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Abstract
The goal of this work is to enable a team of quadrotors to learn how to accurately track a desired trajectory while holding a
given formation. We solve this problem in a distributed manner, where each vehicle has only access to the information of its
neighbors. The desired trajectory is only available to one (or few) vehicle(s). We present a distributed iterative learning control
(ILC) approachwhere each vehicle learns from the experience of its own and its neighbors’ previous task repetitions and adapts
its feedforward input to improve performance. Existing algorithms are extended in theory to make them more applicable to
real-world experiments. In particular, we prove convergence of the learning scheme for any linear, causal learning function
with gains chosen according to a simple scalar condition. Previous proofs were restricted to a specific learning function,
which only depends on the tracking error derivative (D-type ILC). This extension provides more degrees of freedom in
the ILC design and, as a result, better performance can be achieved. We also show that stability is not affected by a linear
dynamic coupling between neighbors. This allows the use of an additional consensus feedback controller to compensate for
non-repetitive disturbances. Possible robustness extensions for the ILC algorithm are discussed, the so-called Q-filter and a
Kalman filter for disturbance estimation. Finally, this is the first work to show distributed ILC in experiment. With a team of
two quadrotors, the practical applicability of the proposed distributed multi-agent ILC approach is attested and the benefits of
the theoretic extension are analyzed. In a second experimental setup with a team of four quadrotors, we evaluate the impact of
different communication graph structures on the learning performance. The results indicate, that there is a trade-off between
fast learning convergence and formation synchronicity, especially during the first iterations.

Keywords Iterative learning control · Multi-agent systems · Distributed control · Quadrotor control

1 Introduction and related work

Multi-agent systems (MAS) and machine learning are two
exciting trends in robotics. In the past decades, theoretic
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contributions to MAS have come from fields such as biol-
ogy, computer science, and control theory. One problem of
particular interest is consensus, which is concerned with all
agents agreeing on some quantity of interest by only com-
municating with their neighbors. Many other problems can
be transformed into a consensus problem; examples include
flocking, rendezvous or formation control [1]. Distributed
algorithms have been developed that achieve consensus
among autonomous agents without a central control unit,
see for example [2–4]. Machine learning, on the other hand,
aims to make autonomous systemsmore capable by enabling
them to adapt to unknown situations, automatically correct
for modeling errors, and improve their performance without
human intervention. As the number of autonomous systems
increases in all areas, giving rise to industrial and service
robots, commercial drones, or self-driving cars, for example,
the question arises how their cooperation can be improved
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Fig. 1 A team of quadrotors learns to accurately track a desired tra-
jectory while holding a given formation. The black arrows between the
vehicles vi represent the communication paths. The blue arrows depict
the vehicle trajectories xi (t) (Color figure online)

and, therefore, how MAS and machine learning can be com-
bined.

In this work, we focus on iterative learning control (ILC)
approaches, where a system learns to track a desired trajec-
tory by repetitively executing the same task. Based on the
tracking error from previous trials, the feedforward input is
adapted to gradually improve performance. As such, ILC
is able to compensate for repetitive disturbances. Initially
developed in 1984 [5], it has since been studied widely
in theory and experiments, see [6] for an introduction and
overview. In [7], ILC was used for the first time to improve
the trajectory tracking of a single quadrotor vehicle. Another
application to quadrotors can be found in [8], where high
performance, periodic maneuvers are learned. Whereas they
use more sophisticated input-update rules than we propose in
this work, both these papers only consider one vehicle. A first
experimental approach to couple two individual ILC systems
is demonstrated in [9]. Their so-called cross-coupled ILC
enhances the precision motion control of a two-axis robotic
testbed.

Distributed ILC achieves formation control of MAS,
where only a subset of agents has direct access to the
reference trajectory and only neighboring agents can com-
municate, see Fig. 1. The goal is to follow the reference with
all agents holding a predefined formation. To achieve this,
every agent updates its input trajectory based on the infor-
mation about its own and its neighbors’ trajectories during
the last trial. The idea of distributed ILC was first introduced
in 2009 [10], where stability was proven for a D-type input
update rule; that is, the input for the next iteration is com-
puted based on the previous input and the derivative of the
tracking error. Furthermore, this first paper assumes commu-
nication graphs in the form of directed spanning trees. The
heterogeneous agent dynamics are described in continuous
time and are assumed to be nonlinear with relative degree
one. In [11], the proof was extended to arbitrary directed
graphs and the stability criterion was simplified for the case
of homogeneous agents. Even time-varying dynamics can be
handled with the approach in [11]. To extend the algorithm
to systems of higher relative-degree, higher derivatives (or,

for discrete-time systems, appropriate time-shifts) were used
in the input update rule, see [12]. This approach is, however,
restricted to linear agent dynamics, but holds for weighted
and directed communication graphs.

All these papers [10–12] are using the same D-type input
update rule. The shortcoming of this control strategy is a
poor learning behavior; for example, a constant offset in the
initial condition cannot be compensated for as D-type ILC
only adapts the input based on errors in the velocity.

In this paper, we prove that for linear agent dynamics any
causal learning function with gains chosen according to a
simple scalar condition is stable. This allows more options
in the choice of the input-update rule (beyond the typical D-
type update rule) and thus faster learning convergence can
typically be achieved. Moreover, a constant error in the ini-
tial position can now be compensated for by incorporating
position errors into the learning function.

Several other multi-agent ILC approaches and extensions
are found in the literature, including ones for switching graph
structures [13] and adaptive [14], robust [15,16] or optimal
[17] update laws. However, all of these approaches have only
been implemented in simulation and, to the authors’ best
knowledge, multi-agent ILC has not been tested on a real
system before.

Since there has not been any practical implementation yet,
the question arises, what multi-agent ILC can be useful for.
In [18], trajectory-keeping in satellite formation flying is pre-
sented as one possible application. Beyond, it could be used
for a load lifting and transportation task executed by a team
of autonomous robots, for example quadrotors. If the mass
and the inertial properties of the load are unknown, the vehi-
cles could try to lift it as long as they operate in certain
bounds. If they get out of these (safety) limits, they can stop
the execution and try again with updated trajectories. The
possibility of gradually extending the time horizon of the
trajectory is an advantage of ILC as shown in [7]. Other
applications may include platooning, the formation driving
of autonomous cars, especially trucks.

This paper demonstrates the proposed generalized multi-
agent ILC algorithm in experiment on quadrotor vehicles.
To compensate for non-repetitive disturbances occurring
in real-world experiments, we include a distributed feed-
back controller, which improves the performance during
single iterations. Furthermore, we show that neither the dis-
tributed feedback controller nor any other linear dynamic
coupling between neighboring agents affect stability of the
ILC algorithm. Additionally, robustness of the proposed ILC
algorithm against non-repeating disturbances and noise, such
as sensor or process noise, is increased by including aQ-filter
and an optional Kalman-filter-based disturbance estimation.
Extensive experiments were conducted to demonstrate the
effectiveness of our algorithm and to highlight the effect of
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the different extensions. Videos of the experiments with two
and four vehicles, respectively, are found at:
https://youtu.be/Qw598DRw6-Q and
https://youtu.be/JppRu26eZgI.

This work is structured as follows: first, we introduce
some definitions and basic terminology from graph theory.
In Sect. 3, the distributed ILC algorithm is developed in the-
ory and the stability conditions for an arbitrary linear causal
learning function are derived. Based on these results, we
show that a dynamic coupling between neighboring agents
does not influence stability and propose a consensus feedback
controller and further extensions to increase robustness. The
developed algorithm is demonstrated on a real multi-agent
system. To show the effectiveness of the presented ILC and
its extensions, experimental results for a team of two quadro-
tors flying a horizontal motion are shown in Sect. 5. In a
second experimental setup, where four vehicles are perform-
ing a vertical motion, we analyze the influence of different
communication graphs. Finally, conclusions are provided in
Sect. 7.

This work has been accepted for publication at the 2016
IEEE conference on decision and control (CDC) [19]. This
paper includes the following major extensions compared to
the conference paper:

– The error definition, see Sect. 3.1.2, includes an addi-
tional term to compute the mean of the relative distances
to the neighbors, which allows the statement of Theo-
rem 3.

– In Sect. 3.4, we prove that the additional feedback
controller guarantees consensus in time-domain for the
closed-loop multi-agent system with double-integrator
agent dynamics. Furthermore, convergence of all agents’
tracking errors to zero can be shown for reference trajec-
tories with constant velocity.

– The robustness extensions in Sect. 3.5 complement the
learning algorithm for practical usage.

– In Sect. 5, additional experiments with two quadrotors
are shown to provide evidence of the improvements com-
pared to the previous D-type multi-agent ILC algorithm
and to show the benefits of the robustness extension.

– The developed learning scheme is applied to a larger sys-
tem consisting of four vehicles in a second experimental
setup. This allows us to analyze the influence of different
communication structures in Sect. 6.

2 Preliminaries on graph theory

To describe the information exchange between agents, graph
theory is commonly used. The vehicles are the nodes of the
graph and the edges represent the information flow between
vehicles, see Fig. 1. In the following, we provide necessary

Fig. 2 Spanning tree structure for a directed graph. Node v1 has no
incoming edges and is called the root node. All other vertices have
exactly one parent (one incoming edge) and can be connected to the
root through directed paths

definitions and notation and state some useful properties. For
more details about graph theory, see [20].

2.1 Definitions

Let G = (V, E,A) denote a directed graph with a set of
vertices V(G) = {vi : i ∈ {1, 2, . . . , N }}, and the edge set
E(G) ⊆ {(vi , v j ) : vi , v j ∈ V(G)}. The edge (vi , v j ) means
that agent vi receives information from v j , in which case
vi is called the child and v j the parent vertex. We define
A = (ai j ) ∈ R

N×N as the adjacency matrix of G with
elements representing the information exchange between
any two agents; that is, ai j = 1 if (vi , v j ) ∈ E(G) and
ai j = 0 otherwise. The in-degree of node vi is defined as
d in

i = ∑N
j=1 ai j ; that is, it describes the number of edges

entering a node. The (in-degree) Laplacian matrix is defined
as LG = D−A, whereD = diag(d in

1 , d in
2 , . . . , d in

N ). Divid-
ing each non-zero row of the Laplacian by its in-degree
d in

i leads to the definition of the normalized Laplacian L̃G
according to [21].

A graph is called undirected if for every edge (vi , v j ) the
reverse edge (v j , vi ) exists. In this case, the Laplacianmatrix
is symmetric.

If there exists a special vertex, the root, with no parents
(d in = 0), which all other nodes can be connected to through
directed paths and every other vertex has exactly one parent,
then the graph is called a spanning tree, see Fig. 2. Note
that some authors also use the term ’rooted out-branching’
to distinguish between directed and undirected graphs.

2.2 Laplacian spectrum

The concept of the Laplacian matrix is crucial for the the-
ory of consensus and multi-agent control. For analyzing the
stability of our learning algorithm, the eigenvalues of the
Laplacian play an important role. In this section, we provide
some relevant results.

Proposition 1 The spectrum of the Laplacian matrices can be
bounded using the Gershgorin circle theorem [22]. With �(·)
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denoting the real part of a complex number, the eigenvalues
λi (·), i ∈ {1, . . . , N }, are bounded by:

(i) Laplacian LG:

0 ≤ �(λi (LG)) ≤ 2(N − 1); (1)

(ii) Normalized Laplacian L̃G:

0 ≤ �(λi (L̃G)) ≤ 2. (2)

Proof The proof follows directly from the Gershgorin circle
theorem [22]. The diagonal entry and the sum of the absolute
values of the non-diagonal entries in each row are equal and,
therefore, zero is a lower bound of the spectrum. The upper
bound for both, radius and center of the Gershgorin disk, is
given by the maximum number of neighbors, which is N −1
in case (i). For the normalized Laplacian (ii), both values are
equal to one. For further analysis of the Laplacian spectrum,
see [21,23]. ��
Remark 1 For undirected graphs the Laplacian is symmetric
and, thus, all eigenvalues are real. For general graphs with
more than two nodes, eigenvalues can appear in complex
conjugate pairs.

From Proposition 1, we know that all eigenvalues lie in the
right half plane of the complex plane or at 0. Additionally,
they can be upper bounded. The following statement provides
some information about the number of eigenvalues at the
origin. A graph is said to contain a spanning tree if it can be
constructed based on a spanning tree by adding additional
edges. That is, some (improper) subset of its edges forms a
spanning tree.

Proposition 2 The (normalized) Laplacian always has one
eigenvalue at 0. It has exactly one eigenvalue at zero if and
only if the graph contains a spanning tree. If the graph is a
spanning tree (no additional edges), all non-zero eigenvalues
are equal to one [20].

2.3 Reference trajectory as virtual leader

A discrete time reference trajectory ydes(t) is given for all
t ∈ {0, 1, . . . , T }, T < ∞, which a certain subset of agents
has access to.

We model the reference trajectory as an additional node
v0 and call it the virtual leader. The virtual leader has only
out-going edges to those agents that have access to the refer-
ence ydes . The result is an extended graph G∗. Let bi ∈ {0, 1}
be defined for every agent analogously to the entries of the
adjacency matrix: bi = 1 if agent i has access to the ref-
erence trajectory, and bi = 0 otherwise. The corresponding

Laplacian LG∗ is

LG∗ =
[
0 01×N

−b LG + B
]

(3)

with b = (b1, b2, . . . , bN )T , B = diag(b) and 01×N denot-
ing a matrix of size (1 × N ) with all entries being zero.
Normalizing LG∗ leads to

L̃G∗ =
[

0 01×N

−Wb W (LG + B)

]

, (4)

where W is a diagonal weighting matrix,

W = diag

(
1

d in
1 + b1

,
1

d in
2 + b2

, . . . ,
1

d in
N + bN

)

. (5)

Note that d in
i in (5) are the in-degrees of LG . Without loss of

generality, (d in
i + bi ) can be assumed to be non-zero, other-

wise agent vi would have neither the reference nor neighbors
to learn from. To facilitate further derivations, we introduce

L̂G∗ = W (LG + B). (6)

For readability, we skip the graph index G∗ in the following
and simply use the notation L̂.

Proposition 3 The eigenvalue spectrum of L̂ can be bounded
by

0 ≤ �(λi (L̂)) ≤ 2. (7)

Proof It can be seen in (4) that L̃G∗ is block triangular. Using
the fact that the eigenvalues of a block triangular matrix are
the combined eigenvalues of the diagonal blocks, the state-
ment follows from Proposition 1. ��

Proposition 4 The matrix L̂ has full rank and all its eigen-
values lie in the right half plane if and only if G∗ contains a
spanning tree.

Proof If the extended graphG∗ contains a spanning tree, node
v0 representing the virtual leader must be the root as it has
in-degree d in

0 = 0. From Proposition 2 follows that LG∗ and
L̃G∗ , respectively, only have one zero eigenvalue. With (4)
and (6), we see that L̂ is full rank. The statement then follows
fromProposition 3. The necessary condition is evident, as the
Laplacian of a graph not containing a spanning tree has more
than one zero eigenvalue and, thus, L̂ is not full rank. ��
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3 Developing the distributed learning
algorithm

3.1 Problem formulation

Consider a system of N autonomous agents with index
i = {1, 2, . . . , N }. The communication between the agents
can be described by some graph G and is restricted to posi-
tion information. A certain subset of agents has access to the
desired trajectory ydes∈ R as described above. The goal is to
track this reference signalwith all agents simultaneously. The
result can be directly applied to formation control by simply
defining fixed or time-varying relative distances between the
agents.

3.1.1 Agent dynamics

The linear discrete-time single-input, single-output dynam-
ics of the ith agent during the kth iteration of the learning,
k ∈ {1, 2, . . . }, and for sampling times t ∈ {0, 1, . . . , T } are
described by

xi,k(t + 1) = Axi,k(t) + Bui,k(t)

yi,k(t) = Cxi,k(t), (8)

where xi,k(t) ∈ R
n is the state vector, ui,k(t) ∈ R the input

and yi,k(t) ∈ R the output. Accordingly, A ∈ R
n×n, B ∈

R
n, C ∈ R

1×n .
We use the notation of the time-shift operator q−1 as

proposed by [6]. It is defined by q−1x(t) = x(t − 1), i.e.,
q−1x(t) denotes the value of the signal x(t) from the previ-
ous time step, q−2x(t) the value from two time steps before,
and so on. Using this, the state-space system (8) can be rep-
resented as

yi,k(t) = P(q)ui,k(t) + di (t), (9)

where di (t) = C At xi (0) is the free response to the initial
condition, which is assumed to be repeatable for every itera-
tion. The input–output mapping P(q) is given by an infinite
power series,

P(q) = p1q
−1 + p2q

−2 + p3q
−3 + . . . , (10)

with Markov parameters pm = C Am−1B. The relative
degree r of the system (8) defines the number of coefficients
equal zero; that is, pm = 0 for m < r , pm 
= 0 for m = r .
More intuitively, the relative degree is the delay of a system,
i.e. the number of time steps after which an input stimulus
affects and is ‘visible’ in the system output.

3.1.2 Error signals

The only information exchanged between agents is the rel-
ative position, which can be easily obtained in practical
implementations. For example, an agent’s own camera sys-
tem could detect the neighbors and measure the distances;
no communication between agents would be necessary.

We define an error signal ei,k(t) for each agent i as the
meanof relative distances to all its neighbors and to thevirtual
leader if accessible,

ei,k(t) = 1

d in
i + bi

( N∑

j=1

ai j
(
y j,k(t) − yi,k(t)

)

+ bi
(
ydes(t) − yi,k(t)

)
)

. (11)

Dividing by the factor (d in
i + bi ) allows easier handling of

different graph topologies. For example, adding additional
communication edges or more agents can be done without
adapting the learning gains, as we will see later.

Remark 2 The error function (11) is for the consensus case,
in which all agents aim to follow the same trajectory. If the
goal is a desired constant or time-varying formation, addi-
tional iteration-invariant terms, the desired distances �i j (t)
and �i (t), have to be added. Thus,

ei,k(t) = 1

d in
i + bi

( N∑

j=1

ai j
(
y j,k(t) − yi,k(t) + �i j (t)

)

+ bi
(
ydes(t) − yi,k(t) + �i (t)

)
)

. (12)

3.2 Theoretical analysis of distributed iterative
learning control

As ILC approach, we use the distributed input update rule

ui,k+1(t) = ui,k(t) + L(q)ei,k(t + r), (13)

with i ∈ {1, . . . , N } and t ∈ {1, . . . , T − r}, and causal
learning function [6]

L(q) = l0 + l1q
−1 + l2q

−2 + · · · , (14)

where r is the relative degree and the l∗ values are the hyper-
parameters of the learning algorithm. The block diagram
is shown in Fig. 3. In the following, the relative degree is
assumed to be one without loss of generality. A higher rela-
tive degree can be compensated for by a corresponding time
shift of the error vector (this becomes more evident with the
definitons in (16). A time shift of the vector means shift-
ing each of its elements one column up). The acausality in
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Fig. 3 Basic ILC structure for vehicle vi . P(q) denotes the plant, L(q)
the learning function. The input is computed based on the previous input
and previous distributed tracking error ei , which are saved in memory
units

the update rule, i.e. the fact that ui,k+1(t) depends on future
values ei,k(t +r), is not a problem as the input update is com-
puted after the previous executionwas completed. Algorithm
(13) can be interpreted as a simple, first-order ILC algorithm
commonly used in the literature, see [6]. The order of an
ILC algorithm is defined as the number of previous itera-
tions taken into account.

Multi-agent ILC was first presented in [10] and similar
approaches can be found in [11,12]. They use D-type ILC
algorithms, a special case of the learning function L(q) pro-
posed in this work.

For analyzing stability of the learning scheme, that is, con-
vergence of the learned input as the number of iterations goes
to infinity, we use the lifted-system representation according
to [6], where all samples of a signal are stacked in a large
vector. The system dynamics (9) and the input update (13)
are now represented by

⎡

⎢
⎢
⎢
⎣

yi,k(1)
yi,k(2)

...

yi,k(T )

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
yi,k

= P

⎡

⎢
⎢
⎢
⎣

ui,k(0)
ui,k(1)

...

ui,k(T − 1)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
ui,k

+

⎡

⎢
⎢
⎢
⎣

di (1)
di (2)

...

di (T )

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
di

, (15)

⎡

⎢
⎢
⎢
⎣

ui,k+1(0)
ui,k+1(1)

...

ui,k+1(T − 1)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
ui,k+1

=

⎡

⎢
⎢
⎢
⎣

ui,k(0)
ui,k(1)

...

ui,k(T − 1)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
ui,k

+L

⎡

⎢
⎢
⎢
⎣

ei,k(1)
ei,k(2)

...

ei,k(T )

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
ei,k

, (16)

with lower-triangular, Toeplitz matrices

P =

⎡

⎢
⎢
⎢
⎣

p1 0 . . . 0
p2 p1 . . . 0
...

...
. . .

...

pT pT −1 . . . p1

⎤

⎥
⎥
⎥
⎦

,

L =

⎡

⎢
⎢
⎢
⎣

l0 0 . . . 0
l1 l0 . . . 0
...

...
. . .

...

lT −1 lT −2 . . . l0

⎤

⎥
⎥
⎥
⎦

.

Wenowcombine all single-agent dynamics into one equation

⎡

⎢
⎢
⎢
⎣

y1,k
y2,k
...

yN ,k

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Yk

=

⎡

⎢
⎢
⎢
⎣

P 0 . . . 0
0 P . . . 0
...

...
. . .

...

0 . . . . . . P

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
IN ⊗P

⎡

⎢
⎢
⎢
⎣

u1,k
u2,k
...

uN ,k

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Uk

+

⎡

⎢
⎢
⎢
⎣

d1
d2
...

dN

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
D

, (17)

where ⊗ denotes the Kronecker product and IN the (N × N )

identity matrix. Analogously, using the error definition (11),
the multi-agent version of (16) is

⎡

⎢
⎢
⎢
⎣

u1,k+1

u2,k+1
...

uN ,k+1

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Uk+1

=

⎡

⎢
⎢
⎢
⎣

u1,k
u2,k
...

uN ,k

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Uk

+

⎡

⎢
⎢
⎢
⎣

L 0 . . . 0
0 L . . . 0
...

...
. . .

...

0 . . . . . . L

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
IN ⊗L

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
d in
1 +b1

0 . . . 0

0 1
d in
2 +b2

. . . 0

...
...

. . .
...

0 . . . . . . 1
d in

N +bN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
W

⊗IT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...

aN1 . . . . . . aN N

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
A

⊗IT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣

y1,k
y2,k
...

yN ,k

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Yk

−

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

d in
1 0 . . . 0
0 d in

2 . . . 0
...

...
. . .

...

0 . . . . . . d in
N

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
D

⊗IT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣

y1,k
y2,k
...

yN ,k

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Yk

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...

0 . . . . . . bN

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
B

⊗IT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

ydes

ydes
...

ydes

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Ydes

−

⎡

⎢
⎢
⎢
⎣

y1,k
y2,k
...

yN ,k

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Yk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (18)
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where ydes = (
ydes(1), ydes(2), . . . , ydes(T )

)T . With the
property of the Kronecker product that (A ⊗ B)(C ⊗ D) =
AC ⊗ B D and the graph-theoretic definitions from Sect. 2,
LG = D − A and L̂ = W (LG + B) from (6), this can be
written as

Uk+1 = Uk − (IN ⊗ L) · ((L̂ ⊗ IT )Yk − (Wb ⊗ IT )ydes
)
.

(19)

For simplicity, we collect all iteration-invariant terms, that
is, terms only depending on the initial conditions or the ref-
erence trajectory, in δ ∈ R

N T . Then, by plugging (17) into
(19), it follows

Uk+1 = Uk − (IN ⊗ L)(L̂ ⊗ IT )(IN ⊗ P)Uk + δ

= Uk − (IN L̂ IN ⊗ L IT P)Uk + δ

= (IN T − L̂ ⊗ LP)Uk + δ. (20)

Based on stability theory for discrete systems, conditions for
the stability of single-agent ILC were developed in [24] and,
slightly modified, presented in [6]. The following definitions
are taken from the latter and adapted to MAS.

Definition 1 An ILC system is called asymptotically stable
if there exists U ∈ R

N T such that for all k = {0, 1, . . . }:

|Uk | ≤ U and lim
k→∞Uk exists,

where the operators, ≤ and lim, are defined elementwise.

Using this definition, Eq. (20), and the notation of the spectral
radius ρ as the maximum absolute eigenvalue, we can state:

Theorem 1 The multi-agent ILC system (17)–(20) is asymp-
totically stable if and only if

ρ
(
IN T − L̂ ⊗ LP

)
< 1, (21)

or equivalently,

max
i

|1 − λi l0 p1| < 1, (22)

where λi , i ∈ {1, . . . , N }, are the eigenvalues of L̂.

Note that we assumed a relative degree r = 1 and, thus,
p1 
= 0. The eigenvalues of L̂ depend on the graph topology
and can be easily computed for a given structure. As stability
depends only on l0, the learning function L(q) has a multi-
tude of tuning parameters that can be chosen to achieve good
convergence behavior and overall learning performance.

Proof The first statement (21) follows directly from [24]
applied to (20). The latter equation (22) is obtained by apply-
ing a similarity transformation to (14) similarly to how it is
done for undirected graphs in [11].

As all entries in L̂ are real, this matrix can be transformed
to Jordan normal form, that is, it exists a regular matrix S ∈
R

N×N and a Jordan matrix J ∈ R
N×N with eigenvalues on

the diagonal and possible ones on the subdiagonal such that

S−1L̂S = J . (23)

Usually J is defined with ones on the superdiagonal but, for
simplicity, we use this less common definition to get lower-
triangular matrices. As eigenvalues and, thus, the spectral
radius remain the same under similarity transformations, it
follows that

ρ(IN T − L̂ ⊗ LP)

= ρ
(
(S ⊗ IT )−1(IN T − L̂ ⊗ LP)(S ⊗ IT )

)

= ρ(IN T − J ⊗ LP), (24)

where L and P are lower triangular matrices, as is J . As a
result, the eigenvalues are the diagonal entries.Multiplication
of triangular matrices does not affect this property, thus (21)
is equivalent to the scalar condition (22). ��
Theorem 2 For asymptotic stability of the ILC algorithm, it
is necessary that the graph G∗ contains a spanning tree with
the virtual leader as root.

Proof It is easy to see that (22) only holds if λi 
= 0. With
Proposition 4, the statement is proven. ��
Theorem 3 Under the condition stated in Theorem 2, the
multi-agent ILC algorithm (13) is asymptotically stable for
all possible communication topologies and any number of
agents if the learning function (14) is chosen such that

sgn(l0) = sgn(p1) and |l0| <
1

|p1| .

Proof The proof follows directly from (22) and the bounds
on the eigenvalues stated in Propositions 3 and 4. ��
Theorem 4 If the linear multi-agent ILC system is asymptot-
ically stable, all agents’ output trajectories converge to the
desired trajectory with increasing number of iterations. This
means that all agents learn to track the reference perfectly.

Proof From Definition 1, we know that if the ILC is asymp-
totically stable, it holds that, for k → ∞, Uk = Uk+1. So it
follows from (19) that

0 = (IN ⊗ L) · ((L̂ ⊗ IT )Y∞ − (Wb ⊗ IT )ydes
)
, (25)

where Y∞ denotes the converged output vector. Invertibility
is guaranteed for L. From Corollary 2 and its proof, we know
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that L̂ must be full rank, too. Using the property of the Kro-
necker product that (A ⊗ B)−1 = (A−1 ⊗ B−1) if A, B are
invertible, we get

(L̂ ⊗ IT )Y∞ = (Wb ⊗ IT )ydes

Y∞ = (L̂−1Wb ⊗ IT )ydes . (26)

With 1N denoting a column vector with all entries being one,
it can be easily checked that (LG + B)1N = b and hence
L̂−1Wb = 1N [22]. Finally, we end up with

Y∞ = (1N ⊗ IT )ydes . (27)

We see that all agents converge to the desired trajectory. ��

Remark 3 Theextensionof these results to quadraticmultiple-
input, multiple-output (MIMO) agent dynamics is straight-
forward. The coefficients l0 and q1, which are scalar in the
SISO case, are matrices l0, q1 ∈ R

m×m. The matrix product
LP then results in a block triangular matrix and its spectrum
is given by the m eigenvalues ej of the matrix product l0q1.
In the spectrum of LP, each of the eigenvalues ej has alge-
braic multiplicity T . Thus, condition (22) for MIMO agent
dynamics is

max
i,j

|1 − λiej| < 1. (28)

Remark 4 For linear time-varying (LTV) agent dynamics,
(21) still holds, but L and P are no longer Toeplitz.

3.3 Learning convergence under dynamic agent
coupling

We now assume that there is an additional feedback term in
the time-domain, that can be described as a function of the
relative distances between neighbors,

uFB
i,k (t) = C(q)ei,k(t) (29)

with ei,k(t) as in (11) and a causal feedback function

C(q) = c0 + c1q
−1 + c2q

−2 + · · · (30)

This could be a feedback controller or any other dynamic
coupling, which does not have to be known.

Theorem 5 Given an arbitrary feedback component in the
form of (29), the stability of the distributed ILC algorithm
(13) is not affected by the feedback if applied in parallel
structure, as explained in [6] and Fig. 4.

Fig. 4 Time-domain feedback control combined with iteration-domain
ILC for agent vi . The feedback term C(q) computes updates at every
time step, while the ILC part computes updates after each iteration using
the past iteration’s error and input signal

Proof The new input signal is ui,k = uILC
i,k +uFB

i,k , where uILC
i,k

represents the ILC input described in Sect. 3.2. Using again
the lifted-system representation and inserting into (15) yields

yi,k = P
(
uILCi,k + Cei,k + C0ei (0)

)
+ di , (31)

with

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 0
c0 0 . . . 0 0
c1 c0 . . . 0 0
...

...
. . .

...
...

cT −2 cT −3 . . . c0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,C0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c0
c1
c2
...

cT −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The different sample times in the definitions of ei,k (11) and
ui,k (13) cause the additional initial condition term C0ei (0)
in (31) and the subdiagonal shift in C. Analogously to before,
the single-agent signals can be combined into themulti-agent
form

Yk = (IN ⊗ P)
(
UILC

k − (IN ⊗ C)(L̂ ⊗ IT )Yk

)
+ δ

= (IN ⊗ P)UILC
k − (L̂ ⊗ PC)Yk + δ

= (IN T + L̂ ⊗ PC)−1(IN ⊗ P)UILC
k + δ, (32)

where all iteration-invariant terms are gathered in δ. Invert-
ibility is guaranteed as we will see later. Inserting (32) into
(19) leads to

UILC
k+1 = UILC

k − (IN ⊗ L)(L̂ ⊗ IT )(IN T + L̂ ⊗ PC)−1

· (IN ⊗ P)UILC
k + δ

= (IN T − (L̂ ⊗ L)(IN T + L̂ ⊗ PC)−1(IN ⊗ P)
)

︸ ︷︷ ︸
M

· UILC
k + δ (33)

As stability is determined by the spectral radius ρ(M), we
must investigate the eigenvalues of thismatrix. The similarity
transformation (23) can be applied to get
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ρ(M) = ρ
(
(S ⊗ IT )−1(IN T − (L̂ ⊗ L)(IN T + L̂ ⊗ PC)−1

· (IN ⊗ P)
)
(S ⊗ IT )

)

= ρ
(
IN T − (S ⊗ IT )−1(L̂ ⊗ L)(S ⊗ IT )

· (S ⊗ IT )−1(IN T + L̂ ⊗ PC)−1(S ⊗ IT )

· (S ⊗ IT )−1(IN ⊗ P)(S ⊗ IT )
)

= ρ
(
IN T − (J ⊗ L)

(
(S ⊗ IT )−1(IN T + L̂ ⊗ PC)

· (S ⊗ IT )
)−1

(IN ⊗ P)
)

= ρ
(
IN T − (J ⊗ L)(IN T + J ⊗ PC)−1(IN ⊗ P)

)
.

(34)

In (34), we inserted additional identity matrices IN T = (S ⊗
IT )(S⊗IT )−1 and used the facts that A−1B−1 = (B A)−1 and
(A⊗B)−1 = A−1⊗B−1 for two invertiblematrices A and B.
As all matrices are now in lower triangular form (the inverse
of a triangular matrix is also triangular), the eigenvalues are
the diagonal entries. As all diagonal entries of C are 0, it can
be seen that the diagonal entries of (IN T + J ⊗PC) are all 1.
This allows us to invert the matrix and the diagonal entries
of (IN T + J ⊗ PC)−1 are also all equal to one. Finally, we
end up with the same condition as in Theorem 1. ��

3.4 Consensus feedback controller

The above result allows us to include an additional consen-
sus feedback controller in the form of (29). While ILC is just
a feedforward control technique, that can not react to non-
repeating disturbances during one iteration, this feedback
controller compensates these shortcomings. This can avoid
collisions between the agents, for example, and decrease the
errors that are caused by non-repetitive effects. Furthermore,
it enables the followers to get information even in the first
iteration and, thus, reduces the initial tracking errors. This
leads to better performance during the first trials.

We use the discrete-time index t ∈ {0, 1, . . . , T } to denote
the sampled, continuous-time signal where x(t) represents
the signal value at time t · �t with sampling interval �t . Let
the continuous-time agent dynamics be given by a double
integrator

ÿi (t) = ui (t), (35)

with output yi (t) ∈ R, input ui (t) ∈ R and initial condi-
tions yi (0) = yi,0, ẏi (0) = ẏi,0. Many systems modeled by
Newtons equations can be feedback linearized resulting in
independent double integrators in each direction [22].

Based on [20,22], we propose the following proportional-
derivative (PD) feedback controller:

uFB
i (t) = 2η

τc
ėi,k(t) + 1

τ 2c
ei,k(t), (36)

with error function ei,k(t) as defined in (11) and controller
gains, η, τc ∈ R+.

Theorem 6 The feedback controller given in (36) guarantees
exponential stability of a multi-agent system with double-
integrator agents if the communication graph contains a
spanning tree. Additionally, the tracking error then con-
verges to zero for all agents given a desired trajectory ydes

with velocity ẏdes = constant.

Proof As all signals are from the same iteration, we skip the
iteration index k. Applying the controls (36) with (11) to the
double-integrator dynamics (35), we get

ÿi (t) = 1

d in
i + bi

(
2η

τc

( N∑

j=1

ai j ẏ j (t) + bi ẏdes(t)

− (d in
i + bi )ẏi (t)

)

+ 1

τ 2c

( N∑

j=1

ai j y j (t)

+ bi ydes(t) − (d in
i + bi )yi (t)

))

(37)

Again, extending the single-agent dynamics to the multi-
agent system, Y (t) = (y1(t), y2(t), . . . , yN (t))T , leads to

Ÿ (t) = 2η

τc

(
Wbẏdes(t) − L̂Ẏ (t)

)

+ 1

τ 2c

(
Wbydes(t) − L̂Y (t)

)
, (38)

with b = (b1, b2, . . . , bN )T and the positive definite, diag-
onal weighting matrix W as defined in (5). For proving
stability, the reference signal is set to zero, ydes(t) ≡ 0, and
the second-order differential equation is transformed into a
first order system,

[
Ẏ (t)
Ÿ (t)

]

=
[
0N×N IN

− 1
τ 2c
L̂ − 2η

τc
L̂

]

︸ ︷︷ ︸
Acl

[
Y (t)
Ẏ (t)

]

. (39)

For a block matrix

M =
[

A B
C D

]

,

where A and C commute, it is known that det(M) =
det(AD − BC) [22]. This can be applied to the characteris-
tic equation to solve for the eigenvalues λ of the closed-loop
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dynamics matrix Acl ,

det(λI2N − Acl) = det

(

λ2IN +
(
λ + 1

2ητc

)2η

τc
L̂
)

= 0.

(40)

It is easy to see that λ = − 1
2ητc

does not solve this equation,
so we get

det

(

λ2
(
λ + 1

2ητc

)−1
IN + 2η

τc
L̂
)

= 0. (41)

Following the proof in [20] and denoting the eigenvalues of
L̂ by μi , it holds that for each i ∈ {1, . . . , N },

μi = − τcλ
2

2ηλ + 1
τc

, (42)

and hence

λi1,2 = 1

τc

(

−ημi ±
√

η2μ2
i − μi

)

. (43)

If the graph contains a spanning tree, we know from Propo-
sition 4 that all μi > 0 and, thus, all λi < 0. Consequently,
the matrix Acl is Hurwitz and the first statement is proven.

To show the second one holds true, we define E(t) =
L̂Y (t)−Wbydes(t). Given that ÿdes(t) = 0,we know Ë(t) =
L̂Ÿ (t), so (38) can be written as

L̂−1 Ë(t) = −2η

τc
Ė(t) − 1

τ 2c
E(t)

⇔ Ë(t) = −2η

τc
L̂Ė(t) − 1

τ 2c
L̂E(t). (44)

Now, with the same argumentation as above, we see that
E(t) → 0 for t → ∞. It holds that (LG + B)1N = b and
hence L̂−1Wb = 1N [22]. From the definition of E(t), it
then follows that Y (t) → 1N ydes(t), which is equivalent to
yi (t) → ydes(t). ��

3.5 Extensions for increased robustness

3.5.1 Q-filter

When applied to real systems, the proposed ILC schememust
gracefully handle non-idealities such as high-frequencynoise
or model uncertainties. In particular, if the system dynamics
were known exactly, there would be more direct, especially
feedforward, controlmethods that could be applied to achieve
good tracking performance. Noise in the error signal leads
to an adaptation in the input signal. This is undesirable and
negatively affects the learning. To increase the robustness of

Fig. 5 Control structure with ILC and Consensus Feedback extended
by a Q-filter. The output of the learning function L(q) is filtered to
reduce the influence of high-frequency noise and to guarantee smooth
input signals uILC

i

ILC algorithms, it is common to include a so-called Q-filter
in the input-update rule (13) as shown in Fig. 5,

ui,k+1(t) = ui,k(t) + Q(q)L(q)ei,k(t + r), (45)

with

Q(q) = · · · + q−2q
2 + q−1q

1 + q0 + q1q
−1 + q2q

−2 + · · · .

The stability conditions for the ILC algorithm with inte-
grated Q-filter can be derived analogously to Theorem 1.

Theorem 7 The multi-agent ILC system with Q-filter is
asymptotically stable if and only if

ρ
(
IN T − L̂ ⊗ QLP

)
< 1, (46)

with

Q =

⎡

⎢
⎢
⎢
⎣

q0 q−1 . . . q−(T −1)

q1 q0 . . . q−(T −2)
...

...
. . .

...

qT −1 qT −2 . . . q0

⎤

⎥
⎥
⎥
⎦

.

If the filter is causal, Q is a lower triangular matrix and (46)
can be reduced to the scalar inequality condition

max
i

|1 − λi q0l0 p1| < 1, (47)

where λi are the eigenvalues of L̂.

The Q-filter can be designed to affect the learning impact
of different frequency components of the error signal ei,k(t).
For frequencies at which the gain of the filter is one, the
learning is not influenced, whereas for frequencies at which
the magnitude is zero, no signal is passed through the filter
and those frequencies do not have an impact on the system
behavior and learning. This filtering can increase robustness
at the cost of poorer learning performance. For example, the
stability and convergence behavior of the ILC algorithm is
influenced by high frequencies in the error signal, whichmay
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be caused by measurement noise. A theoretical analysis of
these effects is given in [25]. As an adaptation to noise is
undesirable, the Q-filter is implemented as a discrete low-
pass filter. In practice, different types of lowpass filters can
be implemented, including finite-impulse-responseGaussian
filters [26] or infinite-impulse-response filters such as dis-
crete Butterworth filters [27].

As the learning step with the input update can be com-
puted between two iterations, all samples of the error signal
are available and, thus, even non-causal filters can be easily
realized. An effective method to avoid phase lags caused by
the filtering is to filter the signal twice. First, the data is fil-
tered forward in time and the result is then filtered backwards,
to cancel the phase change produced in the first filtering run
[25].

A good explanation of the role of the Q-filter can be found
in [6]. For more insight into the trade-off between perfor-
mance and robustness, see [28].

3.5.2 Kalman-filter based disturbance estimation

A more formal way to treat measurement noise and model
uncertainties is by using a Kalman filter, which optimally
trades off fast learning and noise rejection based on the a
priori covariances provided.

The measured error ei,k can be divided into two parts,
a repetitive share representing repeating external distur-
bances,modeling errors and differences in the agents’ desired
motions, and a non-repetitive one, which includes non-
repeating disturbances and process and measurement noise.
The first part is the one ILC is supposed to compensate for.
The second part can be assumed to be trial-uncorrelated and
Gaussian distributed with mean of zero. The idea is to use a
Kalman filter approach to estimate the repetitive error com-
ponent, the so-called disturbance vector di , as it is presented
in combination with ILC in [7,29] and further studied in [30].
The block diagram is shown in Fig. 6. Note that the name di

is chosen according to the literature, but this variable is in
our case not exactly the same as the vector representing the
response to the initial condition in Sects. 3.1–3.3. It addition-
ally contains a share caused by the neighbors’ movement and
while they learn, this share is not fix, which in fact limits the
benefit of this extension.

Error model TheKalmanfilter is basedon a simplifiedmodel
[7],

di,k+1 = di,k + ζi,k, ζi,k ∼ N (0,Ek), (48)

ei,k = di,k + ξi,k, ξi,k ∼ N (0,Hk), (49)

with diagonal covariance matrices Ek = εkIT ,Hk = ηkIT
and the initial condition for the variance of d0, P0 = p0IT ;
εk, ηk, p0 ∈ R

+. These stochastic values are assumed to be
the same for each agent.

Fig. 6 Control structure with ILC and Consensus Feedback extended
by an additional Disturbance Estimation. The disturbance estimation
block additionally saves the estimated disturbance vector for the next
iteration. Note that the ILC block holds the signals for one iteration and
may include the Q-filter as depicted in Fig. 5

For a Kalman filter, a system dynamics model is usually
taken into account, but this would mean that each agent has
to know the whole multi-agent dynamics, what contradicts
the distributed approach we are using. Moreover, since we
perform learning because an accurate system model is not
available, the dynamics model used for prediction is simply
assuming that the disturbance is the same as in the last iter-
ation plus noise (48). The measurement model assumes that
we canmeasure the disturbance vector plus somewhite noise
(49).

The estimated disturbance vector d̂i , which is the basis for
the input update is then computed as

d̂i,k = d̂i,k−1 + Kk(ei,k − d̂i,k−1), (50)

with Kalman gains Kk , which are calculated recursively,
according to [30],

Sk = Pk−1 + Ek−1

Kk = Sk(Sk + Hk)
−1

Pk = (I − Kk)Sk . (51)

Choice of Parameters The disturbance vector di,k can be
viewed as the lowpass-filtered error vector,where theKalman
filter with the choice of ε, η optimally trades off trusting
the model (that is, old disturbance = new disturbance) and
trusting the measurement ei,k . The choice of the covariance
parameters εk, ηk determines the weighting between the new
measured error and the old estimate of the disturbance vec-
tor, for a detailed discussion see [7]. For simplicity, we use,
constant values εk = ε, ηk = η for all k. As all matrices
are diagonal, we can break down the algorithm to a scalar
equation:

kk = pk−1 + ε

pk−1 + ε + η

pk = (1 − kk)(pk−1 + ε), (52)

where pk and kk are the diagonal entries of Pk and Kk ,
respectively. The covariances are difficult to determine exper-
imentally, but can be viewed as tuning parameters. In fact,
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Fig. 7 Convergence behavior of Kalman gains for given k1 = 0.95,
k∞ = 0.2 and constant covariances ε, η

here we choose the desired Kalman gains for the first itera-
tion k1 and the converged value k∞ and solve the resulting
equations for p0, ε and η:

p∞ = p∞−1 (steady state)

⇒ ε = k∞
1 − k∞

p∞ (53)

k∞ = p∞ + ε

p∞ + ε + η
(54)

k1 = p0 + ε

p0 + ε + η
. (55)

Solving these equations for ε, η, p0 > 0 and k1 ≥ kk ≥ k∞
leads to a unique solution for the Kalman gains. The latter
inequalities reflect that as more information is gained less
value is given to a single new measurement, while initially a
fast adaptation and high k1 are desirable.

The resulting gains for the choice of parameters k1 = 0.95
and k∞ = 0.2 are shown in Fig. 7.

Note that the convergence rate cannot be influenced with
given k1, k∞ and constant covariance parameters.

4 Implementation details

To verify the practicability and effectiveness of the the-
oretically motivated multi-agent learning framework, we
implemented the proposed algorithm on a group of quadro-
tors. The vehicle we used is the Parrot AR.Drone 2.0, which
comes with a blackbox onboard controller. Its inputs are the
commanded roll, φc, and pitch, θc, Euler angles, the turn rate
around the vehicle’s vertical axis, ωz,c, and a commanded
velocity, żc, in global z-direction.

An overheadmotion capture camera system and an appro-
priate state estimator provide all necessary position, velocity,
attitude and rotational velocity information, and, conse-
quently, this whole state vector s can be used for controls. For
practical reasons, the ILCand feedback algorithms are imple-
mented on a central, external computer. Nonetheless, the
algorithms could all be used in a fully distributed architecture
withoutmodifications. Thewhole quadrotor control architec-
ture is running on the Robot Operating System (ROS).

Fig. 8 Block diagram of the quadrotor control structure. The � block
represents the quadrotor dynamics including the onboard controllerwith
commanded roll,φc, and pitch, θc, Euler angles, desired turn rate around
the vehicle’s vertical axis, ωz,c and commanded velocity, żc, as control
inputs, and position x and velocity ẋ as output. The full model state s is
observable and fed back to the nonlinear position controller K, which
computes the control input depending on the desired positions xdes and
velocities ẋdes

Fig. 9 Block diagram of the quadrotor control structure with controller
K split up into a linear partK1 and anonlinear partK2. For our theoretical
analysis, the plant � and K2 are summarized by system �∗

The quadrotors’ onboard controller cannot be accessed
and, therefore, can be interpreted as part of the plant �.
Its inputs are computed by an existing, nonlinear posi-
tion controller K given the desired positions xdes =
(xdes, ydes, zdes)

T and velocities ẋdes in global coordinates
as inputs. Additionally, a desired rotation matrix or desired
accelerations can be set but are not used here. A sketch of the
control architecture of a single vehicle is shown in Fig. 8.

The controller K can be split up into two parts, K1 and K2,
as depicted in Fig. 9. The systemK1 compares the actual with
the desired positions and velocities, and computes correcting
forces/accelerations (and velocities for the z-direction) in the
global coordinate system:

ẍc(t) = 2η

τx

(
ẋdes(t) − ẋ(t)

)+ 1

τ 2x

(
xdes(t) − x(t)

)

ÿc(t) = 2η

τy

(
ẏdes(t) − ẏ(t)

)+ 1

τ 2y

(
ydes(t) − y(t)

)

żc(t) = żdes(t) + 1

τz

(
zdes(t) − z(t)

)
, (56)

where the damping ratio η and the time constants τx, τy, τz
represent the controller gains. The resulting signals are trans-
lated into the corresponding commands φc, θc, ωz,c and żc

in K2. This is done using an exact input–output lineariza-
tion [31], which can be applied since the camera system and
a state estimator provide the full state vector s. The result-
ing dynamics of�∗ can be approximated by continuous-time
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double integrators decoupled for x- and y-direction. Formore
information about quadrotor modeling, see [32,33].

Based on this existing architecture, we can realize the con-
sensus feedback control, as presented in Sect. 3.4, by setting
the desired position and velocity to the means of the agent’s
neighbors’ (including the virtual leader) positions and veloc-
ities,

xi,des(t) = 1

d in
i + bi

⎛

⎝
N∑

j=1

ai jx j (t) + bixr (t)

⎞

⎠

ẋi,des(t) = 1

d in
i + bi

⎛

⎝
N∑

j=1

ai j ẋ j (t) + bi ẋr (t)

⎞

⎠ , (57)

where xr (t)denotes the reference trajectory (virtual leader) in
x-direction. The equations for y- and z-direction are defined
analogously.

Furthermore, the ILC-generated feedforward input is
added to the desired position. Exemplary for the x-direction,
this is

xi,des(t) = 1

d in
i + bi

( N∑

j=1

ai jx j (t) + bixr (t)
)

+ τ 2x uILC
x,i (t).

(58)

The additional factor τ 2x cancels out with the controller
parameters in (56), so that the system can be transformed
to a structure identical to Fig. 4.

5 Learning convergence experiments with
two quadrotors

5.1 Choice of parameters

The first set of experiments focuses on motions in the hori-
zontal plane. For these experiments in the x- and y-direction,
we approximate the system dynamics by decoupled double
integrators, as discussed above. The z-position is assumed to
be constant. The control loop is running at a frequency f =
66.67 Hz. Discretization using the Taylor series expansion
with time constant �t = 1/ f = 0.015s leads to the discrete
dynamics

xi,k(t + 1) =
[
1 0.015
0 1

]

xi,k(t) +
[ 1
20.015

2

0.015

]

ui,k(t)

yi,k(t) = [1 0
]

xi,k(t − τ), (59)

where τ represents the time delay of the system consist-
ing of delays in input and output signal processing and
plant-inherent delays due to the simplified modeling. As the

mathematical model is linear, all these can be gathered in
one delay term. We can now compute the critical parameter
of the system dynamics (9)–(10), p1 = 1

20.015
2.

For the iterative learning, a PD-type (proportional and
derivative actions) input update rule is applied,

uILC
i,k+1(t) = uILC

i,k (t) + kpei,k(t + r − 1)

+ kd
ei,k(t + r) − ei,k(t + r − 2)

2�t
, (60)

with learning gains, kp and kd , step size �t , and the time-
shift r representing the relative degree of the plant including
the delay τ . The central difference quotient is used for better
noise suppression [34]. This is a special case of the learning
function presented in (13) with

L(q) = kd

2�t︸︷︷︸
l0

+kpq
−1 − kd

2�t
q−2. (61)

To determine the relative degree of the real vehicles, sev-
eral effects must be taken into account including underlying
dynamics from the onboard controller and motors neglected
in the modeling, and system time delays mainly due to the
wireless communication between the computer and the vehi-
cle. Since these effects are difficult to measure, we identified
the relative degree experimentally, e.g. by looking at the time
delays in the output’s open-loop response to a step-input stim-
ulus.

The consensus feedback controller (36) is proven to
be exponentially stable for double-integrator agents, see
Sect. 3.4. Approximating the velocity by the difference quo-
tient of the position, the controller can be discretized and
written in the form described in (29). However, the delay
term τ can destabilize the closed-loop system with feedback
controller, if the graph contains cycles, see [35] or [36].

To avoid such stability issues, we set up a first experi-
ment with a simple communication graph. The team consists
of two quadrotors with agent v1 getting information from
the virtual leader, and agent v2 only from agent v1. Due to
space limitations, it was not possible to include more agents
in this experimental setup. We choose the following setup:
controller parameters η = 0.707 and τc = 1.7, ILC learning
gains kp = 0.35 and kd = 0.26, ILC time shift r = 49.
Assuming the time shift matches the relative degree and
with the eigenvalues of the corresponding graph Laplacian
λ1,2 = 1, we can see that (22) holds and, therefore, asymp-
totic stability of the ILC algorithm is guaranteed.

5.2 Experimental results

Experimental results for the ILCwithout the consensus feed-
back controller are shown in Figs. 10, 11 and 12 over 25
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Fig. 10 Trajectories over time in x- and y-direction for the pure ILC
algorithm.Vehicle 1 (blue) and vehicle 2 (red) learn to follow the desired
reference trajectory (dashed black). Highlighted are the first (dash-
dotted) and the third (dotted) iteration, and the mean over iterations
15–25 (solid) (Color figure online)

iterations. Both quadrotors were flown at the same time in
a given formation with a fixed distance apart. For the plots,
the distance offset was subtracted. We repeated the whole
learning experiment ten times and show the average error
convergence and standard deviation in Figs. 12 and 17. To
match the theoretic requirement of zero initial errors, we
started the trajectories at the actual position of the vehicles at
time t = 0 for each iteration and fixed the formation accord-
ingly. For the experiments without the consensus feedback
controller, each agents’ individual feedback controller K as
described above is enabled. This actually modifies the plant
dynamics P(q), see (59), but the crucial parameter p1 is not
affected because τ delays the feedback controller’s reaction.

Figure 10 shows the position trajectories over time. It can
be seen that, in the first iteration, where the input is the refer-
ence trajectory, the first vehicle (in blue) reacts delayed and
shows lower amplitudes compared to the desired trajectory.
The second vehicle (in red) does not follow the trajectory, as
it has no reference information and the consensus feedback
controller is disabled. Its motion is caused by disturbances;
it reacts to its error relative to the first vehicle not until the
next iteration. But after some iterations (see solid lines), both
quadrotors learn to track the reference almost perfectly.

In Fig. 11, the corresponding trajectories are depicted in
the xy-plane. Note that, to be precise, the goalwas not to track
this D-shaped trajectory but to follow the timed reference
signals in Fig. 10 separately for x and y. As a consequence of
improved timed trajectory tracking, the performance of both
vehicles improves significantly over iterations. However, it
can be seen that agent v2 learns slower because it has no
access to the desired trajectory.

Fig. 11 Trajectories in the workspace (y over x) for the pure ILC algo-
rithm. Vehicle 1 (blue) and vehicle 2 (red) significantly improve their
performance with respect to the desired reference trajectory (dashed
black). Highlighted are the first (dash-dotted) and the third (dotted) iter-
ation, and the mean over iterations 15–25 (solid) (Color figure online)

The learning performance can be deduced from the con-
vergence of the errors over iterations shown in Fig. 12. The
error signal, as described in (11), of agent v2 is computed
relative to agent v1 (solid line); that is, it describes the for-
mation error. Accordingly, not only disturbances/noise on the
second agent but also on the first one lead to relative errors.
This explains the slightly higher error of agent v2 after con-
vergence is reached as well as the higher standard deviations.
For comparison, the reference tracking error for agent v2 is
also shown, see dotted line. On average over iteration 15–20,
the mean of the relative and absolute error of agent v2 is 70%
and 34% larger than that of agent v1. The standard deviation
of agent v2’s relative error is 75% larger.

In Fig. 13, we compare our multi-agent ILC approach,
where the PD-type input-update rule used here is only one
possibility, to the D-type algorithm in previous works [10–
12].Note that the plots show the results of a single experiment
for each case. By adding a proportional gain, the learning
performance improves significantly. On the one hand, the
error is lower for both agents during the first iterations. The
converged error (iterations 15–25), on the other hand, is sim-
ilar for agent v1, but for the second agent, it is on average
almost 60% higher in the D-case. Theoretically, there would
be many more tuning options for our distributed ILC input-
update rule, but the focus of this work was on proving the
general concepts.

We did the same learning experiments with the consen-
sus feedback controller (58) enabled. Figure 14 shows the
corresponding input trajectories. For space reasons only four
seconds are plotted, while the full trajectory was six seconds.
It can be seen that, initially, the ILC input is zero and the con-
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Fig. 12 Error convergence plots over iterations for the pure ILC

algorithm. The error is computed as 1
T

∑
T

(
|exi,k(t)| + |eyi,k(t)|

)
with

ei,k(t) as in (11) for x- and y-direction, respectively. The blue and red
lines are the mean errors for agent v1 and agent v2 over ten experi-
ments. The bars denote the standard deviations. Note that for agent v2,
the solid red line is the error relative to its neighbor v1 as described
above, whereas the dashed line denotes the absolute error, that is, the
difference to the reference trajectory (Color figure online)

Fig. 13 Error convergence plots over iterations for D- versus PD-type
ILC algorithm. The error is computed as described in Fig. 12. The blue
and red lines are the errors for agent v1 and agent v2, respectively, of
both experiments. In the first case (dashed), only aD-type ILC algorithm
(kd = 0.26 , kp = 0) is used as is common in the literature. Adding
a proportional part to the learning function leads to a PD-type ILC
(kd = 0.26 , kp = 0.35) and improves the learning performance for
both agents (solid lines) (Color figure online)

sensus feedback component dominates the input composed
by ui,k = uILC

i,k + uFB
i,k . The consensus feedback also causes

agent v2 to react to the first agent already in the first iteration.
But this reaction is lower in amplitude and delayed compared
to the feedback signal guiding agent v1. In contrast, after con-
vergence is reached, the feedback input is nearly zero for both
vehicles andmainly compensates for non-repetitive errors (as
indicated by trajectories that vary around zero for subsequent
iterations), while the ILC feedforward input compensates
for the repetitive error. Comparing the converged ILC input
with the initial, purely feedback-based input shows that ILC

Fig. 14 Input trajectories for ILC with underlying consensus feedback
controller in x-direction for vehicle 1 (top) and vehicle 2 (bottom).
The ILC-generated feedforward input (left) increases over iterations to
compensate for the learned repetitive disturbances, while the input from
the consensus feedback controller (right) decreases and only accounts
for non-repetitive disturbances at the end.Highlighted are thefirst (dash-
dotted, magenta), the third (dotted, green) iteration and, exemplary for
the converged case, iterations 15, 20 and 25 (solid, black). It can be
seen that the ILC inputs are subject to high-frequency noise. For space
reasons only the first 4 seconds are shown (Color figure online)

causes larger inputmagnitudes with peaks being time-shifted
to the left. Instead of being reactive, the ILC is proactive and
sends aggressive input signals that keep the vehicles on track.

Additionally, the plots of the ILC inputs in Fig. 14 show
high-frequency oscillations caused by noise in the system
that can affect the learning performance as described in
Sect. 3.5.1. To compensate for this, a Q-filter is implemented
as two discrete butterworth filters, forward and then back-
wards in time, to get zero phase shift. We chose a filter order
of 6 and 3 Hz as cutoff frequency. This smoothens the input
trajectory as can be seen in Fig. 15.

The Q-filter compensates for effects such as measurement
or process noise but it cannot decrease the influence of low-
frequency, non-repetitive errors on the learning. An example
of these errors would be air blasts, which occur in our setup
due to other vehicles moving or hovering. For this reason
we extended our algorithm by a Kalman filter to estimate
the repetitive share of the error, see Sect. 3.5.2. With the
presented choice of parameters, k1 = 0.95 and k∞ = 0.2,
the Kalman filter acts like a lowpass filter on the error signal
over iterations. This means that an air blast in one iteration
which moved the vehicle to the right, can be filtered out to
some degree,whereas, without theKalman extension the ILC
would overreact to this disturbance and cause a shift to the
left in the following iteration. The Kalman filter also reduces
high-frequency oscillations in the input signal, so that an
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Fig. 15 Input trajectories for ILC with Q-filter and underlying consen-
sus feedback controller in x-direction for vehicle 1 (top) and vehicle
2 (bottom). The Q-filter is implemented as a discrete Butterworth fil-
ter of order 6 with cutoff frequency ωc = 3. Compared to Fig. 14,
the ILC-generated feedforward input trajectories (left) are significantly
smoother (Color figure online)

additional Q-filter may not be necessary. However, we used
both filters at the same time to increase robustness as we did
not experience a significant performance decrease caused by
the Q-filter.

In Fig. 16, the error convergence plots of the position
errors are shown for the three cases: pure ILC, ILC with
Consensus Feedback, and ILC with Consensus Feedback
and additional Q- and Kalman filters. All experiments are
run over 20 iterations and repeated ten times. The plots show
the mean values of the relative errors over all experiments
for increased statistical reliability. Especially for the second
vehicle, the learning performance improves clearly with the
proposed extensions. Regarding the first iterations, enabling
the consensus feedback controller guarantees that agent v2
follows its neighbor and, thus, its error, which can be inter-
preted as the formation error, is significantly lower.

For a better comparison of the error after convergence
is reached (iteration 15–20), the mean values and the
standard deviations over 60 datasets for each case (6 iter-
ations × 10 repetitions) are shown in Fig. 17. The error
and standard deviation of agent v1 increase when the con-
sensus feedback controller is added to the ILC. We assume
this is caused by negative effects of the time delay in the
feedback loop. However, the values for the second agent
decrease by 24% for the mean and 53% for the standard
deviation with consensus feedback enabled. Adding the Q-
filter and the Kalman estimation improves the performance
even more. Compared to the case with consensus feedback,
the mean of the errors decrease by 15% for agent v1 and 11%

Fig. 16 Comparison of error convergence plots over iterations. The
black dotted line shows the pure ILC case as presented in Fig. 12.
Adding the consensus feedback controller (light blue, dashed), the ini-
tial performance and the converged relative error for vehicle 2 (bottom)
significantly improve, whereas for vehicle 1 (top) the converged error
slightly increases. In the third case, ILC with Consensus Feedback,
Q-filter and Kalman disturbance estimation (magenta, solid), this dete-
rioration is compensated for vehicle 1 and the learning performance for
the second vehicle improves even more. All values are means over 10
experiments (Color figure online)

for agent v2. As a result, the distributed feedback has a posi-
tive impact on the performance of formation flying as it does
both (i) reducing the formation error in the first iterations,
which can help to avoid collisions, and (ii) accounting for
non-repetitive, relative disturbances during iterations, which
reduces the tracking error after learning convergence. The
Q- and Kalman filtering, on the other hand, enhance the
ILC algorithm itself and make it more robust against non-
repetitive errors.

6 Four-drone learning under different
communication graphs

To prove the effectiveness of our algorithm for a larger
team of agents and the impact of varying communication
structures, a different experimental setup is chosen. Instead
of flying in a horizontal plane in x- and y-direction, the
desired trajectory is now a simple vertical motion. This
allows us to increase the team size to four quadrotors
without too much (mostly non-repetitive) wind disturbance
between themwhile hovering. As the dynamics in z-direction
are faster than the horizontal motions, it was necessary to
increase the control loop rate to a frequency f = 100 Hz.
Another consequence is that the overall time delay is smaller
and, as a result, we are able to use the consensus feedback
controller for all graphs given below without instabilities
caused by time delays.
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Fig. 17 Comparison of position errors for the experiments with pure
ILC,with the distributed consensus feedback controller and additionally
with the Q- and Kalman filters. The blue bars denote agent v1, the red
ones agent v2 (relative error). The light bars are the mean values of the
error after convergence (iterations 15–20) over ten experiments, the dark
bars the corresponding standard deviations, see Fig. 12. The relative
error between vehicle 1 and 2 (see red bars) significantly improveswhen
adding the consensus controller. The best performance can be achieved
by further adding the Q-filter and the Kalman approach (Color figure
online)

Fig. 18 Different communication graphs for the experiments in
z-direction with four quadrotors. The arrows denote the information
flow between the agents v1–v4. The reference trajectory is implemented
as the virtual leader v0

6.1 Communication graph structures

From Theorem 2, we know that the ILC is stable only if the
graph contains a spanning tree, where the virtual leader node
is the root. Based on this theoretical result, we choose four
different communication graphs as depicted in Fig. 18.

In Graph I, agent v1 is the team leader, who can access
the reference and does not react to other vehicles, and the
other three agents are getting information from both their
neighbors. The Laplacian LG and the corresponding matrix
L̂, see (6), are

LI =

⎡

⎢
⎢
⎣

0 0 0 0
−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

⎤

⎥
⎥
⎦ ,

L̂I =

⎡

⎢
⎢
⎣

1 0 0 0
−0.5 1 −0.5 0
0 −0.5 1 −0.5

−0.5 0 −0.5 1

⎤

⎥
⎥
⎦ . (62)

To analyze the stability of the distributed ILC framework,
the eigenvalues of L̂ are important. For the chosen graph
structures, we get the following sets of eigenvalues,

λ(L̂I) = {0.29, 1, 1, 1.71}, λ(L̂II) = {1, 1, 1, 1},
λ(L̂III) = {0.09, 1, 1, 1.91}, λ(L̂IV) = {0.35, 1, 1, 1.65}.

(63)

Note that these eigenvalues can have imaginary parts for cer-
tain other graph structures, leading to oscillatory behavior
and worse performance for both, the consensus controller
and the ILC. In this work, we focus on a setup where the
graph structure can be chosen beforehand. Real eigenval-
ues can be guaranteed for graphs such as spanning trees or
undirected graphs, where each pair of neighbors is exchang-
ing information in both directions. More information can be
found in [23], where the correlation of graph structures and
eigenvalues is investigated.

As proven theoretically, we see that all eigenvalues are
positive and can be upper-bounded by 2. With our result
from Theorem 3, we can find a learning function L(q) that
guarantees stability for all possible graph structures based on
the knowledge of the first Markov parameter of the single-
agent plant.

6.2 Choice of parameters

In general, the dynamics in z-direction only are easier to
understand than the complete quadrotor dynamics. Basically,
it can be modeled as a point mass where one force is applied.
This force is the sum of the four equal rotor forces minus the
gravitational force, which is acting in the opposite direction.
The point mass system can be described by double-integrator
dynamics,

z̈ = u − g, (64)

where g is the gravitational constant and u the mass-
normalized collective thrust of the motors. As outlined in
Sect. 4, the onboard controller tracks a desired velocity żc.
We assume there is an underlying proportional controller,

u = κ(żc − ż) + g, (65)
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where the controller gain κ > 0 is not known exactly. With
the outer feedback controls (56), the closed loop dynamics
for z become

z̈ = κ(żdes − ż) + κ

τz
(zdes − z). (66)

Hence, we end up with second-order dynamics which can be
treated in the same way as before for x and y.

The consensus feedback controller is applied as in (57).
With the feedforward ILC input included analogously to
before,

zi,des = 1

d in
i + bi

⎛

⎝
N∑

j=1

ai jz j (t) + bizr (t)

⎞

⎠+ τzu
ILC,z
i ,

(67)

where τz = 1 is chosen. Note that the Markov parameter
p1, which is crucial for the stability analysis of the ILC
algorithm, cannot be computed exactly because we do not
know κ exactly. Nevertheless, our PD-type ILC approach is
not model-based, so it can be implemented without the exact
knowledge of κ . Instead, the parameters of the learning func-
tion are adapted by conservative tuning.

For the learning gains, we chose kp = 1, kd = 1, and
the ILC time shift r = 13. Additionally, a Q-filter is imple-
mented in the sameway as before as two discrete Butterworth
filters with cutoff frequencies at 3 Hz and filter order 5. As
the dynamics in z are faster and thus more sensitive to noise,
the filtering was crucial for this experiment. On the other
hand, the faster dynamics allowed for this more aggressive
tuning of the learning hyperparameters. The Kalman distur-
bance estimation is not used here, because the different graph
structures lead to large variations in the learning convergence
rate. This would make it necessary to adapt the convergence
rates of the Kalman filter for every single agent and commu-
nication graph.

6.3 Experimental results

We begin with graph I and show exemplary how the ILC
improves the reference tracking and the synchronicity of the
quadrotor team after several trials. For the other graphs in
Fig. 18, we focus on the error convergence and their advan-
tages and disadvantages. In all setups, the team forms a
rectangle in the xy-plane correlating to the communication
graph.

6.3.1 Graph I

This communication structure describes the case where one
agent, v1, is the team leader and the others are followers.
The leader has access to the reference information and due

Fig. 19 Trajectories over time in z-direction for the ILC experiment
with four drones communicating as depicted in Graph I in Fig. 18. In
the first iteration, the consensus feedback controller causes vehicle 1
(blue, dash-dotted) to react directly to the reference trajectory (black,
solid), but delayed and with lower amplitude. Vehicles 2 (red, dotted)
and 4 (green, dashed) are affected by the movement of the first vehi-
cle, but are also waiting for vehicle 3 (magenta, dotted), which follows
them. After five iterations the learning improved the performance sig-
nificantly. The first vehicle tracks the reference well and the others are
moving synchronously. Finally, the mean over iteration 20–30 shows
perfect tracking for the whole group of quadrotors (Color figure online)

to its special position, it is supposed to not be influenced by
the other vehicles. The followers, v2−v4, do not necessarily
knowwho is the leader. So they react to both their neighbors.

Figure 19 shows the trajectories for several iterations. The
reference trajectory (solid black) is a feasible, nearly sinu-
soidal motion starting at 0.5 m, going up to 1.5 m and back
to the initial position. In the first iteration, only the consen-
sus feedback controller is active. This causes concatenated
delayed reactions of agent v1 (blue), followed by v2 (red)
and v4 (green) and finally v3 (magenta) only reacting to the
two latter ones. The same can be seen for the amplitudes,
v1 is affected by the desired trajectory to 100%, whereas
the others try to move towards the mean of their neighbors’
positions. After five iterations, the leader has learned to track
the reference very closely and also the followers are track-
ing the reference better and almost synchronously. The third
plot shows the mean of the trajectories of iteration 20–30 to
average out noise and non-repeating disturbances. It can be
seen, that the distributed ILC scheme enables all agents to
perform the desired motion.

The corresponding error convergence plots are depicted
in Fig. 20. Two different errors are shown for each vehicle,
the relative error (dotted line), defined by the distance to the
average of its neighbors’ positions, and the absolute reference
tracking error (solid). For agent v1 both errors are identical
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Fig. 20 Error convergence plots over iterations for Graph I. The abso-
lute error (solid) converges fast for the leader, vehicle 1 (blue), and
slower for the followers, vehicle 2 (red), 3 (magenta) and 4 (green).
The relative errors (dotted) are lower due to the respective error defini-
tion (Color figure online)

as the virtual leader, representing the desired trajectory, is
its only neighbor. This agent’s lower initial error and faster
learning, as described above, can be seen in the error con-
vergence plot, too. The plots for agents v2 and v4 are almost
the same due to the graph’s symmetry. In theory, they would
behave identically; in practice, disturbances, sensor noise and
slightly different physical properties of the quadrotors cause
deviations. From the absolute error plots, it follows that con-
vergence is reached after eleven iterations. For the followers,
the relative errors are clearly lower than the absolute errors
due to their corresponding definitions. The relative error is
the difference to the average position of the neighbors and,
if they are, for example, all moving in a similar way slower
than the reference, this error is lower than the absolute one.
However, for tasks where the focus is on synchronicity and
formation flight, this error definition may be more important.

6.3.2 Graph II

In the second case, the graph is a plain spanning tree; more-
over, it is a straight chain, where each vehicle only gets
information from its direct predecessor, see Fig. 21. Agent
v1 behaves exactly as in the experiment before, v2 converges
faster because it is only influenced by the error relative to
agent v1. Agents v3 and v4 react even more delayed, but the
overall learning is very fast. Convergence is reached after
around seven iterations. Comparing the errors after conver-
gence is reached, it can be seen that the average absolute
error for agent v3 and especially for v4 are higher than for
Graph I. This is a disadvantage of this chain structure. Each
vehicle is influenced by the non-repetitive disturbances of
all its predecessors. Furthermore, they must converge before
any follower can converge. Also the relative errors, which

Fig. 21 Error convergence plots over iterations for Graph II. Vehi-
cle 1 (blue) can access the desired trajectory and is followed by
vehicle 2 (red). Vehicle 2 is followed by vehicle 3 (magenta), and this
is followed by vehicle 4 (green). The absolute errors (solid) decrease in
the same order, whereas the relative errors (dotted) are initially highest
for v1 and lowest for v4 (Color figure online)

are related to the formation error, are higher during the first
iterations than they were with Graph I.

6.3.3 Graph III

Graph III is the undirected case, where information flows
in both directions on each edge. Only agent v1 is addition-
ally influenced by the reference trajectory. As can be seen
in Fig. 22, this structure ensures very low relative errors.
While this guarantees a good synchronicity and low forma-
tion errors even during the first iterations, it causes slow
convergence to the desired trajectory. This graph structure
may be used in cases where it is more important to hold
the formation (even in the first trials) than to achieve fast
learning. In contrast to Graph I, agent v1 now “waits” for the
others.

6.3.4 Graph IV

Graph IV is the same as Graph I, but also agent v2 has access
to the reference now (Fig. 23). This improves the absolute
error convergence for this agent as well as for agent v3,
which is exchanging information with v2. Also the error
for agent v4, which is communicating with v3, is improv-
ing slightly. Agent v1 is not influenced by the behavior of
the others. The peaks in the errors of vehicle 3 and 4 that
occurred in the later iterations in this experiment are due to
disturbances and bear no meaning.

6.3.5 Summary

Finally, we can conclude that there is a trade-off between
learning performance (fast convergence) and formation syn-
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Fig. 22 Error convergence plots over iterations for Graph III. In this
undirected case, the absolute errors (solid) decrease slower than for the
two graphs before, with vehicle 1 (blue) converging faster than vehicle 2
(red), 3 (magenta) and4 (green). The relative errors (dotted), on the other
hand, are on a very low level. That is, the relative error is consistently
kept low at the expense of a slow learning convergence (Color figure
online)

Fig. 23 Error convergence plots over iterations for Graph IV. The addi-
tional reference information access for vehicle 2 (red) decreases the
absolute errors (solid) for vehicle 2 (red), 3 (magenta) and even slightly
for 4 (green). Vehicle 1 (blue) is not influenced by the other vehicles’
behavior. The relative errors (dotted) are similar as for Graph I, only
for vehicle 2 slightly higher due to the influence of the additional edge
(Color figure online)

chronicity. No bidirectional interaction as in Graph II guar-
antees fast convergence at the cost of higher formation errors.
Adding more edges and bidirectional information exchange
enables the vehicles to better hold the desired formation but
slows down the adaptation to the reference. As expected, giv-
ing more agents access to the desired trajectory improves the
performance. Depending on the tasks and the aims, one can
choose different graph structures.

7 Conclusion

We developed a distributed ILC algorithm for multi-agent
systems, which allows for arbitrary, linear and causal, learn-

ing functions. As a result, wewere able to consider a PD-type
input update rule extending previous work found in literature
that was restricted to learning functions depending only on
the error derivative (D-type). The proposed approach leads to
better tracking performance and lower errors. Furthermore,
many other learning function options are possible. We the-
oretically derived a simple scalar condition for stability of
the proposed learning algorithm, independent of the num-
ber of agents or the communication structure, only assuming
that the graph includes a spanning tree. However, to achieve
good learning performance in practice, parameter tuning in
simulations and experiment was necessary.

As ILC only compensates for repetitive disturbances, we
included a consensus-based feedback controller to enable the
agents to react to non-repeating disturbances and to perform
better during the first iterations. That this feedback controller
does not affect stability of the ILC algorithm was shown
analytically. Moreover, it was shown that the same holds for
any linear dynamic coupling between neighboring agents.

To increase the learning robustness against sensor or pro-
cess noise and other non-repetitive disturbances, a Q-filter
was included. This lowpass filter also ensures smooth ILC
feedforward input trajectories and turned out to be essential
for someexperiments.Optionally,wepresented adisturbance
estimation based on a simple Kalman filter which showed to
lead to faster learning and decrease the influence of non-
repeating disturbances on the ILC.

In experiments with two quadrotors flying a horizon-
tal motion, we showed that the proposed, distributed ILC
algorithm achieves better reference tracking and a lower
formation error for a team of quadrotors. Furthermore, the
distributed consensus feedback controller decreases the influ-
ence of non-repetitive disturbances during each iteration and
thus leads to a better overall formation tracking performance.
The results can be further improved by including the Q-
filtering and the Kalman disturbance estimation.

To show the behavior for different communication graph
structures, four vehicleswereflown in z-direction.To account
for the different physical dynamics compared to the xy-
motion, we adjusted the controller and learning gains as well
as the parameters for the Q-filter, which was necessary in this
setup.We concluded that there is a trade-off between the ILC
learning rate and the synchronicity of the formation during
each iteration, especially during the early trials. More com-
munication edges andbidirectional informationflow improve
the agents’ ability to wait for each other and, thus, cause a
better formation synchronicity. However, this decreases the
influence of the virtual leader and, therefore, slows down the
adaptation to the reference trajectory.

Finally, the key contributions of this work were: a exten-
sion and generalization of the existing distributed ILC
algorithms, the incorporation of a consensus-based feedback
scheme for better formation holding during the learning, and
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the very first experiments of distributed ILC on up to four
agents.
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