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Abstract: Tag-based visual-inertial localization is a lightweight method for enabling autonomous data collection missions of low-cost
unmanned aerial vehicles (UAVs) in indoor construction environments. However, finding the optimal tag configuration (i.e., number, size,
and location) on dynamic construction sites remains challenging. This work proposes a perception-aware genetic algorithm-based tag place-
ment planner (PGA-TaPP) to determine the optimal tag configuration using four-dimensional (4D) building information models (BIM),
considering the project progress, safety requirements, and UAV’s localizability. The proposed method provides a 4D plan for tag placement
by maximizing the localizability in user-specified regions of interest (ROIs) while limiting the installation costs. Localizability is quantified
using the Fisher information matrix (FIM) and encapsulated in navigable grids. The experimental results show the effectiveness of our method
in finding an optimal 4D tag placement plan for the robust localization of UAVs on under-construction indoor sites. DOI: 10.1061/JCCEE5.
CPENG-5068. © 2022 American Society of Civil Engineers.

Introduction

Autonomous mobile robots, including unmanned aerial vehicles
(UAVs), are regarded as next-generation reality-capture technology
for construction applications (Cai et al. 2019). When equipped with
cameras, these platforms allow for the automated capture of high-
quality images from user-specified locations and angles, which can
significantly enhance the performance of downstream vision-based
analytics (Hamledari et al. 2017). Robust localization is the first
and foremost necessity to enable reliable autonomous navigation
(Cadena et al. 2016). Localization is the problem of estimating a
mobile system’s pose (i.e., position and orientation) with respect to
a reference frame. Robustness in localization refers to the method’s
ability to tolerate perturbations and challenging conditions while
preserving the stability and integrity of the estimation. Thus, robust
localization entails actively considering perception requirements
and environmental information (Yi et al. 2019).

Robotic reality capture solutions deployed on outdoor sites rely
mainly on Global Navigation Satellite System (GNSS) signals for
localization in autonomous mode (Martinez et al. 2021). In GNSS-
denied indoor construction environments, most state-of-the-art
autonomous platforms (Asadi et al. 2020; Ibrahim et al. 2019;
Xu et al. 2019) rely on environment maps generated in advance
by teleoperating the platform within the workspace. However,
the layout changes with construction progress, requiring frequent
costly and tedious mapping sessions. Additionally, common char-
acteristics of indoor construction settings, such as untextured or
repetitive areas (Xu et al. 2020), dynamic or temporary objects

(Cadena et al. 2016), and reflective surfaces reduce the quality
of prebuilt maps. This approach increases the likelihood of locali-
zation failure in indoor construction applications and reduces
the system’s robustness. Furthermore, the costs of the proposed
custom-built prototypes (Asadi et al. 2020; Kim et al. 2018) and
commercial products limit their scalability and applicability in
practice.

To reduce the cost of automated indoor data collection and
address the technical challenges discussed, Kayhani et al. (2022)
previously proposed a low-cost, lightweight, versatile, tag-based
visual-inertial localization method using AprilTags. Even though
the tags themselves have almost no cost, the manual tag installation
process might become a tedious task if improperly planned
(Kayhani et al. 2020). With changes in the interior layout, some
tags may be occluded or need replacement, the target areas to be
monitored or no-fly zones may vary, and tag placement options
may change. Larger tags can be detected from longer ranges,
whereas printing them on standard-sized sheets (e.g., letter or A4)
may be more convenient and less costly. The number of tags must
be kept at a minimum to limit the amount of manual work for
placing and maintaining tags. Finally, the opted tag number, size,
and location must result in robust and high-quality tag-based
visual-inertial localization. These considerations highlight that
experience-based tag placement planning is nontrivial and time-
demanding, and may result in performance deviations.

The question arises about optimizing the tag placement/
replacement process on an indoor construction site by maximizing
localizability with a limited number of tags considering construc-
tion progress, project schedule, and safety requirements. Localiz-
ability, herein, refers to the agent’s ability to reliably locate itself
with low uncertainty and represents the estimation quality and
robustness. This work addressed the problem of 4D tag placement,
which aims to find the optimal tag configuration (i.e., number, size,
and location) over time, considering the construction schedule
and safety constraints (e.g., no-fly zones). The optimal solution
maximizes the tag-based visual-inertial localization quality and
certainty (i.e., tag-based localizability) while minimizing installa-
tion costs. The pose estimation certainty can be quantified using
the Fisher information (Zhang and Scaramuzza 2019). Therefore,
the maximum tag-based localizability is achieved by devising a tag

1Ph.D. Candidate, Dept. of Civil and Mineral Engineering, Univ. of
Toronto, Toronto, ON, Canada M4S A4 (corresponding author). ORCID:
https://orcid.org/0000-0001-8139-7254. Email: navid.kayhani@mail
.utoronto.ca

2Associate Professor, Institute for Aerospace Studies, Univ. of Toronto,
North York, ON, Canada M3H 5T6.

3Professor, Dept. of Civil and Mineral Engineering, Univ. of Toronto,
Toronto, ON, Canada M4S 1A4.

Note. This manuscript was submitted on June 28, 2022; approved on
October 1, 2022; published online on December 21, 2022. Discussion per-
iod open until May 21, 2023; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Computing in Civil
Engineering, © ASCE, ISSN 0887-3801.

© ASCE 04022060-1 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2023, 37(2): 04022060 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
A

SA
 I

ns
tit

ut
io

n 
Id

en
tit

y 
on

 0
4/

22
/2

4.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/JCCEE5.CPENG-5068
https://doi.org/10.1061/JCCEE5.CPENG-5068
https://orcid.org/0000-0001-8139-7254
mailto:navid.kayhani@mail.utoronto.ca
mailto:navid.kayhani@mail.utoronto.ca
http://crossmark.crossref.org/dialog/?doi=10.1061%2FJCCEE5.CPENG-5068&domain=pdf&date_stamp=2022-12-21


configuration with the highest expected information gained from
tag measurements. Minimizing the installation costs is obtained
by limiting the number of tag placements, replacements, and re-
movals during the project.

Tag placement planning can be viewed as a constrained combi-
natorial optimization problem. It maximizes a localizability utility
function within user-specified regions of interest (ROIs) while min-
imizing a cost function to penalize tag network modifications. ROIs
include onsite target work zones and travel paths connecting these
target locations with different importance levels. The utility func-
tion represents the likelihood of getting high-quality tag measure-
ments by evaluating the attainable photometric information at
each query point within ROIs. In other words, utility is determined
not only by the tags’ visibility but also by their informativeness.
Minimizing the number of tag placements, replacements, and re-
movals is obtained by associating a negative utility (i.e., cost) for
adding, substituting, or removing tags in the network.

This study addresses the gap in the literature by proposing a
4D building information model (BIM)-based solution for the auto-
mated design of tag placement plans, considering indoor construc-
tion dynamics. A perception-aware genetic algorithm-based tag
placement planner (PGA-TaPP) is proposed to find the optimal
tag configuration. It maximizes localizability while minimizing
the total cost of tag installations by incorporating the project sched-
ule and safety requirements. PGA-TaPP considers multiple project
phases, tag placement heights, flight altitudes, and localizability
metric functions. The proposed method inputs the project’s 4D
BIM, ROIs, no-fly zones, and user-specified design parameters.
Each project comprises construction phases, representing project
snapshots at different times. The site layout geometry of every
phase is automatically extracted. Each phase is horizontally sliced
to generate 2D scenes corresponding to different flight altitudes.
Scenes, made up of polygons and ROIs, are further quantized to
obtain discrete tag placement options and UAV query poses.
The gainable information from query poses in the workspace is
quantified using the Fisher information matrix (FIM). Finally, the
developed genetic algorithm engine optimizes the tag configuration
throughout the entire project such that (1) the overall tag-based
localizability within ROIs is maximized; (2) the tag configura-
tion adjustments are minimal; and (3) safety requirements are sat-
isfied. The main contributions of this work are (1) proposal of a
perception-aware 4D tag placement planning method to find the
optimal tag number, size, and location for supporting robust
tag-based visual-inertial localization on indoor sites considering
localizability, project schedule, installation costs, and safety;
(2) quantification of attainable information for 6-DoF tag-based
visual-inertial localization using Fisher information with various
metric functions; and (3) quantitative evaluation of the perfor-
mance of the proposed tag networks in a BIM-enabled simulation
environment.

Background

Automated Data Collection Using Mobile Robots

Frequent, reliable, and high-quality data from the job site are nec-
essary for a systematic performance evaluation of architecture, en-
gineering, and construction (AEC) projects (Moselhi et al. 2020).
With advances in computer vision-based solutions, RGB images
are considered one of the most valuable data modalities for auto-
mating inspection and monitoring tasks (Pal and Hsieh 2021).
However, manual visual data acquisition is time-consuming, error-
prone, and costly (Teizer 2015). In the past decade, automated data
collection using autonomous mobile robots has gained momentum
in the AEC community. Previous studies have extensively reviewed
these applications (Cai et al. 2019; Ham et al. 2016; Rakha and
Gorodetsky 2018). Outdoor visual data collection for infrastructure
inspection (Freimuth and König 2018; Lin et al. 2021), earthwork
surveying (Siebert and Teizer 2014), quality control (Kielhauser
et al. 2020), safety inspection (Gheisari et al. 2014; Martinez et al.
2021), as well as indoor progress monitoring (Hamledari et al.
2017) are some examples of the extensive use of UAVs in construc-
tion applications. However, UAVs in these studies were remotely
controlled or relied on GNSS signals for autonomous flight.
Autonomous ground robots were also deployed indoors for envi-
ronmental air quality (Jin et al. 2018), construction progress mon-
itoring (Asadi et al. 2020), semantic modeling (Adán et al. 2020),
and building retrofit performance simulation (Mantha et al. 2018).
Table 1 provides some examples of the applications of mobile
robots in automated data collection in the AEC industry.

Indoor Localization in Construction Settings

Indoor construction sites are unique GNSS-denied environments.
These settings present technical difficulties for many localization
methods. Wave-based methods such as wireless local area networks
(WLAN) (Deasy and Scanlon 2004), radio-frequency identification
(RFID) (Liu et al. 2014; Razavi and Moselhi 2012), and ultra-
wideband (UWB) (Witrisal and Meissner 2012) lose their accuracy
and are unreliable in indoor construction settings due to interfer-
ence with construction materials (e.g., steel) (Ibrahim and Moselhi
2016). A common technique for navigating unknown workspaces
is to concurrently map the environment and localize the agent
within the built map, referred to as simultaneous localization and
mapping (SLAM). Modern SLAM architectures constitute a back-
end state estimation component supported by a sensor-dependent
front end for feature extraction, data association, and loop closure
(i.e., recognizing a previously observed place) (Cadena et al. 2016).
Loop closure is necessary to reset the localization error and esti-
mate the actual topology of the environment in the map. SLAM
reduces to odometry without loop closure, which drifts over time
and is unreliable for long-term navigation.

Table 1. Automated data collection using mobile robots

Application areas Platform Localization Indoors Application examples

Infrastructure inspection Aerial GNSS No Freimuth and König (2018)
Bridge inspection Aerial GNSS No Lin et al. (2021)
Earthwork surveying Aerial GNSS No Siebert and Teizer (2014)
Quality control Aerial GNSS No Kielhauser et al. (2020)
Safety inspection Aerial GNSS No Martinez et al. (2021)
Progress monitoring Aerial + ground Prebuilt maps Yes Asadi et al. (2020)
Environmental air quality Ground Prebuilt maps Yes Jin et al. (2018)
Semantic modeling Ground Prebuilt maps Yes Adán et al. (2020)
Building retrofit performance Ground AprilTags Yes Mantha et al. (2018)
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In recent decades, significant research has been conducted to
improve localization and state estimation accuracy and effici-
ency in GNSS-denied environments, with promising outcomes
(Delmerico and Scaramuzza 2018). However, these results have
been demonstrated only for particular domains and given a hard-
ware-environment-performance combination (Cadena et al. 2016).
For instance, successful SLAM/mapping missions with sufficient
accuracy (<10 cm) in an office building involving a ground robot
with wheel encoders, a laser scanner, and enough computational
and power resources are achievable (Mur-Artal et al. 2015). How-
ever, performing SLAM/mapping may fail in highly dynamic envi-
ronments with perceptual aliasing and feature scarcity (Cadena
et al. 2016), and is considered resource-intensive for large environ-
ments (Muñoz-Salinas et al. 2019).

Tag-Based Visual-Inertial Localization

Fiducial markers such as AprilTags (Wang and Olson 2016) are
planar artificial landmarks consisting of patterns. They provide ro-
bust data association and are ideal for featureless or repetitive areas
common in construction settings. Tags are often employed for local
positioning tasks such as map initialization and UAV landing
(Brommer et al. 2018). For long-term localization, visual-SLAM
based on only tags (Muñoz-Salinas et al. 2019) and coupled with
keypoints (Muñoz-Salinas and Medina-Carnicer 2020) were pro-
posed. Relying only on vision reduces their reliability in the face
of occlusion or motion blur. Tag-based visual-inertial localization
(Kayhani et al. 2022) is an inexpensive alternative to enable
autonomy for low-cost UAVs to be deployed for automated data
collection in indoor construction settings. This method uses tags
with known sizes and locations, jointly acting as a quasi-map of the
environment. A 3D position accuracy as low as 2–5 cm was ob-
tained in the experiments conducted in the laboratory and simula-
tion settings. Our proposed formulation is based on an on-manifold
extended Kalman filter (EKF), suitably addressing the topological
structure of the rotation and pose groups in 3D. It integrates two
sources of information to yield consistent 6-DoF global pose esti-
mates in real-time: (1) odometry-based rotational and translational
velocities; and (2) tag-based visual measurements

Motionmodel xk ¼ fðxk−1;uk−1Þ þ wk−1 ð1Þ

Measurement model yk ¼ gðxkÞ þ nk ð2Þ
An EKF involves two steps as a recursive filter: prediction and

correction. The prediction step propagates the current state mean
and covariance estimates forward in time. The current pose xk
is predicted based on the previous pose estimate xk−1 and the
odometry-based velocities (inputs) uk−1 considering a zero-mean
Gaussian noise wk−1 through a motion model (fð·Þ) [see Eq. (1)].
The predictions are updated in a correction step in which tag
measurements yk are incorporated, and the posterior mean and
covariance are estimated. The correction is based on a measurement
model (gð·Þ), perturbed by a zero-mean Gaussian noise (nk)
[Eq. (2)]. In a related study (Neunert et al. 2016), a tag-based
visual-inertial EKF-SLAM was proposed. However, the proposed
filter-based SLAM can only map a limited number of tags in real-
time, limiting its application on large construction sites.

Tag-Based Localization Quality and Fisher Information

Considering the reliability of autonomous navigation at the planning
stage prioritizes tag configurations that can result in high-quality
localization. The observed tag’s information must be quantified
to incorporate the knowledge about tag-based visual-inertial

localization quality. Fisher information is often used to represent
this knowledge (Zhang and Scaramuzza 2019). According to the
Cramér-Rao lower bound (CRLB), the covariance of any unbiased
estimate x, given a set of measurements y, is bounded by the inverse
of the FIM (Barfoot 2017), denoted as IxðyÞ. In other words, the
measurement information about the parameter to be estimated es-
tablishes a fundamental limit on how confident the estimates can
be, regardless of the form of the estimator, and the FIM quantifies
this notion. Because localization is essentially a pose estimation
problem, the FIM can be applied to quantify the estimation uncer-
tainty and, therefore, viewed as a metric for localization quality
quantification.

Given that the measurement process of the state (i.e., 6-DoF
UAV’s pose) can be described as a likelihood function pðyjxÞ,
the observed Fisher information can be defined as (Barfoot 2017):

IxðyÞ ¼ E

��∂ lnpðyjxÞ
∂x

�
T
�∂ lnpðyjxÞ

∂x
��

ð3Þ

Assuming zero-mean Gaussian noise with constant covariance
N ð0;ΣÞ for measurements, Eq. (3) can be rewritten as (Wang and
Dissanayake 2008):

IxðyÞ ¼ ðGxÞTΣ−1Gx ð4Þ

where Gx = Jacobian of the measurement model in Eq. (2)

Gx ¼ ∂g
∂x ð5Þ

Methods

Overview

In this work, 4D-BIM is utilized to retrieve the project’s spatial-
temporal information and incorporate the dynamic nature of indoor
construction environments. As illustrated in Fig. 1, the proposed
method inputs the project 4D-BIM in Autodesk Revit (Autodesk,
Inc., San Rafael, California) or Industry Foundation Classes (IFC)
format to address the ease of design and facilitate interoperability.
The 4D-BIM includes the 3D model, project schedule, and ROIs
for the time-stamped construction phases. Other inputs include the
UAV’s camera specifications, tag information, and design factors
such as planning and optimization parameters.

The Initialization and Geometry Extraction module automati-
cally extracts the type, geometry, positioning, and relationship
of the relevant elements for each time-stamped construction phase,
converts them to a set of 2D polygons, and stores them as separate
files. These files are then fed into the proposed PGA-TaPP to find
the optimal tag configuration that supports robust tag-based visual-
inertial localization, considering the project progress and schedule.
The extracted geometry of the site layout, ROIs for each phase, and
input parameters are fed to the Modeling and Problem Formulation
module. These parameters include the UAV’s camera specifications
[e.g., depth of view (DoV), lens parameters, and vehicle-to-camera
transform], tag information (e.g., available sizes, installation heights,
maximum number), and planning parameters (e.g., flight altitudes,
discretization resolutions, and no-fly zones). A set of 2D scenes
corresponding to each flight altitude is first generated, each of
which comprises polygons representing modified ROIs and build-
ing elements. The polygons are further quantized to obtain grids,
(i.e., discretized navigable areas) and tag placement locations.
The discretized navigable areas constitute constraint-free grid cells
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within ROIs at each flight altitude. Tag placement options are a dis-
crete set of feasible tag installation locations in each phase.

To calculate the utility function for a solution (i.e., tag place-
ment network) in a particular time-stamped construction phase,
PGA-TaPP quantifies the quality of expected tag measurements
in discretized UAV orientations within every ROI cell. It first
identifies the tags visible from each pose and assigns a utility to
the given query pose. The utility of the query pose is calculated
separately for each visible tag and is a function of the FIM (more
discussion can be found in the section “Scoring Metric Functions
for Localizability Evaluation”). A lookup table is then constructed
to efficiently search the solution space based on the identified dis-
cretized navigable areas, the tag placement options, and the plan-
ning parameters. The created lookup table allows for efficient
querying of the utility for any UAV pose and tag placement option.
The table can be constructed entirely prior to GA-based optimization
or as the optimization process is performed. In the former mode, the
Detectability Analysis module extensively explores the tag place-
ment possibilities for efficient exploitation in searching the solution
space by the optimization module, denoted as GA Engine. Finally,
the GA Engine finds the tag configuration for each construction
phase by maximizing the vehicle’s localizability with minimal tag
configuration modifications throughout the project. The result-
ing tag configuration for each time-stamped construction phase is
visualized for enhanced communication.

Initializations and Geometry Extraction

The Initializations and Geometry Extraction module takes the proj-
ect’s 4D-BIM model as input. This module uses an application
programming interface (API) to handle Revit files and relies on
open-source libraries to read IFC files in the back end. Supporting
both formats is essential because IFC is a neutral schema that al-
lows interoperability (Laakso 2012), yet is arguably more suitable

for information retrieval than design. In contrast, users may need to
modify the planning constraints (e.g., ROIs or no-fly zones) or in-
corporate potential discrepancies between BIM and the actual site
conditions throughout the project. The discrepancies can be caused
by modeling errors, infrequent 4D-BIM updating, or temporary site
objects. These changes can be made more conveniently in a mod-
eling tool with a graphical user interface such as Autodesk Revit.

The project is first divided into time-stamped construction
phases (i.e., T1;T2; : : : ; Tm) according to a given data collection
mission plan. The algorithm checks if the BIM file has a Project
Base Point to set the origin of the global coordinate system. If no
base point is found, an arbitrary but consistent base point is chosen,
for example, the bottom left corner of the building envelope. For
each construction phase, for example, Ti ði ∈ ½1; 2; : : : ;m�Þ, it
automatically selects the relevant building elements (e.g., walls,
partitions, doors, windows, columns), ROIs, and no-fly zones. The
indoor site layout at Ti is further divided into discretized altitudinal
layers to account for the UAVs’ 3D maneuver and its impact on
camera field of view (FoV) and tag detectability (Fig. 2). The navi-
gable altitude of the UAV might also change with construction
progress. For example, installing suspended ceilings or electrical
fixtures reduces the maximum safe flight altitude (Hamledari et al.
2021). Thus, the unnavigable areas at each altitudinal layer are
added to no-fly zones at the corresponding altitude. Finally, the in-
door site layout at each layer is reduced to a set of 2D polygons,
including building elements, ROIs, and no-fly zones.

Perception-Aware Genetic Algorithm-Based Tag
Placement Planner

PGA-TaPP involves four main steps: (1) camera and scene model-
ing; (2) optimization formulation and localizability metric estab-
lishment; (3) detectability analysis and utility calculations: and
(4) GA-based optimization. The first two steps are included in

ROI @ ROI @ ROI @ ROI @

Initializations and
Geometry Extraction

Objects and
ROIs Geometry

Modeling and Problem
Formulation

Detectability Analysis

GA Engine

Discretized
Navigable

Areas

Tag
Placement

Options

Tag Info

Planning
Parameters

UAV’s
Camera Info

GA
Parameters

4D BIM
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ning
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s
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Utility
Lookup Table

Tag Configuration for
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Fig. 1. Overview of proposed method.
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the Modeling and Problem Formulation module, and Detectability
Analysis and GA Engine handle the rest.

Modeling and Problem Formulation
UAV specifications, tag information, planning parameters, and the
extracted geometric information from building elements, ROIs,
and no-fly zones are fed to the first module in PGA-TaPP for scene
modeling and problem formulation. This section discusses the
module’s components: camera and measurement models, scene
modeling, and scoring metric formulation.
Camera and Measurement Models. The UAV’s camera is repre-
sented as a pinhole camera model with given intrinsics (e.g., optical
center, focal length, and field of view) and the camera-to-vehicle
transformation. This allows for covering different robotic platforms
with arbitrary camera configurations. Without loss of generality,
it is assumed that the UAV has only one camera on board for the
rest of this discussion. The 3D coordinates of the nth corner point
(e.g., n ∈ f1; 2; 3; 4g for square markers) of tag j expressed in the

camera frame, p
pτj ;n

c
c , can be written as (Kayhani et al. 2022):

zτ j;nðxÞ ¼ p
pτj ;n

c
c ¼ DTTcvTvwpw

τ j;n ¼ ½X Y Z �T ð6Þ

where pw
τ j;n = homogenous coordinate of the nth corner point of tag

j in the world frame; and Tvw ¼ frvww ;Cvwg ∈ SEð3Þ = vehicle’s
pose expressed in the world frame and the state to be estimated
(x). Additionally, Tcv is the vehicle-to-camera transformation
known from calibration, and DT ¼ ½13j03×1� is a dilated identity
matrix to refine the matrix dimensions.

Denoting the pinhole camera model that projects p
pτj ;n

c
c into a

rectified image as sð·Þ, the measurements (i.e., the pixel coordinates
of the nth corner point of tag j) are obtained as (Kayhani et al.
2022):

gτ j;nðxÞ ¼ sðzτ j;nðxÞÞ ¼
�
u

v

�
¼ Dp

2
64
fu 0 cu

0 fv cv

0 0 1

3
75 1

Z

2
64
X

Y

Z

3
75 ð7Þ

where gτ j;nðxÞ = noise-free measurement model; cu and cv =
optical offsets (principal point); fu and fv = camera focal lengths;
and Dp ¼ ½12j02×1� = dilated identity matrix.

Before localizability quantification for a pose, it is essential to
identify the tags detectable in the image captured by the vehicle at
that query pose. A tag can be detected from Tvw if (1) it can be

observed from the vehicle position rvww , considering occlusions;
and (2) it is within the camera FoV. The former is obtained using
visibility analysis and generating a visibility graph (Lozano-Pérez
and Wesley 1979) to identify visible tag corners (Pτ jw). The latter is
achieved by projecting the tag corners onto image plane [Eq. (7)]
and checking whether the projected pixel coordinates π ¼ ½u; v�T
are within the image boundary I [Eq. (8)]. More details are pro-
vided in the “Detectability Analysis” section

vðTvw;Pτ jwÞ ¼
�
1; π ∈ I

0; π ∈= I
ð8Þ

Scene Modeling. As shown in Fig. 3, a project is divided into
phases, corresponding to snapshots of the project. Accounting
for the 3D maneuver of UAVs, each phase is subdivided into alti-
tudinal layers (Fig. 2), considering the safety of operation. Accord-
ingly, a 2D scene is generated for each altitudinal layer to model the
given indoor site at time Ti. Each scene initially consists of 2D
polygons representing building elements, ROIs, and no-fly zones.
The building elements collectively correspond to inside and outside
boundaries, obstacles, and surfaces for tag installation. The ROI
polygons specify the geometry within which the localizability must
be maximized, whereas no-fly zones represent areas where the
UAV is prohibited from operating. The difference between ROI and
no-fly zone polygons is found for each scene to find the navigable
area, denoted as modified ROIs.

Fig. 2. Altitudinal layers and detected tags in the image stream captured at each flight altitude.
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Fig. 3. Hierarchy of spatial objects in PGA-TaPP.
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Modified ROI polygons are then quantized into grid cells. The
default grid cell size is set to 0.5 × 0.5 m, considering compact
UAVs’ dimensions plus a clearance buffer to guarantee safety.
The center of the grid cells constitutes the query points for evalu-
ating localizability. We note that the query point corresponds to
the vehicle position, and the camera pose is obtained using the
inputted vehicle-to-camera transform (Tcv). Our approach finds
the optimal tag network from a discrete space of possible tag place-
ment locations. Tag placement options are determined based on
user-specified installable surfaces, discretization resolution, and
tag size(s) such that tags do not overlap. Considering practicality,
economy, and ease of installation, the potential tag placement
heights are limited to those at which tags can be installed without
extra apparatus and additional labor input. The algorithm for find-
ing quantized tag placement options in 2D is summarized in Fig. 4.
The 2D options found are then added to each level to consider
multilevel tag placement (Fig. 2).
Fisher Information Matrix for Tag-Based Visual-Inertial
Localization. This section focuses on formulating the Fisher infor-
mation for a single pose in on-manifold tag-based visual-inertial
localization. Calculating the FIM [Eq. (4)] for a single pose x ¼
Tvw requires calculating the Jacobian of the observation of nth cor-
ner point of tag j as in Eq. (9). The Jacobian in Eq. (9) is calculated
using two factors defined in Eqs. (10) and (11). These factors come
from the introduced nonlinearities in the measurement model
[Eq. (7)] linearized about their mean [for more details on Jacobian
derivations, see (Kayhani et al. 2022)]

Gτ j;n ¼ ∂gτ j;nðxÞ
∂x ¼ ∂

∂x ðsðz
τ j;nðxÞÞÞ ¼ Sτ j;nZτ j;n ð9Þ

Sτ j;n ¼ Dp

2
664
fu 0 cu

0 fv cv

0 0 1

3
775

2
666664

1

Z
0 − X

Z2

0
1

Z
− Y
Z2

0 0 0

3
777775

ð10Þ

Zτ j;n ¼ DTTcvðTvwpw
τ j;nÞ⊙ ð11Þ

Calculating Zτ j;n in Eq. (9) requires introducing ð·Þ⊙ operator
(Barfoot 2017) that acts on 4 × 1 points in homogenous coordinates
following Eq. (12), where the first three components (ε ∈ R3) are
expressed in the skew-symmetric matrix format [Eq. (13)]

p⊙ ¼

2
66664

sx

sy

sz

s

3
77775

⊙

¼
�
ε

η

�⊙
¼

�
η1 −ε∧
0T 0T

�
∈ R4×6 ð12Þ

ε∧ ¼

2
64
εx

εy

εz

3
75
∧

¼

2
64

0 −εz εy

εz 0 −εx
−εy εx 0

3
75 ð13Þ

The FIM for tag j observed at Tvw is calculated using Eq. (4)
and denoted as Iτ jðTvwÞ. Let T ⊂ fτ1; τ 2; : : : ; τMg be the set of
all tags detected in the image taken at the same vehicle pose, and
we have

FIMðTvwÞ ¼
Xτ j∈T
τ j

Iτ jðTvwÞ ð14Þ

Scoring Metric Functions for Localizability Evaluation. The
FIM is incorporated in the proposed optimization formulation to
consider localization quality and quantify vehicle localizability. In
any GA-based optimization, a mechanism is required to determine
the utility (i.e., fitness) of the generated solutions (i.e., population),
such that those with higher values survive and others are eliminated
(i.e., selection). Therefore, the information matrix is mapped to a
single scalar using a nonnegative metric function Mð·Þ. This work
incorporates the log-determinant, the trace, and the smallest eigen-
value as metric functions directly obtained from the FIM. Some
fundamental properties of these metric functions are briefly re-
viewed to provide more intuition. The FIM determinant can be
a proper information measure because its absolute value geomet-
rically represents the volume of square matrices in n dimensions.
The larger the volume, the more informative the measurement will
be in the case of the FIM. In this work, the transformed logarithm of
the determinant is used to yield more numerical stability. The trace
of a matrix is equal to the sum of its eigenvalues, and eigenvalues
describe how a linear transformation stretches the space in a par-
ticular direction. Maximizing trace, also known as A-optimality,
guarantees that the majority of the state space dimensions are con-
sidered. In a similar sense, the smallest eigenvalue represents the
least affected direction. It corresponds to E-optimality, aiming to
improve the worst-case variances of the parameter set by maximiz-
ing the smallest eigenvalue of the FIM.

Detectability Analysis
To quantify the expected attainable information from a query pose
Pqðxq; yq; zq; θqÞ, it is essential to predict the detectable tags from
that pose. The necessary condition for a tag to be detectable is its
visibility from the query pose. For square tags such as AprilTags, it
is required to have all four corners in view to guarantee visibility
(Kayhani et al. 2020); that is, the corners should be within the cam-
era’s FoV and not occluded. Occlusion is found based on the cam-
era line of sight, depending only on the camera and tag position.
However, being within FoV depends on the vehicle’s pose and cam-
era intrinsics. A minimum side length threshold (SLmin) is defined
to reliably predict the detectability of tags (Fig. 5). The AprilTag
detection algorithm (Wang and Olson 2016) has a preset threshold
for rejecting small line segments (i.e., 4 pixels) in its line-fitting
module to minimize the chance of false-positive tag detections.
It was experimentally observed that the minimum side length of
the tag for reliable detections in practice is 15–20 pixels (Kayhani
et al. 2019).

Fig. 4. Algorithm for identifying quantized tag placement options
in 2D.
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Genetic Alorgithm Engine
Finding the 4D tag configuration that maximizes the localizability
with the lowest installation costs, considering indoor site dynamics,
is a constrained combinatorial optimization and nondeterministic
polynomial-time (NP)–hard problem. A genetic algorithm (GA) is
adopted in this work to tackle this optimization problem due to its
advantages: (1) it can identify near-optimal solutions; (2) it has a
low tendency to get stuck at local optima due to mutation; (3) it
could be parallelized for efficient concurrent computations; and
(4) it can handle multiobjective fitness functions and flexible
policies. The GA-based optimization in PGA-TaPP is handled
by an engine, developed with a modular architecture and parallel
computation capabilities. The latter is a highly desirable feature in
GA-based optimization, because the fitness function calculations
are often the bottleneck. The former allows for deploying different
fitness functions and GA operators such as selection, mutation, and
crossover.

The first requirement for employing GA-based optimization is
defining a genetic representation of a feasible solution to the prob-
lem (i.e., chromosomes). In this work, chromosomes are structured
as a sequence of elements (i.e., genes) representing the collection of
all tag placement options in all construction phases (Fig. 6). Each
gene is associated with a global identifier, a tag location ID (ij),
unique among construction phases. A location ID ij corresponds
to tag location i in construction phase Tj, which can point to a fea-
sible or infeasible tag placement option at Tj depending on the site
layout. For example, if a wall is built at Tm, then the tag options
corresponding to that wall are infeasible for the previous phases.
Genes can take any nonnegative integer value between zero and
the number of tag sizes (τ ij ∈ ½0; ns�). Zero corresponds to no tags
placed at the corresponding location, while any integer greater than

zero embodies the installation of a particular tag size. If only a sin-
gle tag size is available, the chromosomes will reduce to binary.

To determine the best solution (fittest chromosome) in each iter-
ation (population), a mapping (fitness function) is needed to assign
a score (fitness score) to the generated solutions by the GA. The
fitness score for a given chromosome is calculated based on a utility
(U) that maximizes localizability and a cost (J) that minimizes the
installation costs by penalizing changes in the network in and
between phases, as follows:

Score ¼ U − J ð15Þ

For any given tag configuration, the gridwise utility matrix
for roi ∈ ROI in phase Ti is denoted as Uroi and obtained using
Eq. (16). This requires estimating the expected FIM for each query
cell cqðxq; yqÞ and mapping the obtained matrix value to a scalar
using scoring metric function Mð·Þ. Estimating the FIM for
cqðxq; yqÞ involves determining the FIM (Fig. 5) for all discrete
query poses in each scene s ∈ S, corresponding to the altitudinal
layer zq, with discrete yaw angles θq quantized by a user-specified
rotational step (Δθ) (e.g., 5°). By calculating the gridwise utility,
the algorithm respects the spatial structure of the grid cells. Finally,
the phase UTi

and the total utility U are found by aggregation
using Eq. (17), where Iroi is a relative importance factor associated
with roi

Uroi ¼
Xs∈S
zq

Xθq∈θ
θq

MðFIMðxq; yq; zq; θqÞÞ; ∀ cqðxq; yqÞ ∈ roi

ð16Þ

U ¼
Xm
i¼1

UTi
; UTi

¼
Xroi∈ROI

roi

Iroi × sumðUroiÞ ð17Þ

Utility calculations can be coupled or decoupled with the main
GA optimization flow. When coupled, the tag placement options
are explored as the current chromosome is evaluated (Fig. 7).
The FIM for each query pose and tag location ID pair is calculated
once in exploration and stored in a hash lookup table for efficient
exploitations. The entire tag options in Ti can be exhaustively ex-
plored prior to optimization as an alternative. In both cases, parallel
processing techniques were used to increase exploration efficiency.
However, the decoupled approach allows for normalizing the
gridwise utility by the maximum utility obtainable from the grid,
enhancing score interpretability and facilitating cost parameter as-
signments. The maximum utility is obtained when all tag placement
options are occupied. Normalizing the gridwise utility brings the
utility between zero and one, represents the utilized capacity of
each cell, and allows for easier comparisons and interpretability

J ¼ wplc

�Xns
i¼1

nplci
αi

þ nrmv

λrmv
þ λrplnrpl

�
; 0 < αi; λrmv;λrpl ≤ 1

ð18Þ

Fig. 5. Algorithm for tag detectability analysis and FIM calculations
for a single UAV pose and tag.

Fig. 6. Schematic chromosome structure containing tag placement options for a project withm phases [shaded (gray) genes indicate the infeasible tag
placement option at each construction phase].
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wplc ¼ Smin × Pc × ncells ð19Þ

The cost function J penalizes adding extra tags to the network
by expecting a minimum utility contribution. It also accounts for
the sequential relation between construction phases by considering
the entire project (i.e., chromosome) and penalizing the unneces-
sary changes in the tag network over time. The cost is a function of
the number of placements (nplc), replacements (nrpl), and removals
(nrmv) throughout the entire project [Eq. (18)]. It assumes that tags
need replacements every k phases (e.g., due to damages or being
covered), and the number of available tag sizes is ns. An accessibil-
ity coefficient (0 < αi ≤ 1) is defined for each tag size to account

for its practicality. The tag size with the unit accessibility coeffi-
cient is denoted as the project reference tag. The minimum utility
contribution of a single reference tag is denoted as wplc, while λrmv
and λrpl represent the relative weights for tag removals and replace-
ments, respectively. Thanks to the normalized gridwise utility cal-
culations, wplc can be specified as the minimum score (Smin) that Pc
percent of the cells are expected to gain [Eq. (19)].

As depicted in Fig. 7, GA-based optimization begins with read-
ing input data, including tag placement options, navigable grid
cells, and visibility graphs for senses in each construction phase.
Then, a random population of chromosomes is generated for all
tag placement options across all construction phases. Next, the

Create a random population of binary/non-

binary chromosomes of all tag options

Sort chromosomes based on fitness value and

add the fittest pair to the next generation

Crossover: recombine the genes in chromosome

pairs

Selection: select chromosome pairs based on

fitness value to create the next generation

Mutation: mutate the genes in chromosome

pairs

Return fittest chromosomes of the survived

population

[Convergence

criteria are met]

Calculate chromosome

utility

«For each chromosome»

Retrieve activated tag

location IDs

Read input data

Calculate fitness score

Calculate chromosome cost

«For each const. phase »

Load tag placement options and

discretized navigable area

Load visibility graph

Initialize the scene

«For each tag loc. ID»

Look up utility

Find in-range visible grid

cells

«For each const. phase »

«For each cell»

«For each alt. layer»

Expansion node Activity Merge Decision Final node Initial node

«For each θ»

Calculate FIM

Update lookup table

Add tag to explored

[No]

[Yes]

[Explored]

[Feasible]

[YES]

[NO]
[Yes]

[NO]

Fig. 7. UML activity diagram of GA engine.
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activated tag location IDs for each chromosome (i.e., nonzero
genes) are identified. The utility is directly looked up from the hash
table if they are already explored. Otherwise, it explores the scenes
of all construction phases to obtain the utilities while updating the
table for later exploitations. The fitness score for each chromosome
in the population is calculated by incorporating the cost. The fittest
pair is found and added to the next generation by sorting the
population by score. The next generation’s population is created
by performing selection, crossover, and mutation operations.
The selection operator randomly selects a pair of chromosomes
whose fitness values weigh the selection probability. The crossover
switches segments of the genes in selected pairs to create a new
offspring based on different techniques (e.g., one-point, two-point,
and uniform). The mutation creates a minor random tweak in the
offspring chromosomes (e.g., shuffling and flipping) to introduce
diversity in the population. Finally, the fittest chromosomes are
returned if the termination condition is met (e.g., the maximum
number of iterations).

Validation

The proposed method was implemented in Python 3.8 with process-
based parallelism. A sample model of a 64-m2 unit in its early con-
struction stages was chosen as an exploratory case. As depicted in
Fig. 8, the project has three phases with identical ROIs. Moreover, a
project of size 470 m2 (Fig. 10) was incorporated to further inves-
tigate the proposed method’s capability in handling large projects.
The experiments were carried out in a BIM-enabled, photo-realistic
simulation environment, enabling safe and efficient tests supported
by absolute ground truth data. The simulation tool was developed on
top of Parrot-Sphinx 1.2.1 (Parrot Drones SAS, Paris) and Gazebo,
the open-source 3D robotics simulator in the robotic operating sys-
tem (ROS) (Quigley et al. 2009). It was shown that the simulation
experiments accurately mimic real-world experiments conducted in
controlled laboratory environments (Kayhani et al. 2022). The plat-
form used in the experiments was Parrot Bebop2, a compact, inex-
pensive UAV. This section addresses several questions. (1) How
effectively does the proposed method maximize localizability and
enhance robustness? (2) How do different metric functions perform?
(3) How well can the proposed cost function avoid unnecessary
changes in the 4D tag placement of a multiphase project? (4) What

are some suggested values for the main parameters in PGA-TaPP?
(5) How well does the method scale up to large projects?

Experiment Setup

Localizability Experiments
The root-mean-square error (RMSE) in 3D position estimates in
different scenarios was compared to investigate the effectiveness
of the proposed utility and candidate metric functions in maximiz-
ing localizability. The optimal configuration was found in each ex-
periment based on a certain maximum number of tags and different
metric functions, including FIM- and non-FIM-based. Based on
previous observations (Kayhani et al. 2020), larger tags in the im-
age often result in more accurate localization. To investigate this
hypothesis, the area of the detectable tags in the image was incor-
porated as an alternative to the FIM to compute utility. A semiran-
dom algorithm (denoted as random) was implemented as a baseline
for comparison. The random algorithm generates 100 feasible tag
configurations and returns the one with the highest score. Finally,
the configuration in which all tag placement options are occupied
determines the RMSE’s lower bound for tag-based localization.
Due to the limited camera FoVand line-of-sight, the measurements’
quality and quantity depend on the vehicle’s pose. Therefore, the
RMSE may differ depending on the UAV’s trajectory. Accordingly,
we limited our investigations to three planar trajectories that are
common maneuvers in automated indoor construction data collec-
tion: (1) Crab Walk (CWK); (2) Look Straight Ahead (LSA); and
(3) Spinning (SPN) (Fig. 9).

The localizability experiments consider a scenario with a single
phase, flight altitude, tag installation height, and tag size. In these
experiments, the project’s 3D BIM was imported into the simula-
tion environment, where tag models were automatically generated
and populated based on the 85 tag placement options identified in
Modeling and Problem Formulation. The UAV autonomously fol-
lowed the paths in Fig. 9, where the odometry and the camera feed
were recorded for further analyses. The 3D position of the UAV
was estimated using our tag-based localization, given the tag con-
figuration obtained in each scenario. These tests concentrate on
phase T3 in Fig. 8, where the flight altitude and tag installation
height were set to 1.5 m and only tags of size 23 × 23 cm were
assumed to be available.

Fig. 8. (a) Sample project with three phases at top, and plan view with ROIs hashed and 3D models, bottom; and (b) UAV in the simulation
environment, bottom, and its camera image stream with detected tags at top.
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Cost Function Experiments
An optimal 4D tag placement plan uses more practical tag sizes
while providing maximum localizability with a minimum number
of tags and tag configuration adjustments between phases. The in-
stallation costs are regularized by penalizing the deployment of less
desirable tag sizes and changes in tag configuration between the
project phases. The cost function experiments aim to study the ef-
fectiveness of our approach in reducing installation costs. To this
end, the same multiphase project shown in Fig. 8 was used. Flight
altitudes included 1.5 m and 2 m, the tag installation heights were
1 m and 1.5 m, and tags with side lengths of 23 cm, 16.5 cm, and
12.5 cm were assumed to be available. In these experiments, local-
izability utilities and the number of placements and removals were
compared with and without the cost function incorporation. Unlike
the localizability experiments, the maximum number of tags was
32. However, with the cost function incorporated, the optimal num-
ber of tags in each phase was found also based on the minimum tag
score contribution, specified by wplc.

Large Project Experiment
To evaluate the proposed method’s performance in handling large
projects, a 470-m2 project with five phases was chosen (Fig. 10).

The installation height and flight altitude were limited to 1.5 m. The
maximum number of tags was 80, and tag sizes were limited to
16.5 cm, printable on letter-size sheets. In this scenario, ROIs and
tag placement options change with construction progress. New lo-
cations may need to be visited by the UAV, and placement options
might be created/removed for tag installation. Finally, the planning
and GA parameters listed in Table 1 were kept unchanged across all
experiments to make the results comparable.

Results

Localizability Experiments
Fig. 11 compares the localization accuracy for the optimal tag
configurations in the threefold trajectories, grouped by metric
functions and the maximum number of tags. Overall, by adding
more tags, RMSE decreases as more measurements are received.
Among the trajectories, SPN seems to be more challenging for our
localization method, as it includes many rotational motions. Al-
most in all scenarios, the FIM-based utility outperforms the alter-
native metrics in terms of localization accuracy, among which
trace had the lowest error in virtually all scenarios. Therefore,

Fig. 10. A 470-m2 project with five phases. ROIs (hashed polygons) change with construction progress.

Fig. 9. Threefold trajectories used in the localizability experiments.
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we limit our discussions to the FIM trace as the metric function for
the rest of this discussion. The optimal tag configurations found
using the FIM trace are shown in Fig. 12, where the modified
ROIs (compare with Fig. 9) are illustrated as boxes, and occupied
tag placement options are shown as segment lines with an arrow
symbol indicating their direction. The heatmap in Fig. 12 suggests
the smooth distribution of the normalized grid utilities, where
green cells are closer to their maximum attainable utility than yel-
low and red ones.
Cost Function Experiments. As shown in Fig. 13, the GA in-
creases the fitness score with more iterations and successfully con-
verges to a solution. Without the cost function, the algorithm finds
the best tag locations for each phase separately. However, there is
no mechanism except for the maximum number of tags to limit
placing more tags per phase. The algorithm can choose between tag
sizes based only on the utility. More importantly, as there is no no-
tion of time and the relationship between the phases in the utility,
the algorithm repeatedly changes the location and the size of the
tags between phases. Without cost, 70 tags were used throughout
the project. With cost function, on the other hand, PGA-TaPP op-
timizes the tag configuration by using 33 tags while mainly using
the more practical reference tag (16.5 cm) and keeping the changes
in the network at a minimum. The results and the input parameters
are summarized in Table 2.

Large Project Experiment. The previous experiments qualita-
tively and quantitatively showed that PGA-TaPP could successfully
maximize localizability via the utility function while minimizing
the installation costs through the cost function. Although the lim-
ited tag placement options differed between the phases, the ROIs
were assumed to be unchanged in the previous experiments. This
experiment investigated the method’s scalability by studying a
more sophisticated scenario with almost 1,000 tag placement op-
tions across phases where ROIs update as the project progresses.

As seen in Fig. 14, the larger search space makes the conver-
gence slower. However, given the input parameters in Table 2,
PGA-TaPP provides a 4D plan with a minimal number of tag ad-
justments throughout the project. As shown in Figs. 14 and 15, the
number of tags in T1 and T2 were 14 and 12, respectively, and less
than 80. This is to limit the number of removals in the later phases.
However, from T3 on, the maximum number of tags was deployed.
Fig. 15 illustrates the number of tags previously or newly added to
the network in each phase.

Discussion

Localizability with a Minimum Number of Tags
To reduce the manual tag placement, the planner needs to maximize
localizability with a minimum number of tags. The results in Fig. 11

Fig. 11. RMSE in 3D position estimates for different metric functions in localizability experiments. The green range (a) and line (b) correspond to the
RMSE’s lower bound, where all tag placement options were occupied.

Fig. 12. Suggested tag configurations in localizability experiments using the FIM trace. The modified ROIs are displayed as four (green) boxes, and
the normalized cell utilities are visualized as a heatmap.
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indicate that the FIM and the candidate metric functions effectively
capture the notion of tag-based localizability, unlike area and the
random algorithm. Above all, the trace FIM achieved the RMSE’s
lower bound—i.e., all tag placement options were occupied, using
only 40% of the available options. This demonstrates that the
proposed utility function effectively maximizes localizability and
enhances robustness by smoothly distributing the utility across
the grids. Additionally, the trace was shown to perform better than
the other more computationally expensive FIM-based metric func-
tions, which can also improve planning efficiency.

Construction Progress, Project Schedule, and Tag Size
The indoor layout changes with construction progress, requiring
the planner to take the dynamic nature of construction into account
and avoid any unnecessary tag network adjustments as the project
progresses. To this end, the proposed method automatically extracts
the indoor 2D layout at given times from the as-designed or
updated 4D-BIM. Without a 4D-BIM, this information should be
extracted manually. The results from cost function experiments
(Fig. 13) suggest that, by incorporating the proposed cost function,

PGA-TaPP considers the entire project to place tags with higher
size desirability in locations that would contribute to the localiz-
ability in multiple phases. As summarized in Table 2, with cost
function incorporation, 33 tags were used for the whole project,
suggesting a 57% reduction in the number of tags without cost
function incorporation. The results suggest that the cost function
successfully minimized the tag network modification and installa-
tion expenses. The algorithm tends to keep the tags for multiple
phases, which may result in using fewer tags in the earlier phases.
Although this behavior can be modified using the input parameters,
we observed that the suggested parameters summarized in Table 3
work well for most scenarios.

Scalability
A practical 4D tag placement planner must remain relevant in large-
scale construction projects. The results in Fig. 14 qualitatively
demonstrate the efficacy of the proposed method in handling large
projects. The modification of the tag network was kept to a mini-
mum, while the localizability was maximized, despite the change
in ROIs and layout between phases. The heatmap visualization is

Fig. 13. Impact of cost function on penalizing tag configuration changes throughout the project: (a) fittest solution score in each iteration; and
(b) optimal tag configurations in each phase. The first and last rows illustrate the results with and without cost function incorporation, respectively.

Table 2. Input parameters and the number of placement and removals in cost function and large project experiments

Parameters

Cost function experiments Large project
experimentWith cost Without cost

Inputs
wplc Smin ¼ 6%, Pc ¼ 2% 0 Smin ¼ 1%, Pc ¼ 0.5%
Tag sizes (cm) [12.0, 16.5, 23.0] [12.0, 16.5, 23.0] [16.5]
αi [0.5, 1.0, 0.5] N/A [1.0]
λrmv, λrpl 0.1, 0.0 N/A 1.0, 0.0

Outputs
nplc (total) [2, 26, 5] (33) [21, 16, 33] (70) [142] (142)
nrmv 1 28 70
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based on the capacity utilization of each cell. In this case, the num-
ber of tag placement options increases with construction progress,
while the maximum number of tags available is assumed to be 80.
Therefore, the cell capacity increases more drastically than the util-
ity gained, resulting in red cells. As shown in Fig. 15, PGA-TaPP
plans the tag placement so that the tags from previous phases can be
used in the next ones while maximizing the localizability with a
limited number of tags. The total number of tags used was 14.8%
of the total number of the options, which proves that the proposed
method can effectively optimize the size, location, and number of
tags to reduce the installation efforts and costs.

Conclusion

The tag-based visual-inertial method addresses some of the most
important technical and practical localization challenges in indoor
construction environments. These challenges include frequent
layout changes, feature scarcity, and perceptual aliasing. However,
tag placement and maintenance could be tedious if not properly
planned. This study presented PGA-TaPP, a perception-aware
genetic algorithm-based tag placement planner, to automatically
identify the optimal tag configuration (i.e., size, location, number)
and support tag-based visual-inertial indoor localization. This
method maximizes localizability while minimizing tag installation
costs by incorporating the project schedule and safety require-
ments. It considers multiple project phases, tag placement heights,
flight altitudes, and metric functions. Localizability is quantified
using the Fisher information matrix (FIM), and the installation
cost is kept at a minimum by penalizing tag network modifications
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Fig. 15. Project tag deployment over time for large project experiment.

Table 3. PGA-TaPP parameters

Parameter Value

ROI discretization resolution (m) 0.5
Rotation discretization step (Δθ) (degrees) 20
Tag placement discretization resolution (m) 0.3
UAV’s camera depth of view (DoV) (m) 8.0
ROIs’ importance factor ðIroiÞ 1.0
Population size 50
Maximum number of iterations 5,000
Mutation function Flip
Crossover function Single-point

Fig. 14. 4D tag placement plan for the large project in which the ROIs and layout change over different phases.
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(e.g., adding extra tags). The effectiveness of our method was quan-
titively and qualitatively shown via three case studies. It was dem-
onstrated that the proposed tag-based formulations for estimating
the observed FIM represent localizability effectively. It was also
experimentally demonstrated that the FIM trace could be a better
metric function than determinants and the minimum eigenvalue. We
showed that the maximum localizability was obtained using FIM-
trace deploying only 40% of the available tag placement options in a
single construction phase. In a sample multiphase project, the pro-
posed cost function could reduce the number of deployed tags by
57% throughout the project. Finally, our experiments confirmed that
the proposed method was scalable to larger projects, where the op-
timal number of tags was limited to 14.8% of the total number of
options.

This work has some limitations. First, even though using metric
functions can help compare FIMs, it cannot solely capture the
spatial distribution of scores within and among ROIs. For example,
the optimization algorithm may maximize the utility in scattered
cells or isolated areas. Although robust localization is satisfied in
these regions, reliable autonomous navigation will not necessarily
be guaranteed between these isolated areas. These areas with lo-
cally concentrated high scores, denoted as islands, must be avoided.
Although our experiments showed a relatively smooth distribution
of scores, more studies are needed to comprehensively address this
issue. A suggested alternative policy is to use a maximum threshold
for each metric function to distribute the optimization attention and
avoid islands. This threshold implies that we are no longer concerned
with improving the localization quality once it reaches a certain level.
Second, despite the intuitiveness and flexibility of evolutionary al-
gorithms such as GA, they are local search techniques and do not
guarantee global optimums. GA-based optimization can be slow
in searching large spaces despite our efforts to parallelize processes.
Accordingly, experimenting with other optimization techniques is
highly recommended. Third, this work was validated in a simulation
environment, mimicking controlled laboratory settings, as a proof of
concept, while construction sites are dynamic and cluttered. A com-
plementary study is needed to investigate the performance of the pro-
posed method onsite during construction. Finally, other strategies for
tag distribution, including surface spraying, using reflective plastic
sheets (e.g., vinyl sheets) used in street signs, and horizontal tag
placement (e.g., on the floor) should be studied. Other suggestions
for future work include investigating the impact of onsite dynamic
(e.g., workers) and temporary objects (e.g., formworks), dust, and
lighting conditions on localizability.
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