection solutions in construction 

In the construction community, a rapidly growing research stream 
has focused on the applications of autonomous mobile robots in auto-
mated data collection. There has been a considerable amount of research 
on the deployment of mobile robots for outdoor data collection appli-
cations. Infrastructure inspections [7,41,42], earthwork surveying [9], 
quality control [43], safety inspections [44,45] are some examples of the 
applications that have been investigated for UAV-based outdoor visual 
data collection. In these studies, UAVs either were remotely controlled 
or relied on GPS signals for autonomous flight. 

Deploying autonomous ground robots for indoor environmental air 
quality [46], semantic modeling [47], as well as simulation and evalu-
ation of building retrofit performance [48] are examples of automated 
robotic data collection solutions in existing buildings. Above all, April-
Tags were used for high-level commanding and occasional drift cor-
rections in an open-loop control approach in [48]. In the context of 

Table 1 
Reviewed literature on automated robotic data capture solutions in GPS-denied construction environments.  

Ref. Platform Application Sensor 
modality 

Indoor Localization method Localization 
validation 

Remarks 

Peel et al. 
(2018) [40] 

Custom-built 
ground robot 

Bridge inspection LiDAR No  • Teleoperated mapping using 
Hector-SLAM.  

• AMCL for localization. 

No No GPS 

Adán et al. 
(2020) [47] 

Custom-built 
ground robot 

Semantic modeling Vision 
+

LiDAR 

Yes  • Teleoperated mapping using SLAM  
• AMCL for Localization. 

No Existing buildings 

Mantha et al. 
(2018) [48] 

Custom-built 
ground robot 

Building retrofit 
performance 

Vision Yes • AprilTags for high-level command-
ing and occasional drift corrections 
in an open-loop control approach. 

No Existing buildings 

Kim et al. 
(2018) [19] 

Custom-built 
ground robot 

3D reconstruction LiDAR Yes  • Teleoperated mapping and 
localization using Hector-SLAM. 

No  

Asadi et al. 
(2018) [6] 

Custom-built 
ground robot 

Construction 
progress 

monitoring 

Vision Yes  • Teleoperated mapping and 
localization using ORB-SLAM. 

No  

Xu et al. 
(2019) [10] 

Custom-built 
ground robot 

Real-time locating 
applications 

Kinect Yes  • Teleoperated mapping and 
localization using a modified ORB- 
SLAM. 

2-DoF position 
(at select locations) 

AprilTags for 
localization 
validations. 

Ibrahim et al. 
(2019) [15] 

Custom-built 
ground robot 

Construction 
progress 

monitoring 

Vision 
+

LiDAR 

Yes  • Teleoperated mapping and 
localization using Hector-SLAM 

No  

Asadi et al. 
(2020) [5] 

Custom-built 
ground and aerial 

robot (blimp) 

Construction 
progress 

monitoring 

Vision 
+

LiDAR 

Yes  • VINS-mono for blimp localization.  
• Teleoperated mapping and 

localization using RTAP-MAP. 

No Fiducials for relative 
position estimation 
comparisons. 

Hamledari 
et al. (2017)  

[11] 

Low-cost 
commercial aerial 

robot 

Construction 
progress 

monitoring 

Vision Yes N/A N/A Teleoperated UAV (on- 
site). 

Ours Low-cost 
commercial aerial 

robot 

Construction 
progress 

monitoring 

Vision  
+

IMU 

Yes • Tag-based visual-inertial localiza-
tion using an on-manifold EKF 

6-DoF pose 
(simulation and 

laboratory) 

Lightweight, online, 
global localization.  
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under-construction buildings, the proposed automated indoor data 
collection solutions in the reviewed literature heavily relied on custom- 
built ground robots. In virtually all these studies [5,10,15,19,40,49] (see 
Table 1 for more details), the robot localization was based on a pre-built 
map generated using SLAM algorithms. These maps were generated 
using teleoperation of the platform in the navigable area. In aerial robots 
with limited onboard resources (i.e., storage, computation, and power), 
maintaining large maps reduces their functionality and effectiveness (e. 
g., reduced flight time). Moreover, the mapping process needs to be 
repeated as the construction progresses, which is time-demanding, 
costly, and tedious in applications where frequent data are expected 
(e.g., progress monitoring). Except for [10] in Table 1, in which April-
Tags were used for quantitative evaluations of position estimates in 
select discrete locations, none of the reviewed studies provides locali-
zation error assessments against any ground truth data. 

2.3. Tag-based localization 

Visual fiducial markers (hereafter tags), such as ARTag [50], April-
Tag [51,52], and CalTag [53], are planar artificial landmarks consisting 
of patterns. In particular, AprilTags are square-shaped payload tags that 
provide robust data association correspondences and can be identified 
even if partially occluded [51]. These paper-printable tags have an 
external black border and a unique inner binary code pattern for robust 
detections. Each detected tag provides four pairs of corner point corre-
spondences. In theory, the relative camera pose can be uniquely ob-
tained by finding the homography transformation between the 3D 
corner points in the tag reference frame and their corresponding 2D 
projections in the image. In practice, orientation ambiguity [54] may 
happen when the tag’s corners are close in the image (e.g., imaging 
small tags or tags at a distance significantly greater than the camera’s 
focal length), where two possible solutions may exist [55]. Fig. 2 illus-
trates how the same projection can come from two different relative 
camera poses, leading to ambiguity in orientation estimates. In ideal 
scenarios with noise-less corner point projections or when the difference 
in reprojection errors is considerable, the solution with the lowest error 
can be identified as the correct solution. However, due to noise and 
imperfections, the correct solutions cannot be guaranteed in practice 
when the difference in errors is small [55], leading to ambiguity and 
jumps in the estimated pose. 

Tag-based systems are composed of distinguishable planar tags as 
landmarks and a detection and identification algorithm. Planar tags are 
widely used for local estimations ranging from map initializations to 
UAV landing. For instance, a tag-based precision landing on a recharging 
station for automated energy replenishment of micro UAVs was 

proposed in [56]. However, few studies have focused on using tags as a 
significant part of their localization solution [57,58]. 

For instance, an offline single-camera method was proposed in [55] 
for creating a map of tags placed in the workspace while localizing the 
camera. They considered the ambiguity problem in estimating camera 
pose from co-planar points (for a detailed discussion on the ambiguity 
problem, refer to [54]). However, the method in [55] is not suitable for 
real-time applications such as indoor navigation. In a subsequent study, 
they [59] proposed a real-time solution to the problem of simulta-
neously localizing the camera and mapping planar tags, given that at 
least two tags are visible in each image. Lately, by coupling key-points 
and fiducial markers, they introduced UcoSLAM [60] to solve the 
same problem. However, these methods only rely on vision data, which 
may fail to provide robust estimates facing occlusion or motion blur 
challenges. In another research stream, by adding extra sensors [61], 
such as IMU [62], UWB [63], and RGB-depth sensor [64], a sensor fusion 
approach mainly using EKF was proposed. In a similar study [62], a 
generic visual-inertial EKF-SLAM based on AprilTags was proposed. 
Although the full pose and the velocities were incorporated into the state 
vector, their suggested filter-based SLAM approach can store a limited 
number of tags in the map to be computationally tractable in real-time. 
This constraint limits the effectiveness of their method in large envi-
ronments, including indoor construction sites. 

In summary, despite their low price, planar fiducials such as April-
Tags can be easily detected and robustly differentiated from one another 
and among other features in the scene, which can be helpful in low- 
texture and low-structure areas of indoor construction sites. AprilTags 
may be subject to occlusions and damage in ever-changing indoor 
construction sites and require manual placement/replacements [21]. 
Therefore, the localization method cannot solely rely on tags. On the 
other hand, tags with known sizes are long-term visual references that 
provide relative pose estimates and scale in images captured by a cali-
brated monocular camera. Once placed in the environment, not only can 
tags support the localization of multiple platforms (e.g., aerial and 
ground robots) or handheld devices (i.e., smartphones) during data 
collection, they can be helpful in contextualization and data association. 
They can also be scanned to provide the site personnel with different 
forms of location-based information. Thus, adding these low-cost, easy- 
to-deploy, and easy-to-install tags to the site can benefit many applica-
tions in construction. 

3. Mathematical preliminaries 

In this section, a brief review of notations and essential operators in 
the special Euclidean group in 3D (SE(3)) are presented (more detailed 
explanations can be found in [65]). Then, the reference frames involved 
in the problem are introduced. 

3.1. SE(3): a brief notation overview 

Formally, the 3D special Euclidean group is a pose (i.e., translation 
and rotation) representation in the form of valid 4 × 4 transformation 
matrices [65]: 

SE(3) =
{

T =

[
C r
0T 1

]

∈ ℝ4×4
⃒
⃒
⃒
⃒C ∈ SO(3), r ∈ ℝ3

}

(1)  

where r is a 3D translation (3 × 1) vector, and C is the standard 3 × 3 
rotation matrix in the special orthogonal group of SO(3) that represent 
rotations in 3D and is defined as: 

SO
(
3
)
=

{
C ∈ ℝ3×3⃒⃒CCT = 1, det

(
C
)
= 1

}
(2) 

Topologically, both SE(3) and SO(3) can be viewed as smooth 
manifolds of matrix Lie groups. The matrix Lie groups of SE(3) and SO(3) 
have corresponding tangent spaces that are referred to as the Lie algebra 
of se(3) and so(3), respectively. A matrix Lie group and the 

Fig. 2. Ambiguity in recovering the relative camera-tag orientation (solid red 
and dashed black cubes). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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corresponding Lie algebra are related through an exponential and log-
arithmic mapping. Following the notation used in [65], the pose of the 
vehicle at time k with respect to a fixed inertial frame can be defined as 
(Fig. 3): 

Tvk i = Tk =

[
Cvk i − Cvk irvk i

i

0T 1

]

∈ SE(3) (3)  

which is a 4 × 4 transformation matrix that transforms points in the 
coordinate frame F

̅→
i (inertial frame) to F

̅→
vk (vehicle frame at time k). 

This transformation matrix consists of a 3 × 3 rotation matrix, Cvki ∈ SO 
(3), which indicates the rotation of vehicle frame F

̅→
vk with respect to 

the inertial frame F
̅→

i, and ri
vki, indicating the translation of the vehicle 

frame F
̅→

vk with respect to the inertial frame F
̅→

i, expressed in inertial 

frame F
̅→

i. 
Using the exponential mapping from se(3) to SE(3), we have: 

T = exp(ξ∧) =
∑∞

n=0

1
n!
(ξ∧)n (4)  

where the translational ρ ∈ ℝ3 and rotational ϕ ∈ ℝ3 components are 

stacked in a pose vector ξ =

[
ρ
ϕ

]

∈ ℝ6×1, and ξ∧ is a 4 × 4 matrix in the 

tangent space se(3): 

ξ∧ =

[
ρ
ϕ

]∧

=

[
ϕ∧ ρ
0T 1

]

∈ se(3) (5a) 

ϕ∧ =

⎡

⎣
ϕx
ϕy
ϕz

⎤

⎦

∧

=

⎡

⎣
0 − ϕz ϕy
ϕz 0 − ϕx
− ϕy ϕx 0

⎤

⎦ ∈ so(3) (5b)  

where ϕ∧ ∈ so(3) is the Lie algebra associated with SO(3) and equivalent 
to the rotation vector (ϕ ∈ ℝ3) expressed in the skew-symmetric matrix 
format. 

We can also go in the other direction, yet not uniquely using the 
logarithmic map: 

ξ = ln(T)∨ (6) 

The left perturbed scheme [65] in SE(3) is used to express an un-
certain transform (T) as a large, noise-free nominal (i.e., mean) 

component (T) and a small, zero mean, noisy, perturbation component 
(exp(ϵ∧)). Assuming a normal distribution for perturbation, we have: 

T = exp(ϵ∧)T, ϵ ∈ ℝ6 ∼ N (0,Σ) (7) 

Another beneficial 6 × 6 linear transform is the adjoint matrix of an 
element of SE(3) [65]: 

Ad(T) = Ad
([

C r
0T 1

])

=

[
C r∧C
0T C

]

∈ ℝ6×6 (8)  

3.2. Reference frames 

In this subsection, the reference frames involved in the problem are 
introduced. Fig. 3 shows the reference frames at time k along with the 
vehicle frame F̅→v at time k − 1 as well as k + 1 to indicate the vehicle 
trajectory. As illustrated in Fig. 3, F

̅→
i is the inertial frame, which is a 

fixed, global frame with known coordinates in the BIM coordinates 
system. The vehicle’s pose, r→vi and Civ, will be estimated with respect to 
this frame. Moreover, the pose of tags, ρ→τj i and Ciτj, are also expressed in 
this frame. The pose of the tags in the inertial (BIM) reference frame F

̅→
i 

is assumed a priori. 
The tag size for a square planar tag is defined as its side length. For 

instance, for AprilTags, the tag size is the distance between the outer 
black edges, including the inner binary pattern and the external black 
border. Given the j − th tag’s size (sτj) is known, the 3D coordinates of its 
corners in the tag frame F

̅→
τj can be written as: 

Pτj,1 =
[
−

sτj

2
−

sτj

2
0
]T

(9a) 

Pτj,2 =
[ sτj

2
−

sτj

2
0
]T

(9b) 

Pτj,3 =
[ sτj

2
sτj

2
0
]T

(9c) 

Pτj,4 =
[
−

sτj

2
sτj

2
0
]T

(9d) 

The vehicle frame F
̅→

v is rigidly attached to the vehicle base-link, 
where the IMU is located. The camera frame F

̅→
c is attached to the 

vehicle’s onboard camera. The fixed transformation between the vehicle 
frame and the camera frame is already determined by calibration. 

4. Methodology 

In this section, the overall methodology and derivations for the 
backbone of our estimation scheme are given. First, a formal problem 
formulation is presented using the notations introduced in the previous 
section. Then, the canonical EKF formulation for the proposed tag-based 
6-DoF pose estimation method is delivered by providing the details for 
the motion and measurement models as well as error calculations. 

4.1. Problem formulation 

As a localization problem, the state we aim to estimate is the vehi-
cle’s poses along the entire trajectory. Similar to [65], we have: 

x =
{{

rv0 i
i ,Cv0 i

}
,
{

rv1 i
i ,Cv1 i

}
,…,

{
rvK i

i ,CvK i
} }

= {T0,T1,…,TK} (10)  

where Tk ∈ SE(3) is defined in Eq. (3). Since localization can be seen as a 

pose tracking problem, along with the initial state T
ˇ

0, we assume the 
translational and rotational velocities (vehicle’s twist ϖ)) as the system 
inputs v. The twist can be derived from the vehicle’s IMU data or directly 
from other odometry sources (e.g., visual-inertial odometry). From now 
on, we assume it comes from a source of visual-inertial odometry for 
consistency. We have:  

Fig. 3. Reference frames involved in the tag-based pose estimation problem.  
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v =
{

T
ˇ

0 ,ϖ1,…,ϖK

}
(11a)  

where:  

ϖk =

⎡

⎣
vvk i

vk

ωvk i
vk

⎤

⎦, k = 1,…,K (11b) 

The set of all measurements at each time step over the entire tra-
jectory can be encapsulated in y: 

y = {y1, y2,…, yK} (12a) 

Although we may or may not observe all the tags in the workspace at 
time k, given the total number of tags is M, we can write: 

yk =
[
yk,1, yk,2,…, yk,M

]T (12b)  

where the measurement of tag τj at time step k contains all four corner 
points’ pixel coordinates on the image plane:  

yk,j =
[
y1

k,j, y2
k,j, y

3
k,j, y4

k,j

]T
=

[
u1

k,j, v1
k,j,…, u4

k,j, v4
k,j

]T
(12c)  

4.2. Motion model 

Given the perturbation scheme in Eq. (7) and an additive perturba-
tion for the vehicle’s twist, we can write the nominal and perturbation 
kinematics as follows [65]: 

Nominal kinematics for propagating the mean: 

Tk = Ξk Tk− 1 (13a) 

Perturbation kinematics for propagating the covariance: 

δξk = Ad(Ξk) δξk− 1 + wk,wk ∼ N (0,Qk) (13b) 

Here we have: 

Ξk = Tvkvk− 1 =

⎡

⎣
Ψvkvk− 1 − Ψvkvk− 1 dvkvk− 1

vk− 1

0T 1

⎤

⎦ ∈ SE(3) (14)  

where [65]:  

dvkvk− 1
vk− 1

= vvk− 1 i
vk− 1

Δtk + δdk (15)  

Δtk = tk − tk− 1 (16)  

Ψvkvk− 1 = cosψk1+(1 − cosψk)

(
ψk

ψk

)(
ψk

ψk

)T

− sinψk

(
ψk

ψk

)×

(17a)  

ψk = ωvk− 1i
vk− 1

Δtk + δψk (17b) 
ψk = |ψk| (17c) 

Translational and rotational velocities come from an onboard visual- 
inertial odometry source as discussed earlier: 

vvk
vki: Translational velocity of vehicle frame with respect to inertial 

frame, expressed in vehicle frame. 
ωvk

vki: Rotational velocity of vehicle frame with respect to inertial 
frame, expressed in vehicle frame. 

Ψvkvk− 1: Rotation (matrix) of vehicle frame with respect to the pre-
vious time step. 

dvk− 1
vkvk− 1: Translation (vector) of vehicle frame with respect to the 

previous time step, expressed in the previous time step frame. 
δdk: Translational component of the process noise. 
δψk: Rotational component of the process noise. 

Qk = Var
([

δdk

δψk

])

= Δtk
2

⎡

⎣
σ2

v 0
0 σ2

ω

⎤

⎦ (18)  

where the diagonal values σv
2 and σω

2 can be estimated from the twist 
error estimation based on ground-truth data in advance. It is also 
possible to leave these quantities as tunning parameters. 

4.3. Measurement model 

Tag reading measurements are incorporated to update (correct) 
predictions from the twist inputs (dead reckoning). As mentioned 
earlier, the detector provides a 6-DoF pose estimate of tag with respect 
to camera frame from a single image. However, instead of directly using 
the relative camera-tag pose as measurements, we reproject the tag 
corners onto the frontal image plane and consider the four corre-
sponding pixel coordinates as pixel-level measurements. The main gain 
of this approach is that the noise can be applied to the pixel location of 
detected tag corners [62]. Since noise behavior highly depends on the 
geometry of the projected tag in the image, fitting a proper noise model 
to the relative pose provided by the detector is not a trivial task. 
Modeling the noise becomes more complex when the tag image is small, 
and the corners are too close to one another (e.g., when the tag is rotated 
about its y-axis and located far away relative to the camera focal length). 
The noise magnitude depends on the relative location and orientation of 
tags in the camera frame as well as the camera lens parameters (i.e., 
camera intrinsics). However, the pixel-level noise on the reprojected tag 
corners can be assumed the same for all tag measurements and is less 
dependent on the camera-tag relative configuration [62]. Instead of 
directly using the relative pose provided by the detector, using corner 
points as measurements leads to a tightly coupled fusion approach, 
generally leading to better estimation results [17]. 

The 3D coordinates of the n-th corner point of j-th tag expressed in 
camera frame pck

pτj
, n

ck can be written as: 

p
pτj ,nck
ck = DT TcvTvk ipτj ,n (19)  

where: 

pτj ,n = Ti τj Pτj ,n = T− 1
τj i Pτj ,n (20)  

Pτj ,n =

[
Pτj,n

1

]

(21)  

Tcv =

[
Ccv − Ccvρcv

v

0T 1

]

(22)  

DT = [13|03×1] =

⎡

⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤

⎥
⎥
⎦ (23) 

The j-th tag pose in the inertial frame and accordingly the corre-
sponding transformation matrix Tτji is known as a priori. In this deri-
vation, we preserve the ideal assumption that Tτji is not subject to any 
uncertainty. Additionally, Tcv is determined from calibration in advance. 
Finally, DT is a dilated identity matrix padded with a column of zeros on 
the right to refine the matrix dimensions. 

If we define zτj ,n
k (x) = p

pτj ,nck
ck = [X Y Z ]

T , where x is the state to be 
estimated (Tvki) and s(.) is a pinhole camera model that projects pck

pτj, nck 

into a rectified image (lens distortion is previously handled and the input 
image is already rectified), we have: 

yn
k,j = s

(
zτj ,n

k (x)
)
=

[
u

v

]

=Dp

⎡

⎢
⎢
⎣

fu 0 cu

0 fv cv

0 0 1

⎤

⎥
⎥
⎦

1
Z

⎡

⎢
⎢
⎣

X

Y

Z

⎤

⎥
⎥
⎦+δnn

k,j,δnn
k,j ∼N

(
0,Rk,j

)

(24)  

where Dp = [12|02×1] is a dilated identity matrix that maps the 3D point 
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coordinates back to 2D pixels. 
yk, j

n: Pixel coordinates of the n-th corner point of tag j, Pτj, n, observed 
at time k, projected onto the frontal image plane of the pinhole camera 
model (u,v) 

δnk, j
n: Additive measurement noise at pixel-level 

cu, cv: Horizontal and vertical optical offsets from the top left corner 
of the image [pixels] 

fu, fv: Horizontal and vertical camera focal lengths [pixels] 

4.4. Pose filtering: linearization and EKF formulation 

The EKF algorithm follows a prediction and a correction step in a 
recursive manner. The prediction step projects the current state estimate 
and error covariance (uncertainties) forward in time, while the correction 
step incorporates the measurements in the estimates and the associated 
uncertainties. To obtain the canonical EKF formulation, we first need to 
linearize the non-linear motion and measurement models about their 
mean as the operating point. Using the left perturbation scheme defined in 
Eq. (7) and the first-order Taylor expansion, we can linearize the mea-
surement model (Eq. (24)). The measurement model can be viewed as a 
combination of two non-linearities. Using the chain rule, we can write: 

For the first non-linearity zτj ,n
k in Eq. (19), we have: 

zτj ,n
k (x) = DT TcvTvk ipτj ,n (25a) 

zτj ,n
k (x) = DT Tcvexp

(
δξ∧k

)
Tvk ipτj ,n (25b) 

⇒ First− order zτj ,n
k (x) ≈ DT Tcv

(
1 + δξ∧k

)
Tvk ipτj ,n (25c) 

zτj ,n
k (x) = DT TcvTvk ipτj ,n + DT Tcvδξ∧k Tvk ipτj ,n (25d) 

If we define the dot operator, (.)⊙, as ξ∧p ≡ p⊙ξ [65] where p is 
expressed in the homogeneous coordinates, we have: 

zτj ,n
k (x) = DT TcvTvk ipτj ,n

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

z
τj ,n
k (x)

+DT Tcv

(
Tvk ipτj ,n

)⊙

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
δξk

Z
τj ,n
k

(25e) 

zτj ,n
k (x) = zτj ,n

k (x) + Zτj ,n
k δξk (25f) 

The second non-linearity s(.) comes from the sensor model (Eq. (24)): 

gn
k,j(x) = yn

k,j = s
(
zτj ,n

k (x)
)
+ δnn

k,j (26a) 

⇒
(Eq.( 25f )) yn

k,j ≈ s

⎛

⎜
⎝zτj ,n

k (x) + Zτj ,n
k δξk⏟̅̅̅ ⏞⏞̅̅̅ ⏟
small

⎞

⎟
⎠+ δnn

k,j (26b) 

If we define Sτj ,n
k =

∂s
∂zτj ,n

k

⃒
⃒
⃒
⃒
⃒
z

τj ,n
k (x)

= Dp

⎡

⎢
⎢
⎣

fu 0 cu

0 fv cv

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
Z

0 −
X

Z2

0
1
Z

−
Y
Z2

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 

we have: 

⇒
First− order yn

k,j ≈ s
(
zτj ,n

k (x)
)

⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅ ⏟
gn

k,j(x)

+Sτj ,n
k Zτj ,n

k⏟̅̅̅̅⏞⏞̅̅̅̅⏟

G
τj ,n
k

δξk + δnn
k,j (26c) 

yn
k,j ≈ gn

k,j(x) + Gτj ,n
k δξk + δnn

k,j (26d) 

If we stack the quantities together, we can write: 

yk =

⎡

⎣
yk,1
⋮

yk,M

⎤

⎦ =
[

y1
k,1

T ⋯ y4
k,1

T ⋯ y1
k,M

T ⋯ y4
k,M

T
]T
,

Gk =

⎡

⎣
Gk,1

⋮
Gk,M

⎤

⎦ =
[

Gτ1 ,1T

k ⋯ Gτ1 ,4T

k ⋯ GτM ,1T

k ⋯ GτM ,4T

k

]T
,

Rk = diag

⎛

⎜
⎝Rk,1,…,Rk,1

⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟
4 corners of τ1

,…,Rk,M,…,Rk,M
⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

4 corners of τM

⎞

⎟
⎠

(26e) 

For the motion model, as indicated in Eq. 13b, we already obtained 
an equation linear in δξ. Using the adjoint transform defined in Eq. 8, we 
can rewrite Eq. 13b as: 

δξk = Fk− 1⏟̅⏞⏞̅⏟
Ad(Ξk)

δξk− 1 + wk,wk ∼ N (0,Qk) (27) 

Bringing together all the above, we obtain the recursive filter update 
steps. The first step is a prediction step that projects the current state 
mean and covariance estimates forward in time (Eq. 28a and 28b). The 

estimated covariance at time k, P
ˇ

k, is calculated satisfying Eq. 28a, 
where Fk− 1 is the Jacobian of motion transformation between time k − 1 
and k (Ad(Ξk)), and Qk is the process noise covariance (Eq. 18). This is 
followed by a correction step where tag measurements are incorporated 
(Eq. 28d and 28e). Note that the corrections are imposed using the 
difference between the actual and expected measurements, also known 

as innovation (yk − yˇk). Finally, we can write the canonical form [65] of 
an EKF as: 

Predictor: 

P
ˇ

k
= Fk− 1 P̂k− 1FT

k− 1 + Qk (28a) 

T
ˇ

k
= Ξk T̂k− 1 (28b) 

Kalman gain: 

Kk = P
ˇ

k
GT

k

(

GkP
ˇ

k
GT

k + Rk

)− 1

(28c) 

Corrector: 

P̂k = (1 − KkGk)P
ˇ

k
(28d) 

T̂k = exp
((

Kk

(

yk − yˇ k

))∧ )

T
ˇ

k (28e)  

where (.̇ ) represents posterior (estimated) quantities, (.̇) shows prior 
quantities, and Kk is the Kalman gain. The Kalman gain weighs the in-
novation’s contribution to the estimates (compared to the prediction). 

In the end, to evaluate the estimator performance, the translational 
and rotational estimation errors at time k are computed as: 

δrk =

⎡

⎢
⎣

δrx,k

δry,k

δrz,k

⎤

⎥
⎦ := r̂vk i

i − rvk i
i (29)  

δθ∧
k =

⎡

⎢
⎣

δθx,k

δθy,k

δθz,k

⎤

⎥
⎦

∧

:= 1 − Ĉvk i CT
vk i (30)  

where quantities with (.̇) are estimated values, while those without are 
ground truth. 

5. Implementations and experimental setups 

5.1. Implementations 

The aerial robotic platform chosen in this work is a low-cost, 
commercially available UAV, Parrot Bebop2 [66], with no hardware 
modifications. This compact, off-the-shelf UAV has an onboard flight 
controller as well as the following sensory set: (1) an IMU for inertial 
measurements; (2) a sonar and a vertical camera for height measure-
ments used in the onboard controller; and (3) a forward-looking camera. 
Nonetheless, this choice was entirely arbitrary and only for validation 
purposes, as any other platform that outputs IMU/odometry data, as 
well as a camera image stream, could have been used. We use the well- 
known Robotic Operation System (ROS) [22] as a structured commu-
nication layer among the heterogeneous cluster of the processing 
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Fig. 4. Tag-based visual-inertial localization: implementation on Parrot Bebop2.  

Fig. 5. – Test-bench settings: (A) Laboratory; (B) Simulation.  
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modules. The Bebop2 UAV’s open-source ROS driver bebop_autonomy 
[67] with necessary modifications was used for interaction with the 
platform. For AprilTag detections, the publicly available code imple-
mented by AprilRobotics [68] was modified and deployed. Their imple-
mentation [68] includes a faster detector with improved detection rates 
on small tags and supports flexible tag layouts [69]. 

5.1.1. System setup 
As shown in the process diagram in Fig. 4, the robot description, 

camera intrinsics, and tag information (i.e., size, family, IDs, and pose) 
are assumed to be known a priori. The robot description contains the 
robot’s transform tree (e.g., camera to vehicle transform). The camera 
intrinsics are obtained from calibration, while tags’ family, size, and 
pose information are manual inputs. 

The EKF pose estimator module fuses two sources of information 
from the UAV: (a) system inputs, i.e., rotational and translational ve-
locities, and (b) the image stream from the onboard forward-looking 
camera. System inputs come from the onboard odometry estimations 
of the UAV (~5 Hz) and are being boosted up to the image rate (~30 
Hz). The camera publishes rectified 856 × 480 images at the same rate of 
30 Hz, fed into the modified AprilTag detector module. It then provides 
the system with the registered 2D pixel coordinates of tag corner points 
in the image, i.e., the measurements. The proposed tag-based localiza-
tion module also gets an initial estimate of the vehicle pose as input. The 
initial pose can be given manually or estimated based on raw pose es-
timates provided by the AprilTag detector. We validate our method 
using two test-bench environments: laboratory (Fig. 5 A) and simulation 
(Fig. 5 B). 

5.1.2. Simulation environment 
Simulation helps solve real-world problems safely and efficiently. A 

reliable simulation environment provides a valuable method of analysis 
that is easily verified, communicated, and understood. Once configured, 
it can serve as a common-use module to validate the core research ideas 
and avoid struggling with hardware complications, which may prolong. 
A well-designed simulation environment facilitates the testing and 
validation processes in numerous scenarios where ground truth data 
collection is challenging or safety is critical in the actual workspace, e.g., 
indoor construction sites. Accordingly, a photo-realistic BIM-enabled 
simulation environment (see Fig. 6) was developed and configured with 
the principal capabilities of (1) integration with the ROS ecosystem; (2) 
automatic generation of simulated worlds (e.g., indoor construction 
environments); (3) automatic generation and spawn of AprilTags in the 
simulated worlds; (4) simulating onboard sensors (e.g., IMU, ultrasound, 

and vertical camera); (5) video streaming using a virtual front camera; 
(6) connecting to any controller for sending commands to the UAV (e.g., 
keyboard); (7) simulating battery. Fig. 6 (B) shows a snapshot of an 
instance of a simulated indoor construction environment. The simula-
tion environment is mainly based on a publicly available simulation tool 
called Parrot-Sphinx [70]. The manufacturer initially designed this tool 
to facilitate their software developments. The official simulator of ROS, 
Gazebo, is tightly coupled with Parrot-Sphinx to simulate the physical 
and visual surroundings of the platform. Once connected to the simu-
lation environment via Wi-Fi or virtual ethernet, one can use the codes 
and algorithms implemented in C++ or Python programming languages 
in ROS. Both Gazebo and command-line scripting capabilities are 
incorporated. One or more quadrotor products by Parrot can be spawned 
in the world environment. 

5.2. Experimental setups 

The proposed tag-based localization method is validated via custom- 
designed experiments in a laboratory and a simulation environment 
(Fig. 5 and Fig. 6), a summary of which is provided in Table 2. The 
remainder of this section elaborates on the main components in each 
test-bench environment. 

Fig. 6. Parrot Bebop2 and AprilTags: (A) during a laboratory experiment (B) in a simulated indoor construction environment.  

Table 2 
A brief description of custom-designed experiments in laboratory and simulation 
environments.  

Summary of experiments 

ID Name Sim/ 
Lab 

Tag- 
blind 
zone 

Description 

1 Straight line Sim No A back-and-forth straight-line trajectory 
(3 m × 4) 

2 Mixed 
maneuvers 

Sim No A trajectory of arbitrary maneuvers in an 
under-construction residential unit 
while tags are always in view. 

3 Planar Sim Yes A planar trajectory with a combination 
of rotational and translational 
maneuvers while tags may be out of 
sight. 

4 Straight line Lab No The same test as “1” in a laboratory 
setting. 

5 3D circular Lab No A 3D circular trajectory of radius one 
meter.  
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5.2.1. Laboratory setup 
Fig. 7 depicts the general architecture of the test-bench environment 

used to assess the tag-based localization accuracy in a laboratory setting. 
The lab test-bench setting consists of three major components, Bebop2 
hardware, a constellation of motion capture cameras (Vicon cameras), 
and a ground station (the gray area) (e.g., a laptop). 

A set of retroreflective markers is attached to the UAV to enable the 
motion capture system to track the platform (Fig. 5 (a)). The Vicon 
system estimates the pose of the UAV with sub-millimeter accuracy and 
high frequency (> 200 Hz), given that it is already calibrated. Hence, 
Vicon data is used as the ground truth to be compared against our es-
timates. The communication between the Vicon system and the ground 
station is either cabled or through Wi-Fi. The state data from Vicon 
Estimator and the desired state from Waypoint Generator are sent to 

Nonlinear Controller. Based on these two states, the corresponding 
commands from Nonlinear Controller are sent to the platform through 
two intermediary processes, and the loop is closed for autonomous 
flight. The communication between the UAV and the ground station is 
handled via Wi-Fi connections. In parallel, Bebop Driver sends data to the 
tag-based localization module. The data received by this module in-
cludes the image stream from the front camera and the odometry ve-
locity data (body-fixed rotational and translational velocities). AprilTag 
Detector processes the front camera images, and the tag-based pose es-
timates are sent to EKF Estimator. These two types of data are fused in 
EKF Estimator and stored as tag-based localization outputs. 

5.2.2. Simulation setup 
In the simulation test-bench architecture, the actual platform and the 

Vicon
Markers

Marker
positions

Vicon 
Bridge Cabled/Wi-Fi

Vicon 
Estimator

State 
Data

Nonlinear 
Controller

Bebop 
Bridge

Bebop 2
DroneWaypoint 

Generator

Land/Take off
Commands

Desired 
State

Ground Station

EKF 
Estimator

Odometry

Front Camera 
Image

Pixel
Coordinates

of 
detected

tags

Tag-based 
localization

Wi-Fi

Ideal Twist 
Command 

Twist
Command Bebop 

Driver
AprilTag
Detector

Tag-based Localization

6D global pose

Fig. 7. Laboratory (Vicon-based) test-bench architecture including a ground station, Parrot Bebop2 platform, and the Vicon system for providing ground truth data.  
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environment. 
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Vicon system were replaced and incorporated in Ground Station (the area 
with gray background in Fig. 8). These replacements were abstracted as 
two simulated components: the UAV’s firmware and Gazebo. Gazebo 
runs on localhost and handles the graphics and the simulation of dy-
namic interactions of the robot (i.e., UAV) and the environment based 
on its physical properties (e.g., mass and moments of inertia). 

The absolute ground truth data published in the Gazebo’s publisher/ 
subscriber communication network was linked to the ROS network using 
ROS Bridge, replacing Vicon (Fig. 8). In this case, the state data required 
for the control module is published through ROS Bridge. A virtual 
ethernet was defined to communicate data with firmware and Bebop 
Driver. The rest of the architecture remains untouched. 

6. Results 

The proposed tag-based localization method was validated in simu-
lation and laboratory settings via custom-designed experiments, as 
described in Table 2. The same tag configuration (Fig. 9) and properties 
(summarized in Table 3) are deployed for consistency in experiments. 
The UAV autonomously tracks a pre-planned path by following inter-
mediate waypoints. The state estimates fed in the control loop come 
from the ground truth sources (Vicon and ROS bridge in the laboratory 
and simulation environments, respectively). 

This section first provides the full details for two experiments: (1) the 

planar trajectory test, conducted in the simulation environment; (2) the 
3D circular trajectory test, carried out in the laboratory setting. The 
former investigates the estimator’s performance in a planar motion 
when tags are not always visible, while the latter studies a circular 3D 
translational maneuver where tags remain in view throughout the whole 
flight. Each experiment is discussed in a separate sub-section, including 
thorough qualitative and quantitative performance analyses. Next, a 
quantitative analysis is provided for all the experiments described in 
Table 2. 

6.1. Simulation: the planar trajectory 

Fig. 9 provides a snapshot of the simulation environment while the 
UAV has taken off. On the left, the tag locations and the UAV’s actual 
trajectory on the X − Y plane (dashed line) are shown. The green dashed 
line representing the entire flight trajectory is based on ground truth 
data and just for visualization purposes. Moreover, a third-person view 
of the UAV while taken off, the BIM reference frame (top-right), and the 
front camera image stream, including the detected tags with the corre-
sponding tag IDs (bottom-right), are visible in Fig. 9. 

In the planar trajectory test, a combination of rotational and trans-
lational motions is involved. As depicted in Fig. 9, each set of tags, i.e., 
2–5–1 and 4–0–3, contains three 36h11 AprilTags (0.165 m × 0.165 m). 
The UAV starts at O(0,0,0), takes off and fixes its altitude facing tag set 
2–5–1. Then, it immediately rotates 90 degrees clockwise to face 4–0–3 
tags. This case purposefully starts with a rotational motion so that the 
drift in dead reckoning becomes easier to observe (see Fig. 10). The 
minimum and maximum camera-to-tag distances during the flight are 
1.5 m and 4.5 m, respectively. The UAV follows a straight path parallel to 
4–0–3 tags until the tags are out of sight (a tag-blind zone). While no tags 
are visible at the top right corner of the trajectory (no corrections in 
EKF), it rotates until facing 2–5–1 tags. These tags remain in view until 
the UAV returns to its starting point and follows the same path one more 
time (for more visualization and more details, please refer to the pro-
vided video available at [71]). 

Fig. 10 visualizes the localization performance of the proposed 

Fig. 9. - Tags’ configuration and UAV’s actual trajectory on X − Y plane (dashed line) (left). A third-person view of the UAV taken off (top-right), the front camera 
image stream, and the detected tags with the corresponding tag IDs (bottom-right) in the simulation environment. (video available at [71]). 

Table 3 
– Tag properties in the experiments.  

Tag configuration summary 

Tag property Laboratory Simulation 

Type AprilTag AprilTag 
Family 36h11 36h11 
Size 0.165 m × 0.165 m 0.165 m × 0.165 m 
Number of tags 6 6 
Global pose 

(in BIM reference frame) 
Known a priori Known a priori  
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method on the X − Y plane, which is also the plane of motion. The green, 
blue, and red lines correspond to ground truth, tag-based EKF, and dead- 
reckoning estimates, respectively. Dead reckoning is only based on 
odometry and velocity integrations and involves no corrections from tag 
measurements. It shows how the pose estimates would be if the tag 
measurements were discarded. As depicted in Fig. 10, dead reckoning 
(odometry-based estimates) drift quickly due to the UAV’s initial rota-
tional motion after take-off. 

On the other hand, Fig. 11 shows that the proposed tag-based EKF 
accurately follows the ground truth in position and orientation estimates 
after convergence. It also illustrates how well our method could estimate 
the 6-DoF pose of the UAV in a planar motion where tags are not always 
visible. For this experiment, the root mean square error (RMSE) for the 
position estimates in 3D was as low as 0.0198 m. If the take-off and 
landing disruptions are excluded, RMSE is reduced to 0.0177 m. Since 
the UAV operates in a low-speed mode (average linear speed of 0.1 m/s), 
roll (θx), pitch (θy) estimates (in global (BIM) frame) are approximately 
zero and remain constant (Fig. 11). 

Fig. 12 shows the estimation errors in position (Eq. 29) and orien-
tation (Eq. 30), along with the corresponding 3σ uncertainty envelops. A 
larger envelope corresponds to more uncertain estimates. It also reports 
the minimum, maximum, and mean errors for each component. The 
mean values being close to zero experimentally confirm that our esti-
mates are unbiased. The importance of tracking 3σ uncertainty envelops 
is threefold: (1) as the uncertainty on the position and orientation 

estimates remain bounded and the estimation errors remain within the 
estimated uncertainty envelops, our estimates are confirmed to be 
consistent. Otherwise, the uncertainties would have grown unbound-
edly, or the estimates would leave the envelope; (2) although our 
method remains consistent even when no tags are visible, it is observ-
able that the uncertainty grows when the filter receives no tag mea-
surements, happening twice in this experiment at t = 88.8 [s] and t =
217.6 [s] (highlighted intervals in Fig. 12); (3) tracking the uncertainties 
over time can be helpful in effectively planning tag locations and safe 
flight paths in a complex environment such as a construction job site. 

6.2. Laboratory: the 3D circular trajectory 

Simulation environments are, to some extent, ideal settings. To 
evaluate the performance in handling real-world data, being typically 
noisier, the proposed method is validated in a laboratory setting sup-
ported by ground truth data. The previous trajectory was almost planar, 
so the current case shows how tag-based EKF can handle 3D trans-
lational motions in real-world scenarios. The planar trajectory test also 
showed that having two sources of information can enable the estimator 
to handle situations where no tags are visible (at least for a short period). 
In this experiment, a 3D circular trajectory of radius one meter is 
designed such that the minimum and maximum camera-to-tag distances 
are 2.2 m and 4.2 m, respectively (see Fig. 13). The tag properties remain 
the same as the previous experiment, while the camera faces the 2–5–1 
tag set (along the y − axis) in a similar tag configuration shown in Fig. 9. 
The tags remain within the camera’s field of view throughout the flight 
(see the video available at [72] for more visualizations). 

Fig. 13 shows the localization results on the Y− Z and the X − Y 
planes, as well as in 3D. Again, odometry-based estimates (dead reck-
oning) quickly drift, whereas the tag-based estimates accurately follow 
the ground truth. A jump in estimates is observable during the UAV’s 
take-off (center) and landing (right side) due to abrupt motions. More-
over, as expected [58], deviations from ground truth are observed when 
the camera-to-tag distance increases. The root mean square error 
(RMSE) in position for this experiment was 0.0348 m and 0.2602 m, 
including and excluding take-off and landing disruptions respectively. 
Fig. 14 shows the position and orientation estimates against ground 
truth data and how well the proposed method could estimate the 6-DoF 
pose of the UAV in 3D. Slight biases can be seen in the z-component of 
the global position and orientation (i.e., yaw) due to imperfections in 
reference frame calibrations in practice. 

As illustrated in Fig. 15, uncertainty generally grows as the UAV gets 
farther from and shrinks when it gets closer to the tags. This change is 
related to the reliability of the measurements. Larger tags provide more 
reliable measurements, which decreases the uncertainty in our estimates 
and vice versa. As highlighted, the 3σ bounds grow larger when the 
distance to the tags (~y) is maximum, except for y estimates itself. It is 
also observable that the uncertainty in y, which is the normal direction 
to the tags’ plane, is less sensitive to this relative distance. Again, sig-
nificant errors are seen during landing and take-off due to swift motions. 

Previously, we saw how the proposed method compares to 
odometry-based estimates. To further investigate the effectiveness of 
tag-based EKF, the vehicle’s pose is estimated only based on the raw 
AprilTag package’s [68] outputs and compared against the ground truth. 
As discussed earlier, although the solution is not stable and may suffer 
from orientation estimation ambiguity, the AprilTag package directly 
provides the relative transformation between tag τ and camera c (Tcτ) 
using the corner point correspondences. Since the tag pose in the inertial 
(BIM) reference frame (Tiτ) and the camera to vehicle transformation 
(Tvc) are assumed to be known in our problem, the vehicle’s pose in the 
inertial frame (Tvi) can be easily found: 

Tvi = TvcTcτ(Tiτ)
− 1 (31) 

Using the relative tag pose (Tcτ) provided by the AprilTag package, 

Fig. 10. Performance of the proposed tag-based localization method on the X 
− Y plane (planar trajectory). The maximum speed is 0.4 m/s, and the average 
speed is 0.1 m/s. Our estimates accurately track the ground truth, while dead- 
reckoning estimates drift quickly with the first rotational motion. The proposed 
tag-based localization method can handle local maneuvers in tag-blind zones 
and recover soon after detecting a tag. 
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Fig. 11. - Performance of the proposed tag-based EKF method in position and orientation estimation (planar trajectory).  

Fig. 12. – Position and orientation estimation errors with 3σ bounds (planar trajectory); time intervals with no tags visible (tag-blind zones) are highlighted.  
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Fig. 13. - Performance of the proposed tag-based localization method in 3D (3D circular trajectory). The maximum speed is 0.5 m/s during take-off, and the average 
speed is 0.08 m/s. Our estimates accurately track the ground truth, while dead reckoning drifts almost immediately. Some disruptions can be observed in position 
estimates during landing and take-off due to agile motions. 

Fig. 14. - Performance of the proposed method in position and orientation (3D circular trajectory).  
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the vehicle pose is calculated applying Eq. 31. Fig. 16 compares the 
position measurements from a single tag, i.e., Tag2 (see Fig. 9), with the 
ground truth trajectory. The raw estimates based on tags alone are noisy. 
The estimates become unreliable when the relative camera to tag dis-
tance passes a threshold. This threshold depends on camera resolution, 
focal length, tag size, and relative orientation. For instance, in this 
experiment where the camera remains almost normal to the tags’ plane, 
given the tag size (16.5 cm), image resolution (856 × 480 px2), camera’s 
focal length (~520 px), the distance threshold is less than 4 m. Noisy 
estimates alone make safe autonomous flight challenging, while orien-
tation ambiguity in greater distances results in instability and noticeable 
jumps in position estimates. 

Fig. 17 compares the absolute error in 3D position estimates for the 

dead reckoning (using IMU only), raw pose estimates based on the 
AprilTag package (using tag measurements only), and the proposed tag- 
based EKF (fusion of IMU and tag measurements). Error accumulates in 
dead reckoning resulting in drifts in the odometry-based estimates; raw 
pose estimates based on tags are noisy and unstable, whereas tag-based 
EKF is more stable and has the minimum error (except for take-off and 
landing). 

6.3. Quantitative evaluation 

The performance of different approaches of dead reckoning, tag- 
only, and tag-based EKF were evaluated quantitatively in different sce-
narios. The quantitative evaluation results for our custom-designed 

Fig. 15. – Position and orientation estimation errors with 3σ bounds (3D circular trajectory): the time interval with the maximum relative camera-tag distance is 
highlighted. 

Fig. 16. - Raw AprilTag measurements are noisy and suffer from ambiguity in their orientation estimates, resulting in jumps in the vehicle’s position estimates (3D 
circular trajectory). 
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experiments introduced in Table 2 are reported in Fig. 18. In this eval-
uation, the disruption caused by sudden motions during the platform 
take-off and landing were left out. It can be observed that dead 

reckoning in simulation is much more reliable than the laboratory re-
sults, as expected. The difference in dead reckoning results is due to the 
noisiness of the odometry data in the real world. Our observations show 

Fig. 17. 3D trajectory: the comparison of the absolute error in position estimates for the dead reckoning (only IMU), estimates based on the AprilTag package (only 
tag measurements), and the proposed tag-based EKF (fusion of IMU and tag measurements). Dead reckoning accumulates error and drifts, raw pose estimates based 
on tags are noisy and unstable, while our tag-based EKF is smooth, reliable, and more accurate. 

Fig. 18. - Performance evaluation of dead reckoning (IMU only), AprilTag package (tag only), and the proposed tag-based EKF on five custom-designed experiments 
in simulation and laboratory settings. 
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that drifts in the altitude estimates in the laboratory are the leading 
cause for this significant difference. The laboratory and simulation re-
sults for Straight line experiment, shown in Fig. 18, are excellent exam-
ples of how accumulative errors can lead to substantial errors in dead 
reckoning estimates, although the simulation could not capture that. 

On the other hand, the estimates solely based on raw tag measure-
ments are relatively the same among the tests we conducted, regardless 
of the experiment environment. This observation proves that the simu-
lated vision pipeline is closely mimicking its actual counterpart. How-
ever, as discussed earlier, tags alone are not reliable enough for 
autonomous navigation. As shown in Fig. 18, in our experiments, the 
corresponding RMSE for tag-only was in the order of tens of centimeters. 
This quantity is not reported for the Planar trajectory test due to 
discontinuity of position estimates when tags were out of sight. The 
correlation of the camera-to-tag distance and the quality of tag readings 
is also observable in both laboratory and simulation results. Therefore, 
tag measurements suffer from noisiness and instability while requiring 
tags to be always in line of sight and within a certain distance. 

The fusion of these two sources of information in the proposed tag- 
based EKF, however, allows for smooth, continuous, and accurate esti-
mates. In our experiments, the achieved RMSE for tag-based EKF was as 
low as a few centimeters, even when tags were not always visible, or 
RMSE in dead reckoning got close to one meter (Fig. 18). 

7. Discussion 

The provided quantitative and qualitative evaluations showed that 
the proposed tag-based EKF could enable an off-the-shelf compact UAV 
with a minimum suite of sensors (an RGB camera and an IMU) to be 
accurately and robustly localized in a GPS-denied indoor environment. 
The proposed method is lightweight, inexpensive, and designed to 
address the technical and practical localization challenges in indoor 
construction environments. Construction sites alter rapidly and include 
many low-texture/repetitive areas that our method can handle. Light-
weight localization allows for efficient usage of UAVs’ limited compu-
tational and power resources, resulting in longer flight times and 
operations. The hardware cost is another barrier to the scalability of 
robotic data capture solutions in construction. The presented localiza-
tion system is inexpensive and can enable a variety of low-cost robotic 
platforms to autonomously perform in indoor construction environ-
ments, although handheld devices such as smartphones can easily 
benefit from the same system. 

Our experiments showed that dead reckoning drifts over time, and 
tags alone are insufficient for robust and accurate localization. Tags 
might not always be visible in an ever-changing construction setting, 
and the direct pose estimates from tags alone are noisy and suffer from 
ambiguity. On the other hand, our proposed method properly fuses these 
two sources of information to yield consistent global pose estimates in 
real-time. 

7.1. Practical considerations 

From the conducted experiments, we collectively identified some 
factors that our method is sensitive to, which should be considered in 
practice. This section enumerates and discusses these considerations. 

7.1.1. Tag size 
Once a tag is detected, one of the main factors affecting the tag 

measurement reliability is the tag’s size in the image. A larger tag in the 
image produces more reliable corner point measurements. For fixed tag 
size and camera lens parameters, the relative camera-tag distance and 
orientation play a critical role in tag detection rate and corner point 
measurements. Therefore, using actual larger tags can help increase 
their effective range. The effective range of a tag is defined as the range 
within which the corresponding tag measurement is considered reliable. 

The AprilTag algorithm [52] denies any 4-pixel or smaller line seg-
ments during the tag detection process. Thus, any tag with smaller 
projected side lengths of four pixels is undetectable. We found that in 
practice, 10–15 pixels is a minimum projected tag side length for 
consistent detections and reliable localization measurements. In an ideal 
situation, when the camera optical axis is perpendicular to a visible tag, 
the camera-to-tag distance can be roughly approximated as d =

f
i × s, 

where d is camera-to-tag distance, f is camera focal length, i is minimum 
side length of the tag in the image, and s is the tag size. Therefore, in a l 
× w image (w < l) and for a particular tag size and focal length, the upper 
limit for the effective range (dmax) is when i ≅ 15 pixels and the lower 
limit (dmin) obtains when i = w. 

Although larger tags will increase the effective range, deploying 
larger tags may not always be piratical on a construction site. Thus, we 
chose to use ubiquitous letter-size paper sheets in our experiments. This 
choice limits the tag size to 0.16 − 0.17 m in length. 

Moreover, given the assumption of planar tags in our formulation, 
any curl or bend can affect the measurements. The use of thicker paper 
may last longer in a construction setting and remain straight during 
deployment. 

7.1.2. Calibration 
The constant rigid-body transformations in our formulation directly 

impact the estimation results. Therefore, an accurate estimation of 
transformations between the involved reference frames (e.g., camera, 
IMU, and ground truth) through calibration is crucial in getting reliable 
results. More importantly, as tag locations are assumed known, it is vital 
to pay particular attention while surveying them. Sensor calibration, 
including camera and IMU calibration, is also essential. 

7.1.3. Camera resolution and intrinsics 
As discussed, camera-to-tag distance is a relative quantity that de-

pends on tag size, camera resolution, and focal length. The effective 
range can be adjusted by tuning these camera properties (e.g., using a 
higher resolution camera or changing the focal length). 

7.1.4. Occlusions, motion blur, and illumination conditions 
Occlusions, motion blur, and poorly lit environments degrade the 

performance of any vision-based technique, including ours. It impacts 
the detection rate and adds noise to our measurements. However, as our 
method uses IMU alongside, these conditions can be tolerated to some 
extent, relying on odometry data for short-term estimates. In general, 
the combination of visual and inertial information provides robustness 
to poor texture, motion blur, and occlusions. 

7.1.5. Tag-blind zones 
The first experiment demonstrated that the proposed method is 

sufficiently robust to handle zones with no tags visible. However, since 
our system is tightly coupled in data fusion, it relies on odometry-based 
predictions when no tags are detected. Hence, reliable short-term esti-
mates in these zones depend heavily on the prediction quality. When 
IMU data is used for prediction solely, the estimates are expected to drift 
relatively quickly. To improve that, given enough features in the scene, 
one can take advantage of natural features to remain more robust in 
areas without visible tags. Visual-inertial odometry using a frontal 
camera and IMU (e.g., VINS-mono [34]) is expected to perform more 
reliably in tag-blind zones. However, it comes with the cost of more 
computation, memory, and power demand. 

7.2. Theoretical considerations 

This section discusses the advantages of the proposed on-manifold 
formulation and the presented tag measurement model. 

The advantages of the proposed on-manifold formulation over more 
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traditional ones such as Euler-angle-based are threefold: (1) The Euler 
angle parametrization suffers from the singularity problem, also known 
as gimbal lock. For instance, for the zyx Euler sequence, a singularity 
exists at θy = π

2+ kπ (k ∈ ℤ ). However, the pose and rotation in our 
formulation are stored in a singularity-free format. This is a critical 
property that allows for versatile applications of our method from the 
localization of autonomous UAVs to handheld devices such as smart-
phones; (2) The derivatives of scalar trigonometric functions in Euler- 
angle-based EKF can lead to cumulative numerical errors [65]. How-
ever, on-manifold manipulations occur at the matrix level, handling 
derivatives with precision and ease. For more information and quanti-
tative performance comparisons between these two approaches, please 
refer to [73]; and (3) On-site tag placement may be subject to installa-
tion errors in practice. Although modeling the installation error remains 
out of the scope of this paper, the proposed formulation facilitates sto-
chastic error modeling. This is not a straight-froward task in the case of 
more traditional approaches such as Euler-angle-based formulation. 

The proposed tag measurement model is based on corner point cor-
respondences rather than directly incorporating the relative trans-
formation provided by the AprilTag package. Our experiments already 
showed that these relative transformations suffer from noisiness and 
instability, depending on the camera-tag relative distance. 

To further investigate the impact of opting the proposed on-manifold 
formulation and tag measurement model, we estimate the same trajec-
tory using our method and an Euler-angle-based EKF with direct tag 
measurements, denoted as Euler EKF in short. To this end, we compare 
ours with the EKF node of the open-source ROS localization package 
[74], ekf_localization_node. In this EKF implementation, Euler-angles are 
used. Moreover, this node gets camera-tag relative transformations as 
measurements directly. The results are shown in Fig. 19, where it is 
observable that the farther the UAV gets from the tags, the higher the 
errors in position are using Euler EKF. On the other hand, our approach 
more accurately and smoothly estimates the UAV’s 3D position. 

8. Conclusions and future work 

Automated indoor data collection using autonomous mobile robots, 
including UAVs, can potentially increase the collection speed and ac-
curacy of the frequent data required for construction inspections and 
tracking. One of the critical enablers for autonomous navigation is 
robust global localization. However, localization is challenging in low- 
texture, continually changing, and GPS-denied indoor construction en-
vironments. Additionally, most of the existing data capture solutions in 
the construction literature and industry are still costly. To address these 

challenges, this work proposed a low-cost, lightweight tag-based visual- 
inertial localization method to enable autonomous navigation of inex-
pensive, off-the-shelf UAVs, with a camera and an IMU, in indoor con-
struction environments. The proposed formulation is based on an on- 
manifold EKF, suitably addressing the rotation and pose topological 
structure. In this implementation, we used AprilTags and a compact 
UAV, Parrot Bebop2. Our method was validated via case studies in both 
laboratory and a photo-realistic, BIM-enabled simulation environment. 
The performance was verified through quantitative and qualitative an-
alyses. Our results showed our method could reach an RMSE of 2 − 5 cm 
in position. 

Having tags placed in known locations in the workspace, the pro-
posed method can be instantly adapted and deployed for a wide range of 
indoor localization applications while overcoming many limitations that 
vision-based techniques may face in indoor construction environments 
(e.g., perceptual aliasing and feature scarcity). However, manual tag 
placement/replacement can be tedious and should be optimized using a 
tag placement planner. The manual process of tag placement/replace-
ment may also be subject to installation errors, affecting the perfor-
mance of tag-based localization. Paper-printable tags may be subject to 
damage in indoor construction sites, which can be improved by using 
thicker paper sheets or spraying the tags instead of printing them on 
paper, where applicable. Although studying safety impacts is beyond the 
scope of this research, any safety issues that mobile robots, including 
UAVs, may bring about in indoor construction are worth investigating. 
Quantitative performance analysis of the state-of-the-art localization 
methods in indoor construction environments is another interesting 
topic to be investigated. 

In our future work, we are interested in feeding the tag-based esti-
mates in a feedback control loop to autonomously fly, perform auto-
matic data collection missions, and extend our validation in an actual 
construction setting. Another extension to this work is to consider the 
installation errors in the placement-replacement process using a sto-
chastic approach. Another direction we plan to investigate is planning 
tag placement/replacements to reduce the manual work. We are also 
interested in using our method for localizing multiple platforms in a 
construction setting. Further studies may focus on bringing the com-
putations on board or mapping the tags in the environment. 

Interested readers are referred to the supplementary videos for more 
visualizations and information regarding the experiments conducted in 
the laboratory [72] and the simulation [71] environments. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.autcon.2021.104112. 

Fig. 19. - The comparison of the absolute error in position estimates (left) and the estimated and actual trajectory on X-Y plane (right) for Euler EKF (using Euler- 
angle-based parametrization and relative camera-tag transformations as measurements) and ours (on-manifold formulation and corner point correspondences as 
measurements) in “Straight line” experiment in laboratory. The deployed tag configuration is shown in Fig. 9. 
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[33] C. Campos Martínez, R. Elvira, J.J. Gómez Rodríguez, J.M.M. Montiel, J.D. Tardós, 
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-inertial and 
Multi-map SLAM, ArXiv, 2020, https://doi.org/10.1109/TRO.2021.3075644. 

[34] T. Qin, P. Li, S. Shen, VINS-Mono: A Robust and Versatile Monocular Visual-Inertial 
State Estimator, IEEE Trans. Robot. 34 (2018) 1004–1020, https://doi.org/ 
10.1109/TRO.2018.2853729. 

[35] T. Bailey, H. Durrant-Whyte, Simultaneous localization and mapping (SLAM): part 
II, IEEE Robot. Autom. Mag. 13 (2006) 108–117, https://doi.org/10.1109/ 
MRA.2006.1678144. 

[36] A.J. Davison, I.D. Reid, N.D. Molton, O. Stasse, MonoSLAM: Real-time single 
camera SLAM, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007) 1052–1067, 
https://doi.org/10.1109/TPAMI.2007.1049. 

[37] R. Mur-Artal, J.M.M. Montiel, J.D. Tardos, ORB-SLAM: a versatile and accurate 
monocular SLAM system, IEEE Trans. Robot. 31 (2015) 1147–1163, https://doi. 
org/10.1109/TRO.2015.2463671. 

[38] H. Strasdat, J.M.M. Montiel, A.J. Davison, WITHDRAWN: visual SLAM: why filter? 
Image Vis. Comput. (2012) https://doi.org/10.1016/j.imavis.2012.08.007. 

[39] F. Boniardi, A. Valada, R. Mohan, T. Caselitz, W. Burgard, Robot localization in 
floor plans using a room layout edge extraction network, IEEE International 
Conference on Intelligent Robots and Systems. (2019) 5291–5297, https://doi.org/ 
10.1109/IROS40897.2019.8967847. 

[40] H. Peel, S. Luo, A.G. Cohn, R. Fuentes, Localisation of a mobile robot for bridge 
bearing inspection, Autom. Constr. 94 (2018) 244–256, https://doi.org/10.1016/j. 
autcon.2018.07.003. 

[41] H. Freimuth, M. König, Planning and executing construction inspections with 
unmanned aerial vehicles, Autom. Constr. 96 (2018) 540–553, https://doi.org/ 
10.1016/j.autcon.2018.10.016. 

[42] J.J. Lin, A. Ibrahim, S. Sarwade, M. Golparvar-Fard, Bridge inspection with aerial 
robots: automating the entire pipeline of visual data capture, 3D mapping, Defect 
Detection, Analysis, and Reporting, J. Comp. Civil Eng. 35 (2021) 04020064, 
https://doi.org/10.1061/(asce)cp.1943-5487.0000954. 

[43] F. Wang, J.-Q. Cui, B.-M. Chen, T.H. Lee, A comprehensive UAV indoor navigation 
system based on vision optical flow and laser FastSLAM, Acta Automat. Sin. 39 
(2013) 1889–1899, https://doi.org/10.3724/SP.J.1004.2013.01889. 

[44] M. Gheisari, J. Irizarry, B.N. Walker, UAS4SAFETY: the potential of unmanned 
aerial systems for construction safety applications, in: Constr. Res. Congr. 2014, 
American Society of Civil Engineers, Reston, VA, 2014, pp. 1801–1810, https:// 
doi.org/10.1061/9780784413517.184. 

N. Kayhani et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.autcon.2020.103131
https://doi.org/10.1016/j.autcon.2020.103131
https://doi.org/10.1016/j.aei.2019.100989
https://doi.org/10.1016/j.aei.2015.03.006
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000164
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000164
https://doi.org/10.1016/j.autcon.2019.103068
https://doi.org/10.1016/j.autcon.2019.103068
https://doi.org/10.1016/j.autcon.2018.10.009
https://doi.org/10.1186/s40327-015-0029-z
https://doi.org/10.1186/s40327-015-0029-z
https://doi.org/10.1109/JPROC.2013.2294314
https://doi.org/10.1016/j.autcon.2014.01.004
https://doi.org/10.1016/j.autcon.2014.01.004
https://doi.org/10.1016/j.autcon.2019.04.011
https://doi.org/10.1016/j.autcon.2019.04.011
https://doi.org/10.1016/j.autcon.2016.11.009
https://doi.org/10.1061/9780784480830.043
https://doi.org/10.1061/9780784480830.043
https://doi.org/10.1109/ROBOT.2010.5509920
https://doi.org/10.1109/ROBOT.2010.5509920
https://doi.org/10.1016/j.patcog.2018.09.003
https://doi.org/10.35490/ec3.2019.195
https://doi.org/10.1007/978-3-642-41610-1_71-1
https://doi.org/10.1109/ICRA.2015.7139939
https://doi.org/10.1109/ICRA.2015.7139939
https://doi.org/10.1016/j.autcon.2019.103067
https://doi.org/10.1016/j.autcon.2018.01.009
https://doi.org/10.1016/j.autcon.2018.01.009
https://www.bostondynamics.com/spot
https://doi.org/10.1061/9780784482865.025
http://stair.stanford.edu
https://doi.org/10.1007/s10776-004-1234-1
https://doi.org/10.1007/s10776-004-1234-1
https://doi.org/10.1109/INFOCOM.2014.6847960
https://doi.org/10.1109/INFOCOM.2014.6847960
https://doi.org/10.1016/j.autcon.2012.05.015
https://doi.org/10.1109/COMST.2016.2632427
https://doi.org/10.1016/j.autcon.2012.02.009
https://doi.org/10.1016/j.autcon.2012.02.009
https://doi.org/10.1109/SOFTCOM.2014.7039067
https://doi.org/10.1109/SOFTCOM.2014.7039067
https://doi.org/10.1145/2933232
https://doi.org/10.1145/2933232
https://doi.org/10.1109/ICC.2012.6363827
https://doi.org/10.1016/j.autcon.2016.05.006
https://doi.org/10.1016/j.autcon.2016.05.006
https://doi.org/10.1109/TRO.2016.2623335
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1016/j.imavis.2012.08.007
https://doi.org/10.1109/IROS40897.2019.8967847
https://doi.org/10.1109/IROS40897.2019.8967847
https://doi.org/10.1016/j.autcon.2018.07.003
https://doi.org/10.1016/j.autcon.2018.07.003
https://doi.org/10.1016/j.autcon.2018.10.016
https://doi.org/10.1016/j.autcon.2018.10.016
https://doi.org/10.1061/(asce)cp.1943-5487.0000954
https://doi.org/10.3724/SP.J.1004.2013.01889
https://doi.org/10.1061/9780784413517.184
https://doi.org/10.1061/9780784413517.184


Automation in Construction 135 (2022) 104112

20

[45] J.G. Martinez, G. Albeaino, M. Gheisari, R.R.A. Issa, L.F. Alarcón, iSafeUAS: an 
unmanned aerial system for construction safety inspection, Autom. Constr. 125 
(2021), https://doi.org/10.1016/j.autcon.2021.103595. 

[46] M. Jin, S. Liu, S. Schiavon, C. Spanos, Automated mobile sensing: towards high- 
granularity agile indoor environmental quality monitoring, Build. Environ. 127 
(2018) 268–276, https://doi.org/10.1016/j.buildenv.2017.11.003. 

[47] A. Adán, B. Quintana, S.A. Prieto, F. Bosché, An autonomous robotic platform for 
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