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Abstract— The goal of this work is to enable a team of
quadrotors to learn how to accurately track a desired trajectory
while holding a given formation. We solve this problem in a
distributed manner, where each vehicle has only access to the
information of its neighbors. The desired trajectory is only
available to one (or few) vehicles. We present a distributed
iterative learning control (ILC) approach where each vehicle
learns from the experience of its own and its neighbors’ previous
task repetitions, and adapts its feedforward input to improve
performance. Existing algorithms are extended in theory to
make them more applicable to real-world experiments. In
particular, we prove stability for any causal learning function
with gains chosen according to a simple scalar condition.
Previous proofs were restricted to a specific learning function
that only depends on the tracking error derivative (D-type
ILC). Our extension provides more degrees of freedom in
the ILC design and, as a result, better performance can be
achieved. We also show that stability is not affected by a linear
dynamic coupling between neighbors. This allows us to use
an additional consensus feedback controller to compensate for
non-repetitive disturbances. Experiments with two quadrotors
attest the effectiveness of the proposed distributed multi-agent
ILC approach. This is the first work to show distributed ILC
in experiment.

I. INTRODUCTION

Multi-agent systems (MAS) and machine learning are two
exciting trends in robotics. In the past decades, theoretic
contributions on MAS have come from fields such as bi-
ology, computer science, and control theory. One problem
of particular interest is consensus, which is concerned with
all agents agreeing on some quantity of interest by only com-
municating with their neighbors. Many other problems can
be transformed into a consensus problem; examples include
flocking, rendezvous, or formation control [1]. Consensus
can be achieved without a central control unit through the
design of appropriate distributed algorithms. Machine learn-
ing, on the other hand, aims to enhance the capabilities of
autonomous systems by enabling them to adapt to unknown
situations, autonomously correct for modeling errors, and
improve their performance without human instructions. As
the number of autonomous systems increases in all areas,
including industrial and service robots, commercial drones,
and self-driving cars, the question that arises is how their
cooperation can be improved and, therefore, how MAS and
machine learning can be combined.

The authors are with the Dynamic Systems Lab (www.dynsyslab.org)
at the University of Toronto Institute for Aerospace Studies
(UTIAS), Canada. Email: andreas.hock@robotics.utias.utoronto.ca,
schoellig@utias.utoronto.ca

This research was supported in part by NSERC grant RGPIN-2014-
04634, the Connaught New Researcher Award and the Baden-Württemberg-
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Fig. 1. A team of quadrotors learns to accurately track a desired trajectory
while holding a given formation. The black arrows between the vehicles vi
represent the communication paths. The blue arrows depict the vehicle
trajectories xi(t).

In this paper, we focus on Iterative Learning Control
(ILC) approaches, where a system learns to track a desired
trajectory by repetitively executing the same task. Based on
the tracking error from previous trials, the feedforward input
is adapted to gradually improve performance. As such, ILC
is able to compensate for repetitive disturbances. Initially
developed in 1984 [2], it has since been studied widely in
theory and experiments, cf. [3]. In [4], ILC was used to
improve the trajectory tracking of a single quadrotor.

Distributed ILC achieves formation control of MAS where
only a subset of agents has direct access to the reference
trajectory and only neighboring agents can communicate,
see Figure 1. The goal is to follow the reference with all
agents holding a predefined formation. To achieve this, every
agent updates its input trajectory based on the information
about its own and its neighbors’ performance during the last
trial. The idea of distributed ILC was introduced in 2009 [5],
where stability was proven for a D-type input update rule;
that is, the input for the next iteration is computed based on
the previous input and the derivative of the tracking error.
Furthermore, this first paper assumes communication graphs
in the form of directed spanning trees. The heterogeneous
agent dynamics are described in continuous time and are
assumed to be nonlinear with relative degree one. In [6],
the proof was extended to arbitrary directed graphs and the
stability criterion was simplified for the case of homogeneous
agents. Even time-varying dynamics can be handled with the
approach in [6]. To extend the algorithm to systems of higher
relative degree, higher derivatives were used in the input
update rule, see [7]. This approach is, however, restricted to
linear agent dynamics, but holds for weighted and directed
communication graphs. All mentioned papers ( [5]–[7]) are
using the same D-type input update rule. The shortcoming
of this control strategy is a poor convergence behavior; in
particular, a position offset cannot be compensated for as
D-type ILC only adapts the input based on errors in the
velocity.
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In this paper, we prove that for linear agents any causal
learning function, with gains chosen according to a simple
scalar condition, is stable. This allows more options in the
choice of the input-update rule (beyond the typical D-type
update rule) and thus faster convergence can be achieved.
Moreover, a constant error in the position can now be
compensated for by incorporating position information into
the learning function.

Several other multi-agent ILC approaches and extensions
are found in the literature including approaches for switch-
ing graph structures [8], and adaptive [9], robust [10], or
optimal [11] update laws. Nevertheless, all of these ap-
proaches have only been implemented in simulation and, to
the authors’ best knowledge, multi-agent ILC has not been
tested on a real system before.

This paper demonstrates the proposed generalized multi-
agent ILC algorithm in experiment on quadrotor vehicles.
To increase robustness against non-repetitive disturbances
occurring in real-world experiments, we include a distributed
feedback controller, which improves the performance during
single iterations. Furthermore, we show that neither the
distributed feedback controller nor any other linear dynamic
coupling between neighboring agents affects stability of the
ILC algorithm.

The paper is structured as follows: First, we introduce
some definitions and basic terminology from graph theory. In
Section III, formation tracking is formulated as a consensus
problem. Then, we derive the ILC stability conditions for an
arbitrary linear causal learning function in Section IV. Based
on these results, we show that a dynamic coupling between
neighboring agents does not influence stability. In Section VI,
we apply the theory to a team of two quadrotors and show
corresponding experimental results. Finally, conclusions are
provided in Section VII.

II. PRELIMINARIES ON GRAPH THEORY

To describe the information exchange between agents,
graph theory is commonly used. The vehicles are the nodes
of the graph and the edges represent the information flow
between vehicles, see Figure 1. In the following, we provide
some useful definitions and notation.

Let G = (V, E ,A) denote a directed graph with a set of
vertices V(G) = {vi : i ∈ {1, 2, ..., N}} and the edge set
E(G) ⊆ {(vi, vj) : vi, vj ∈ V(G)}. The edge (vi, vj) means
that agent vi receives information from vj , in which case
vi is called the child and vj the parent vertex. We define
A = (aij) ∈ RN×N as the adjacency matrix of G with
elements representing the information exchange between
any two agents; that is, aij = 1 if (vi, vj) ∈ E(G) and
aij = 0 otherwise. The in-degree of node vi is defined as
dini =

∑N
j=1 aij ; that is, it describes the number of edges

entering a node. The (in-degree) Laplacian matrix is defined
as LG = D −A, where D = diag(din1 , d

in
2 , ..., d

in
N ). If there

exists a special vertex, the root, with no parents (din = 0)
which all other nodes can be connected to through directed
paths and every other vertex has exactly one parent, then
the graph is called a spanning tree, see Figure 2. Note
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Fig. 2. Spanning tree structure of a directed graph. Node v1 has no
incoming edges and is called the root node. All other vertices have exactly
one parent (one incoming edge) and can be connected to the root through
directed paths.

that some authors also use the term ’rooted out-branching’
to distinguish between directed and undirected graphs. For
further information about graph theory, see [12].

III. PROBLEM FORMULATION

We consider a group of N homogeneous agents with fixed
interaction topology defined by G = (V, E ,A).

A. Agent Dynamics

The linear discrete-time single-input, single-output (SISO)
dynamics of the ith agent at the kth iteration of the task,
k ∈ {1, 2, . . . }, and for sampling times t ∈ {0, 1, . . . , T}
are described by

xi,k(t+ 1) = Axi,k(t) +Bui,k(t)

yi,k(t) = Cxi,k(t), (1)

where xi,k(t) ∈ Rn is the state vector, ui,k(t) ∈ R the
input, and yi,k(t) ∈ R the output. Accordingly, A ∈ Rn×n,
B ∈ Rn, C ∈ R1×n.
Using the time-shift operator q−1, defined by
q−1x(t) = x(t− 1), the state-space system (1) can be
represented as

yi,k(t) = P (q)ui,k(t) + di(t), (2)

where di(t) = CAtxi(0) is the free response to the initial
condition, which is assumed to be constant over iterations.
The input-output mapping P (q) is given by an infinite power
series,

P (q) = p1q−1 + p2q−2 + p3q−3 + . . . , (3)

with Markov parameters pm = CAm−1B. The relative
degree r of system (1) is defined by the first non-zero
coefficient; that is, pm = 0 for m < r, pm 6= 0 for m = r.

B. Reference Trajectory

A reference trajectory ydes(t) is given, which a certain
subset of agents has access to. The goal is to track this
reference signal with all agents simultaneously. The result
can be directly applied to formation control by simply
defining fixed or time-varying relative distances between the
agents. We model the reference as an additional node v0,
the virtual leader. This results in the extended graph G∗.
Let bi ∈ {0, 1} be defined for every agent analogously to
the entries of the adjacency matrix: bi = 1 if agent i has
access to the reference trajectory, and bi = 0 otherwise.
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The corresponding Laplacian LG∗ , in the following simply
denoted by L∗, is

L∗ =

[
0 01×N
−b LG + B

]
(4)

with b = (b1, b2, . . . , bN )T , B = diag(b) and 01×N denoting
a matrix of size (1×N) with all entries being zero.

C. Error Signals

The only information exchanged between agents is the
relative position, which can be easily obtained in practical
implementations. For example, an agent’s own camera sys-
tem could detect the neighbors and measure the distances;
no communication between agents would be necessary. Let
us define an error signal ei,k(t) for each agent as the sum
of relative distances to all its neighbors and to the virtual
leader, if accessible:

ei,k(t) =

N∑
j=1

aij(yj,k(t)− yi,k(t)) + bi(ydes(t)− yi,k(t)).

(5)

Remark 1. The error function (5) is for the consensus case,
in which all agents aim to follow the same trajectory. If the
goal is a desired constant or time-varying formation, addi-
tional iteration-invariant terms, the desired distances ∆ij(t),
have to be added. Thus,

ei,k(t) =

N∑
j=1

aij(yj,k(t)− yi,k(t) + ∆ij(t))

+ bi(ydes(t)− yi,k(t) + ∆i(t)). (6)

IV. DISTRIBUTED LEARNING

We use the distributed input update rule

ui,k+1(t) = ui,k(t) + L(q)ei,k(t+ r) (7)

with i ∈ {1, . . . , N} and t ∈ {1, . . . , T − r} and causal
learning function

L(q) = l0 + l1q−1 + l2q−2 + . . . , (8)

where r is the relative degree. The block diagram is shown in
Figure 3. In the following, the relative degree is assumed to
be one without loss of generality. A higher relative degree
can be compensated for by a corresponding time shift of
the error vector. The acausality in the update rule is not a
problem as the input update is computed after the previous
execution was completed. Algorithm (7) is a simple, first-
order ILC algorithm commonly used in literature, see [3].
The order of an ILC algorithm is defined as the number of
previous iterations taken into account.

D-type ILC algorithms as in [5]–[7] represent special cases
of (7), where L(q) has a predefined form.

For analyzing stability, we use the lifted-system represen-
tation according to [3], where all samples of a signal are

Memory L(q)

Memory

P(q)
ei ui yi

Fig. 3. Basic ILC structure for vehicle vi with the plant P (q) and the
learning function L(q). The input is computed based on the previous input
and previous consensus tracking error ei, which are saved in memory units.

stacked in a large vector. The system dynamics (2) and the
input update (7) are now represented by

yi,k(1)
yi,k(2)

...
yi,k(T )


︸ ︷︷ ︸

yi,k

=P


ui,k(0)
ui,k(1)

...
ui,k(T − 1)


︸ ︷︷ ︸

ui,k

+


di(1)
di(2)
. . .
di(T )


︸ ︷︷ ︸

di

, (9)


ui,k+1(0)
ui,k+1(1)

...
ui,k+1(T − 1)


︸ ︷︷ ︸

ui,k+1

=


ui,k(0)
ui,k(1)

...
ui,k(T − 1)


︸ ︷︷ ︸

ui,k

+L


ei,k(1)
ei,k(2)

...
ei,k(T )


︸ ︷︷ ︸

ei,k

(10)

with lower-triangular Toeplitz matrices

P =


p1 0 . . . 0
p2 p1 . . . 0
...

...
. . .

...
pT pT−1 . . . p1

,L =


l0 0 . . . 0
l1 l0 . . . 0
...

...
. . .

...
lT−1 lT−2 . . . l0

.
We combine all single-agent dynamics into one equation

y1,k

y2,k

...
yN,k


︸ ︷︷ ︸

Yk

=


P 0 . . . 0
0 P . . . 0
...

...
. . .

...
0 . . . . . . P


︸ ︷︷ ︸

IN⊗P


u1,k

u2,k

...
uN,k


︸ ︷︷ ︸

Uk

+


d1

d2

...
dN


︸ ︷︷ ︸

D

, (11)

where ⊗ denotes the Kronecker product and IN the (N ×N)
identity matrix. Analogously, using (5) and the graph-
theoretic definitions from Section II, the multi-agent version
of (10) is

Uk+1 =Uk − (IN ⊗ L) ·((
(LG + B)⊗ IT

)
Yk − (b⊗ IT )ydes

)
(12)

with ydes = (ydes(1), ydes(2), . . . , ydes(T ))T . For the sake
of simplicity, we collect all iteration-invariant terms, that
is, terms only depending on the initial conditions or the
reference trajectory, in δ. Then, by plugging (11) into (12)
and using the property of the Kronecker product that
(A⊗B)(C ⊗D) = AC ⊗BD, it follows

Uk+1 = Uk − (IN ⊗ L)
(
(LG + B)⊗ IT

)
(IN ⊗ P)Uk + δ

= Uk −
(
IN (LG + B)IN ⊗ LIT P

)
Uk + δ

=
(
INT − (LG + B)⊗ LP

)
Uk + δ. (13)
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Based on stability theory for discrete systems, conditions for
the stability of single-agent ILC were developed in [13] and
slightly modified in [3]. The following definitions are taken
from the latter and adapted to MAS.

Definition 1. An ILC system is called asymptotically stable
if there exists U ∈ RNT such that ∀k = {0, 1, . . . }

|Uk| ≤ U and lim
k→∞

Uk exists.

Using this definition, equation (13), and the notion of the
spectral radius ρ as the maximum absolute eigenvalue, we
can state the following theorem.

Theorem 1. The multi-agent ILC system (11)-(13) is AS if
and only if

ρ
(
INT − (LG + B)⊗ LP

)
< 1 (14)

or, equivalently,

max
i
|1− λil0p1| < 1, (15)

where λi are the eigenvalues of (LG + B).

Note that we assumed a relative degree r = 1, and
thus p1 6= 0. The eigenvalues of the graph Laplacian can
be computed easily. As stability depends only on l0, the
remaining parameters of the learning function L(q) can be
tuned to achieve good convergence behavior.

Proof. The first statement (14) follows directly from [13]
applied to (13). The latter equation (15) is obtained by
applying a similarity transformation to (14) similarly to how
it is done for undirected graphs in [6].

As all entries in (LG + B) are real numbers, this matrix
can be transformed into Jordan normal form; that is, it exists
a regular matrix S ∈ RN×N and a Jordan matrix J ∈ RN×N

with eigenvalues on the diagonal and possibly ones on the
subdiagonal, such that

S−1(LG + B)S = J. (16)

Usually J is defined with ones on the superdiagonal but here
we use this less common definition to get lower-triangular
matrices. As eigenvalues and, thus, the spectral radius remain
the same under similarity transformations, it follows

ρ
(
INT − (LG + B)⊗ LP

)
=ρ
(

(S ⊗ IT )−1
(
INT − (LG + B)⊗ LP

)
(S ⊗ IT )

)
=ρ(INT − J ⊗ LP), (17)

where L and P are lower triangular matrices, as is J . As a
result, the eigenvalues are the diagonal entries. Multiplication
of triangular matrices does not affect this property, thus (14)
is equivalent to the scalar condition (15).

Theorem 2. For asymptotic stability of the ILC, it is nec-
essary that the graph G∗ contains a spanning tree with the
virtual leader as root.

Proof. It is easy to see that (15) only holds if λi 6= 0. L∗ has
exactly one eigenvalue at zero if and only if the graph G∗

Memory L(q)

C(q)

ILC Memory

P(q)
ei

uFBi

uILCi ui yi

Fig. 4. Time-domain feedback control combined with iteration-domain
ILC for vehicle vi. The feedback term C(q) computes updates in every
time step, while the ILC part computes updates after each iteration.

contains a spanning tree [12]. Thus, the virtual leader must be
the root node as it has an in-degree of 0. Therefore, (LG + B)
is full rank, see (4), and equivalently, λi 6= 0.

Remark 2. The extension of these results to quadratic
multiple-input, multiple-output (MIMO) agent dynamics is
straightforward. Condition (15) stays the same, but is no
longer scalar as l0 and p0 are quadratic matrices.

V. COMBINATION WITH FEEDBACK

Assume there is an additional feedback term in the time
domain that can be described as a function of the relative
distances between neighbors,

uFBi,k (t) = C(q)ei,k(t) (18)

with ei,k(t) as in (5) and a causal feedback function

C(q) = c0 + c1q−1 + c2q−2 + . . . . (19)

This could be a feedback controller or any other dynamic
coupling, which may not be known.

Theorem 3. Given an arbitrary feedback component in the
form of (18), the stability of the distributed ILC algorithm (7)
is not affected by the feedback if applied in parallel structure,
see [3] and Figure 4.

Proof. The new input signal is ui,k = uILCi,k + uFBi,k , where
uILCi,k represents the ILC input described in Section IV. Using
again the lifted-system representation and inserting into (9)
yields

yi,k =P
(
uILC
i,k + Cei,k + C0ei(0)

)
+ di,k, (20)

with

C =


0 0 . . . 0 0
c0 0 . . . 0 0
c1 c0 . . . 0 0
...

...
. . .

...
...

cT−2 cT−3 . . . c0 0

 ,C0 =


c0
c1
c2
...

cT−1

 .

The different sample times in the definitions of ei,k and ui,k

cause the additional initial condition term C0ei(0) in (20)
and the subdiagonal shift in C. Analogously to before, the
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single-agent signals can be collected into the multi-agent
form

Yk =(IN ⊗ P)
(

UILC
k − (IN ⊗ C)

(
(LG + B)⊗ IT

))
Yk + δ

=(IN ⊗ P)UILC
k −

(
(LG + B)⊗ PC

)
Yk + δ

=
(
IN + (LG + B)⊗ PC

)−1
(IN ⊗ P)UILC

k + δ, (21)

where all iteration-invariant terms are gathered in δ. In-
vertibility is guaranteed as we will see later. Inserting (21)
into (12) leads to

UILC
k+1 =UILC

k − (IN ⊗ L)
(
(LG + B)⊗ IT

)(
IN + (LG + B)⊗ PC

)−1
(IN ⊗ P)UILC

k + δ

=

(
INT −

((
(LG + B)⊗ L

)
(
IN + (LG + B)⊗ PC

)−1
(IN ⊗ P)

))
UILC

k + δ

=MUILC
k + δ. (22)

As stability is determined by the spectral radius ρ(M), we
must investigate the eigenvalues of this matrix. The similarity
transformation (16) can be applied to get

ρ(M) = ρ(INT − (J ⊗ L)(IN + J ⊗ PC)−1(IN ⊗ P)).
(23)

As all matrices are in lower triangular form, the eigenvalues
are the diagonal entries. As all diagonal entries of C are 0,
it can be seen that those of (IN + J ⊗ PC) are all 1. Thus,
its inverse exists with diagonal entries equal to one. Finally,
we end up with the same condition as in Theorem 1.

VI. QUADROTOR EXPERIMENTS

To verify the effectiveness of the derived multi-agent
learning framework, we implemented the proposed algo-
rithm on a group of quadrotors. The vehicle we used is
the Parrot AR.Drone 2.0, which comes with a blackbox
onboard controller. Its inputs are the desired roll, φdes,
and pitch, θdes, Euler angles, the desired turn rate around
the vehicle’s vertical axis, ωz, and the desired velocity,
żdes, in global z-direction. Commands are sent at a fre-
quency of f = 66.67Hz. Position and attitude information
is provided by a central overhead motion capture camera
system. As the camera system and an appropriate state
estimator provide all necessary position, velocity and rotation
information, an exact input-output linearization can be ap-
plied [14] canceling out all the nonlinearities. Consequently,
the resulting quadrotor dynamics can be approximated by
continuous-time double integrators, decoupled for x- and y-
direction. Discretization using the Taylor series expansion
with time constant ∆t = 1

f = 0.015s leads to

xi,k(t+ 1) =

[
1 0.015
0 1

]
xi,k(t) +

[
1
20.0152

0.015

]
ui,k(t− τ)

yi,k(t) =
[
1 0

]
xi,k(t), (24)

where input u and output y denote acceleration and position
in x- or y-direction, respectively, while τ represents the

time delay of the system consisting of delays in input and
output signal processing and plant-inherent delays due to the
simplifed modeling. As the mathematical model is linear, all
delays can be combined into one term. Based on (24), we
choose an underlying consensus feedback controller

uFBi (t) =
2η

τc
ėi,k(t) +

1

τ2c
ei,k(t), (25)

with error function ei,k(t) as defined in (5). With positive
controller gains, η and τc, this controller guarantees asymp-
totic stability for double-integrator agents under the condition
that the communication graph contains a spanning tree. As
this paper does not focus on the stability of consensus feed-
back controllers, we refer to [15] for further explanations.
Approximating the velocity by the difference quotient of the
position, the controller can be discretized and written in the
form defined in (18).

For the iterative learning, a PD-type (proportional and
derivative actions) input update rule is used,

uILCi,k+1(t) =uILCi,k (t) + kpei,k(t+ r − 1)

+ kd
ei,k(t+ r)− ei,k(t+ r − 2)

2∆t
, (26)

with learning gains, kp and kd, step size ∆t, and relative
degree r. The central difference quotient is used for better
noise suppression [16]. This is a special case of (7) with

L(q) =
kd

2∆t
+ kpq−1 − kd

2∆t
q−2. (27)

To determine the relative degree of the real vehicles, several
effects must be taken into account, including underlying
dynamics from the onboard controller and from the motors,
that were neglected in the modeling, and system time delays
mainly due to the wireless communication between the
computer and the vehicle. Since these effects are difficult
to measure, we identified the relative degree experimentally.
The communication delays can also destabilize the closed-
loop system with the feedback controller (25), if the graph
contains cycles, see [17] or [18].

We consider a team of two quadrotors with agent v1
getting information from the virtual leader and agent v2 only
from agent v1. Due to space and wireless communication
limitations, it was not possible to include more agents in
the current experimental setup. However, simulations verified
that the presented theoretic results work as expected even for
larger teams and more complex graphs. We chose the fol-
lowing setup: controller parameters η = 0.707 and τc = 1.7,
ILC learning gains kp = 0.35 and kd = 17.3, ILC time
shift r = 49. Assuming the time shift matches the relative
degree and with the eigenvalues of the corresponding graph
Laplacian λ1,2 = 1, we can see that (15) holds and thus
asymptotic stability is guaranteed.

Figures 5-8 show the experimental results for the ILC with
the underlying consensus feedback controller over 20 itera-
tions. Both quadrotors were flown at the same time in a
given formation with a fixed distance apart. For the plots,
the distance offset was subtracted. We repeated the whole

4644



Time (s)
0 1 2 3 4 5 6

Po
si

tio
n 

x 
(m

)

-0.5

0

0.5

1

1.5
Reference Vehicle 1 Vehicle 2

Time (s)
0 1 2 3 4 5 6

Po
si

tio
n 

y 
(m

)

0

2

4 Iteration 1 Iteration 3 Mean It. 12-20

Fig. 5. Trajectories over time in x- and y-direction for the ILC algorithm
with underlying consensus feedback. Vehicle 1 (blue) and vehicle 2 (red)
learn to follow the desired reference trajectory (dashed black). Highlighted
are the first (dash-dotted) and the third (dotted) iteration, and the mean over
iterations 12-20 (solid).

learning experiment ten times and show the average error
convergence and standard deviation in Figure 8.

Figure 5 shows the position trajectories over time. It can
be seen that in the first iteration, where the ILC input is
zero, the first vehicle (in blue) is delayed and shows lower
amplitudes. As the second vehicle (in red) only follows the
first one, its performance is even worse. After some iterations
(see solid lines), both drones learn to track the reference.
In Figure 6, the corresponding workspace trajectories are
depicted. Note that the goal was not to track this D-shaped
trajectory but to follow the timed reference signal in Figure 5
separately for x and y. The performance of both vehicles
improves significantly over iterations. However, it can be
seen that agent v2 learns slower as it has no access to the
desired trajectory. Figure 7 shows the corresponding input
trajectories. For space reasons only the x-direction is plotted.
It can be seen that, initially, the ILC input is zero and the
consensus feedback component dominates. Whereas after
convergence is reached, the feedback input is nearly zero
and mainly compensates for non-repetitive errors, while the
ILC feedforward input compensates for the large repetitive
error. Comparing the converged ILC input with the initial,
purely feedback-based input shows that ILC causes larger
input magnitudes with peaks being time-shifted to the left.
Instead of being reactive, the ILC is proactive and sends
aggressive input signals that keep the vehicle on track.

The learning performance can be deduced from the con-
vergence of the errors (5) over iterations shown in Figure 8.
The error of agent v2 (bottom) is computed relative to
agent v1 (top); that is, it describes the formation error.
Let us first consider the case with consensus feedback
enabled (magenta). It can be seen that vehicle v1 learns faster
than vehicle v2 due to the direct access to the reference,
increasing the relative error in iteration 2. Accordingly, not
only disturbances affecting the second agent but also the first
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Fig. 6. Trajectories in the workspace (y over x) for the ILC algorithm
with underlying consensus feedback. Vehicle 1 (blue) and vehicle 2 (red)
significantly improve their performance with respect to the desired reference
trajectory (dashed black). Highlighted are the first (dash-dotted) and the third
(dotted) iteration, and the mean over iterations 12-20 (solid).
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Fig. 7. Input trajectories in x-direction for vehicle 1 (top) and vehicle 2
(bottom). The ILC-generated feedforward input (black) increases over
iterations to compensate for the learned repetitive disturbances, while the
input from the consensus feedback controller (green) decreases and only
accounts for non-repetitive disturbances at the end. Highlighted are the first
(dash-dotted) and the third (dotted) iteration and the mean over iterations
12-20 (solid).

one lead to increasing formation errors. This also explains
the slightly higher error of agent v2 after convergence is
reached.

For comparison, we did the same learning experiments
with the consensus feedback controller (25) disabled (black
lines). That is, each vehicle’s position feedback controller
is based only on the vehicle’s own tracking error. It can
be seen that the values for agent v1 are almost the same
with and without the consensus feedback controller. The
error of agent v2, which can be interpreted as the formation
error, and its standard deviation decrease significantly if the
consensus controller is enabled. Since the second vehicle
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Fig. 8. Error convergence plots over iterations for the ILC algorithm with
(magenta) and without (black) the additional consensus feedback. The error
is computed as 1

T

∑
T

(
|exi,k(t)|+ |eyi,k(t)|

)
with ei,k(t) as in (5) for x-

and y-direction respectively. The solid lines are the mean errors for agent
v1 (top) and agent v2 (bottom) over ten experiments each. The bars denote
the standard deviations.

has no reference information and does not follow the leader
without the consensus feedback, it does not move at all in
the first iteration, which leads to the high initial error. With
the consensus feedback controller enabled, the relative error
of agent v2 after convergence (that is, after iteration 15)
decreases by 24% and its standard deviation by 53%. As
a result, the proposed distributed feedback has a positive
impact on the performance of formation flying as it does
both (i) reducing the formation error in the first iterations,
which can help to avoid collisions, and (ii) accounting for
non-repetitive, relative disturbances during iterations, which
reduces the tracking error and variance after learning con-
vergence.

To show the improvements over the D-type learning
function, we compared the experimental results without the
feedback controller with a D-type ILC where kp = 0.
Without the P-gain, the learning convergence was slower for
both agents and, especially for v2, the converged error was
much higher (+60%). For space reasons, plots are not shown
here.

VII. CONCLUSIONS

We developed a distributed ILC algorithm for multi-agent
systems, which allows for arbitrary linear and causal learning
functions. As a result, we were able to consider a PD-
type input update rule extending previous work found in
literature that was restricted to learning functions depending
only on the error derivative (D-type). Since it can compensate
for position offsets, the proposed approach leads to better
tracking performance and lower errors. Furthermore, many
other learning function options are possible. We derived a
simple scalar condition for stability of the proposed learning
algorithm in theory. However, to achieve a good learning
performance in practice, parameter tuning in simulations and

experiment was necessary.
As ILC only compensates for repetitive disturbances, we

included a consensus-based feedback controller to increase
robustness against non-repetitive disturbances and noise.
That this feedback controller does not affect stability of
the ILC algorithm was proven theoretically. Moreover, it
was shown that the same holds for any dynamic coupling
between neighboring agents. Experimental results showed
that the resulting distributed feedback and learning algorithm
achieves better reference tracking and lower formation error,
compared to the case without the consensus feedback. As the
feedback controller decreases the influence of non-repetitive
disturbances, better overall formation tracking performance
is achieved.
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