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Provably Robust Learning-Based Approach for
High-Accuracy Tracking Control of

Lagrangian Systems
Mohamed K. Helwa , Adam Heins , and Angela P. Schoellig

Abstract—Lagrangian systems represent a wide range of robotic
systems, including manipulators, wheeled and legged robots, and
quadrotors. Inverse dynamics control and feedforward lineariza-
tion are typically used to convert the complex nonlinear dynamics
of Lagrangian systems to a set of decoupled double integrators,
and then a standard, outer-loop controller can be used to calculate
the commanded acceleration for the linearized system. However,
these methods typically depend on having a very accurate system
model, which is often not available in practice. While this chal-
lenge has been addressed in the literature using different learning
approaches, most of these approaches do not provide safety guar-
antees in terms of stability of the learning-based control system.
In this letter, we provide a novel, learning-based control approach
based on Gaussian processes (GPs) that ensures both stability of
the closed-loop system and high-accuracy tracking. We use GPs
to approximate the error between the commanded and the actual
acceleration of the system, and then use the predicted mean and
variance of the GP to calculate an upper bound on the uncertainty
of the linearized model. This uncertainty bound is then used in a
robust, outer-loop controller to ensure stability of the overall sys-
tem. Moreover, we show that the tracking error converges to a ball
with a radius that can be made arbitrarily small. Finally, we verify
the effectiveness of our approach via simulations on a 2 degree-
of-freedom (DOF) planar manipulator and experimentally on a 6
DOF industrial manipulator.

Index Terms—Model learning for control, robot safety, ro-
bust/adaptive control of robotic systems, learning and adaptive
systems.

I. INTRODUCTION

H IGH-ACCURACY tracking is an essential requirement
in advanced manufacturing, self-driving cars, medical
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Fig. 1. Block diagram of our proposed strategy. GP regression models learn
the uncertainty in the linearized model. Using the mean and variance of the GP,
one can calculate an upper bound on the uncertainty to be used in a robust,
outer-loop controller. The symbol q is the actual position vector, qd is the
desired position vector, acmd is the commanded acceleration vector, u is the
force/torque input vector, and η is the uncertainty vector.

robots, and autonomous flying vehicles, among others. To
achieve high-accuracy tracking for these complex, typically
high-dimensional, nonlinear robotic systems, a standard ap-
proach is to use inverse dynamics control [1] or feedforward
linearization techniques [2] to convert the complex nonlinear dy-
namics into a set of decoupled double integrators. Then, a stan-
dard, linear, outer-loop controller, e.g., a proportional-derivative
(PD) controller, can be used to make the decoupled linear sys-
tem track the desired trajectory [1]. However, these linearization
techniques depend on having accurate system models, which are
difficult to obtain in practice.

To address this problem, robust control techniques have been
used for many decades to design the outer-loop controllers to
account for the uncertainties in the model [3]. However, the se-
lection of the uncertainty bounds in the robust controller design
is challenging. On the one hand, selecting high bounds typically
results in a conservative behavior, and hence, a large tracking er-
ror. On the other hand, relatively small uncertainty bounds may
not represent the true upper bounds of the uncertainties, and con-
sequently, stability of the overall system is not ensured. Alterna-
tively, several approaches have been proposed for learning the
inverse system dynamics from collected data where the system
models are not available or not sufficiently accurate; see [4]–
[7]. Combining a-priori model knowledge with learning data has
also been studied in [4], [8]. However, these learning approaches
typically neglect the learning regression errors in the analysis,
and they do not provide a proof of stability of the learning-
based control system, which is crucial for safety-critical ap-
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plications such as medical robots. The limitations of the ro-
bust control and the learning-based techniques show the urgent
need for novel, robust, learning-based control approaches that
ensure both stability of the control system and high-accuracy
tracking. This sets the stage for the research carried out in this
letter.

In this letter, we provide a novel, robust, online learning-
based control technique that achieves both closed-loop stability
and high-accuracy tracking. In particular, we use Gaussian pro-
cesses (GPs) to approximate the error between the commanded
acceleration to the linearized system and the actual acceleration
of the robotic system, and then use the predicted mean and vari-
ance of the GP to calculate an upper bound on the uncertainty
of the linearization. This uncertainty bound is then used in a
robust, outer-loop controller to ensure stability of the overall
system (see Figure 1). Moreover, we show that using our pro-
posed strategy, the tracking error converges to a ball with a radius
that can be made arbitrarily small through appropriate control
design, and hence, our proposed approach also achieves high-
accuracy tracking. Furthermore, we verify the effectiveness of
the proposed approach via simulations on a 2 DOF planar ma-
nipulator using MATLAB Simulink and experimentally on a
UR10 6 DOF industrial manipulator.

This letter is organized as follows. Section II provides a sum-
mary of recent related work. Section III describes the prob-
lem, and Section IV provides the proposed approach. Section V
derives theoretical guarantees for the proposed approach.
Section VI and VII provide the simulation and experimental
results, and Section VIII concludes the letter.

Notation and Basic Definitions: For a set S, S̄ denotes its
closure and S◦ its interior. The notation Bδ (y) denotes a ball
of radius δ centered at a point y. A matrix P is positive defi-
nite if it is symmetric and all its eigenvalues are positive. For a
vector x, ‖x‖ denotes its Euclidean norm. A function f(x) is
smooth if its partial derivatives of all orders exist and are con-
tinuous. The solutions of ẋ = f(t, x) are uniformly ultimately
bounded with ultimate bound b if there exist positive constants
b, c, and for every 0 < a < c, there exists T (a, b) ≥ 0 such that
‖x(t0)‖ ≤ a implies ‖x(t)‖ ≤ b, for all t ≥ (T + t0), where
t0 is the initial time instant. A kernel is a symmetric function
κ : X × X → R. A reproducing kernel Hilbert space (RKHS)
corresponding to a kernel κ(., .) includes functions of the form
f(x) =

∑m
j=1 αjκ(x, xj ) with m ∈ N, αj ∈ R and represent-

ing points xj ∈ X .

II. RELATED WORK

The study of safe learning dates back to the beginning of
this century [9]. In [10] and [11], Lyapunov-based reinforce-
ment learning is used to allow a learning agent to safely switch
between pre-computed baseline controllers. Then, in [12], risk-
sensitive reinforcement learning is proposed, in which the ex-
pected return is heuristically weighted with the probability of
reaching an error state. In several other papers, including [13]–
[15], safe exploration methods are used to allow the learning
modules to achieve a desired balance between ensuring safe
operation and exploring new states for improved performance.
In [9], a general framework is proposed for ensuring safety
of learning-based control strategies for uncertain robotic sys-
tems. In this framework, robust reachability guarantees from
control theory are combined with Bayesian analysis based on
empirical observations. The result is a safety-preserving, su-

pervisory controller of the learning module that allows the
system to freely execute its learning policy almost everywhere,
but imposes control actions to ensure safety at critical states.
Despite its effectiveness for ensuring safety, the supervisory
controller in this approach has no role in reducing tracking
errors.

Focusing our attention on safe, learning-based inverse dy-
namics control, we refer to [16]–[18]. In [16], a model refer-
ence adaptive control (MRAC) architecture based on GPs is
proposed, and stability of the overall control system is proved.
In contrast to [16], which uses only the mean estimate of the
GPs in the control law, we use both the mean and variance of the
GPs in our control law. As a result, our control law adjusts its
aggressiveness based on the certainty of the GPs’ predictions.
While the results of [16] are shown in simulations on a two-
dimensional system, we validate our algorithm experimentally
on a 6 DOF manipulator.

In [17], [18], GPs are used to predict the errors in the out-
put torques of the inverse dynamics model online. In [17], the
GP learning is combined with a state-of-the-art gradient de-
scent method for learning feedback terms online. The main
idea behind this approach is that the gradient descent method
would correct for fast perturbations, while the GP is responsible
for correcting slow perturbations. This allows for exponential
smoothing of the GP hyperparameters, which increases the ro-
bustness of the GP at the cost of having slower reactiveness.
Nevertheless, [17] does not provide a proof of the robust stabil-
ity of the closed-loop system. In [18], the variance of the GP
prediction is utilized to adapt the parameters of an outer-loop
PD controller online, and the uniform ultimate boundedness of
the tracking error is proved under some assumptions on the
structure of the PD controller (e.g., the gain matrix was as-
sumed to be diagonal, which imposes a decentralized gain con-
trol scheme). The results of [18] are verified via simulations on
a 2 DOF manipulator. Another interesting, similar work by the
same authors is [19], which is tested experimentally on a 3 DOF
manipulator.

Our approach differs from [18], [19] in several respects. First,
unlike [18], we do not use an adaptive PD controller in the outer
loop, but add a robustness term to the output of the outer-loop
controller. Second, while [18], [19] use the GP to learn the er-
ror in the estimated torque from the nominal inverse dynamics,
in our approach, we learn the error between the commanded
and actual accelerations. This can be beneficial in two ways:
(i) This makes our approach applicable to industrial manipula-
tors that have onboard controllers for calculating the torque and
only allow the user to send commanded acceleration/velocity;
(ii) this makes it applicable beyond inverse dynamics control
of manipulators; indeed, our proposed approach can be applied
to any Lagrangian system for which feedforward/feedback lin-
earization can be used to convert the nonlinear dynamics of
the system to a set of decoupled double integrators, such as
a quadrotor under a feedforward linearization (see Section 6
of [20]). Third, while [18] shows uniform ultimate boundedness
of the tracking error, it does not provide discussions on the size
of the ultimate ball. We show that using our proposed approach,
the size of the ball can be made arbitrarily small through the
control design. Fourth, in our approach, we do not impose any
assumption on the structure of the outer-loop PD controller and
decentralized outer-loop control is not needed for our proof.
Finally, we verify our approach experimentally on a 6 DOF
manipulator.
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III. PROBLEM STATEMENT

We consider Lagrangian systems, which represent a wide
class of mechanical systems [21]. In what follows, we focus on
a class of Lagrangian systems represented by:

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + g(q(t)) = u(t), (1)

where q = (q1 , . . . , qN ) is the vector of generalized coordinates
(displacements or angles), q̇ = (q̇1 , . . . , q̇N ) is the vector of
generalized velocities, u = (u1 , . . . , uN ) is the vector of gen-
eralized forces (forces or torques), N is the system’s degree of
freedom, M , C, and g are matrices of proper dimensions and
smooth functions, and M(q) is a positive definite matrix. Fully-
actuated robotic manipulators are an example of Lagrangian
systems that can be expressed by (1). Despite focusing our dis-
cussion on systems represented by (1), we emphasize that our
results in this letter can be easily generalized to a wider class of
nonlinear Lagrangian systems for which feedback/feedforward
linearization can be used to convert the dynamics of the system
into a set of decoupled double integrators plus an uncertainty
vector.

For the nonlinear system (1), we aim to make the system posi-
tions and velocities (q(t), q̇(t)) track a desired smooth trajectory
(qd(t), q̇d(t)). For simplicity of notation, in our discussion, we
drop the dependency on time t from q, qd , their derivatives,
and u. In this letter, we consider the scenario where the system
matrices M , C, and g are not accurately known. Our goal is to
design a novel, learning-based control strategy that is easy to
interpret and implement, and that satisfies the following desired
objectives:

(O1) Robustness: The overall, closed-loop control sys-
tem satisfies robust stability in the sense that the
tracking error has an upper bound under the system
uncertainties.

(O2) High-Accuracy Tracking: For feasible desired trajec-
tories, the tracking error converges to a ball around the
origin that can be made arbitrarily small through the
control design.

(O3) Adaptability: The proposed strategy should incorpo-
rate online learning to continuously adapt to online
changes of the system parameters and disturbances.

(O4) Generalizability of the Approach: The proposed ap-
proach should be general enough to be also applicable
to industrial robots that have onboard controllers for
calculating the forces/torques and only allow the user
to send commanded acceleration/velocity.

IV. METHODOLOGY

We present our proposed methodology, and then in the next
sections, we show that it satisfies objectives (O1)–(O4).

A standard approach for solving the tracking control prob-
lem for (1) is inverse dynamics control. Since M(q) is positive
definite by assumption, it is invertible. Hence, it is evident that
if the matrices M , C, and g are all known, then the following
inverse dynamics control law

u = C(q, q̇)q̇ + g(q) + M(q)acmd (2)

converts the complex nonlinear dynamic system (1) into

q̈ = acmd, (3)

where acmd is the commanded acceleration, a new input to the
linearized system (3) to be calculated by an outer-loop control

law, e.g., a PD controller (see Figure 1). However, the stan-
dard inverse dynamics control (2) heavily depends on accurate
knowledge of the system parameters. In practice, the matrices
M , C, and g are not perfectly known, and consequently, one has
to use estimated values of these matrices M̂ , Ĉ, and ĝ, respec-
tively, where M̂ , Ĉ, and ĝ are composed of smooth functions.
Hence, in practice, (2) should be replaced with

u = Ĉ(q, q̇)q̇ + ĝ(q) + M̂(q)acmd. (4)

Now by substituting (4) into the system model (1), we get

q̈ = acmd + η(q, q̇, acmd), (5)

where η(q, q̇, acmd)=M−1(q)(M̃(q)acmd + C̃(q, q̇)q̇ + g̃(q)),
with M̃ = M̂ − M , C̃ = Ĉ − C, and g̃ = ĝ − g. It can be
shown that even if the left hand side (LHS) of (1) has a smooth,
unstructured, added uncertainty E(q, q̇), e.g., unmodeled fric-
tion, (5) is still valid with modified η. Because of η, the dy-
namics (5) resulting from the inverse dynamics control are still
nonlinear and coupled. To control the uncertain system (5), on
the one hand, robust control methods are typically very conser-
vative, while on the other hand, learning methods do not provide
stability guarantees.

Hence, in this letter, we combine ideas from robust control
theory with ideas from machine learning, particularly Gaussian
processes (GPs) for regression, to provide a robust, learning-
based control strategy that satisfies objectives (O1)–(O4). The
main idea behind our proposed approach is to use GPs to learn
the uncertainty vector η(q, q̇, acmd) in (5) online. Following [18],
we use a set of N independent GPs, one for learning each
element of η, to reduce the complexity of the regression. It is
evident that conditioned on knowing q, q̇, and acmd , one can
learn each element of η independently from the rest of the
elements of η. A main advantage of GP regression is that it
does not only provide an estimated value of the mean μ, but also
an expected variance σ2 , which represents the accuracy of the
regression model based on the distance to the training data. The
punchline here is that one can use both the mean and variance of
the GP to calculate an upper bound ρ on ‖η‖ that is guaranteed
to be correct with high probability, as we will show later in this
section. One can then use this upper bound to design a robust,
outer-loop controller that ensures robust stability of the overall
system. Hence, our proposed strategy consists of three parts:

(i) Inner-Loop Controller: We use the inverse dynamics
control law (4), where M̂ , Ĉ, and ĝ are estimated values of the
system matrices from an a-priori model.

(ii) GPs for Learning the Uncertainty: We use a set of N
GPs to learn the uncertainty vector η in (5). We start by reviewing
GP regression [15], [22]. A GP is a nonparametric regression
model that is used to approximate a nonlinear function J(x) :
X → R, where x ∈ X is the input vector. The ability of the GP
to approximate the function is based on the assumptions that
function values J(x) associated with different values of x are
random variables, and that any finite number of these variables
have a joint Gaussian distribution. The GP predicts the value
of the function, J(x∗), at an arbitrary input x∗ ∈ X based on
a set of n observations Dn := {xj , Ĵ(xj )}n

j=1 , where Ĵ(xj ),
j ∈ {1, . . . , n}, are assumed to be noisy measurements of the
function’s true values. That is, Ĵ(xj ) = J(xj ) + ω′, where ω′

is a zero mean Gaussian noise with variance σ2
ω . Assuming,

without loss of generality (w.l.o.g.), a zero prior mean of the
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GP and conditioned on the previous observations, the mean and
variance of the GP prediction are given by:

μ(x∗) = kn (x∗)(Kn + Inσ2
ω )−1 Ĵn , (6)

σ2(x∗) = κ(x∗, x∗) − kn (x∗)(Kn + Inσ2
ω )−1kT

n (x∗), (7)

respectively, where Ĵn = [Ĵ(x1), . . . , Ĵ(xn )]T is the vector
of observed, noisy function values. The matrix Kn ∈ Rn×n

is the covariance matrix with entries [Kn ](i,j ) = κ(xi, xj ),
i, j ∈ {1, . . . , n}, where κ(xi, xj ) is the covariance func-
tion defining the covariance between two function values
J(xi), J(xj ) (also called the kernel). The vector kn (x∗) =
[κ(x∗, x1), . . . , κ(x∗, xn )] contains the covariances between the
new input and the observed data points, and In ∈ Rn×n is the
identity matrix. The tuning of the GP is typically done through
the selection of the kernel function and the tuning of its hy-
perparameters. For information about different standard kernel
functions, please refer to [22].

We next discuss our implementation of the GPs. The GPs
run online in discrete time with sampling interval Ts . At a
sampling time instant k, the inputs to each GP are the same
(q(k), q̇(k), acmd(k)), and the output is an estimated value of
an element of the η vector at k. For the training data for each
GP, n observations of (q, q̇, acmd) are used as the labeled input
together with n observations of an element of the vector q̈ −
acmd + ωv as the labeled output, where ωv ∈ RN is Gaussian
noise with zero mean and variance diag(σ2

ω1
, . . . , σ2

ωN
); see (5).

For selecting the n observations, we use the oldest point (OP)
scheme for simplicity; this scheme depends on removing the
oldest observation to accommodate for a new one [16]. We use
the squared exponential kernel

κ(xi, xj ) = σ2
η exp

(

−1
2
(xi − xj )T L−2(xi − xj )

)

, (8)

which is parameterized by the hyperparameters: σ2
η , the prior

variance, and the positive length scales l1 , . . . , l3N which are
the diagonal elements of the diagonal matrix L. Hence, the ex-
pected mean and variance of each GP can be obtained through
equations (6)–(8). For the experiments, we tune the GP hy-
perparameters σ2

ω , σ2
η , l1 , . . . , l3N offline using the Python li-

brary GPy. Guidelines for tuning the GP hyperparameters can
be found in [15]. We note that by fixing the GP hyperparameters
offline, we impose a-priori assumptions on the function to be
learned. We then learn the function online based on the last n
observations [15].

As stated before, a main advantage of GP regression is that
the GP provides a variance, which represents the uncertainty
of the regression model based on the distance between the new
input and the training data. One can then use the predicted mean
and variance of the GP to provide a confidence interval around
the mean that is guaranteed to be correct with high probability.
There are several comprehensive studies in the machine learning
literature on calculating these confidence intervals [22], [23].
We review one of these results, namely Theorem 6 of [22].
Let x = (q, q̇, acmd), and ηi(x) denote the i-th element of the
unknown vector η.

Assumption 4.1: The function ηi(x), i ∈ {1, . . . , N}, has a
bounded RKHS norm ‖ηi‖κ with respect to the kernel κ(x, x′)
of the GP, and the noise ωi added to the output observations,
i ∈ {1, . . . , N}, is uniformly bounded by σ̄.

The RKHS norm is a measure of the function smoothness,
and its boundedness implies that the function is well-behaved
in the sense that it is regular with respect to the kernel [22].

Lemma 4.1 (Theorem 6 of [22]): Suppose that Assump-
tion 4.1 holds. Let δp ∈ (0, 1). Then,

Pr{∀x ∈ X , ‖μ(x) − ηi(x)‖ ≤ β1/2σ(x)} ≥ 1 − δp ,

where Pr stands for the probability, X ⊂ R3N is compact,
μ(x), σ2(x) are the GP mean and variance evaluated at x con-
ditioned on n past observations, and

β = 2‖ηi‖2
κ + 300γ ln3((n + 1)/δp).

The variable γ ∈ R is the maximum information gain and is
given by γ = max{x1 ,...,xn + 1 }∈X 0.5 log(det(I + σ̄−2Kn+1)),
where det is the matrix determinant, I ∈ R(n+1)×(n+1) is the
identity matrix, and Kn+1 ∈ R(n+1)×(n+1) is the covariance
matrix given by [Kn+1](i,j ) = κ(xi, xj ), i, j ∈ {1, . . . , n + 1}.

Finding the information gain maximizer can be approximated
by an efficient greedy algorithm [22].

The punchline here is that we know from Lemma 4.1 that
one can define for each GP a confidence interval around the
mean that is guaranteed to be correct for all points x ∈ X , a
compact set, with probability higher than (1 − δp), where δp

is typically picked very small. Let μk,i and σ2
k,i represent the

expected mean and variance of the i-th GP at the sampling time
instant k, respectively, and let βi denote the β parameter in
Lemma 4.1 of the i-th GP, where i ∈ {1, . . . , N}. We select the
upper bound on the absolute value of ηi at k to be

ρk,i(μk,i , σk,i) = max(|μk,i − β
1/2
i σk,i |, |μk,i + β

1/2
i σk,i |).

(9)

Then, it is evident that an upper bound on ‖η‖ at k is

ρk =
√

ρk,1(μk,1 , σk,1)2 + · · · + ρk,N (μk,N , σk,N )2 . (10)

(iii) Robust, Outer-Loop Controller: We use the estimated
upper bound ρk to design a robust, outer-loop controller. In par-
ticular, for a smooth, bounded desired trajectory (qd(t), q̇d(t)),
we use the outer-loop control law

acmd(t) = q̈d(t) + KP (qd(t) − q(t))

+ KD (q̇d(t) − q̇(t)) + r(t), (11)

where KP ∈ RN ×N and KD ∈ RN ×N are the proportional and
derivative matrices of the PD control law, respectively, and r ∈
RN is an added vector to the PD control law that will be designed
to achieve robustness. Let e(t) := (q(t) − qd(t), q̇(t) − q̇d(t))
denote the tracking error vector. From (11) and (5), it can be
shown that the tracking error dynamics are

ė(t) = Ae(t) + B(r(t) + η(q(t), q̇(t), acmd(t))), (12)

where

A =
[

0 I
−KP −KD

]

∈ R2N ×2N , B =
[

0
I

]

∈ R2N ×N ,

(13)

and I ∈ RN ×N is the identity matrix. From (12) and (13), it is
clear that the controller matrices KP and KD should be designed
to make A a Hurwitz matrix.

We now discuss how to design the robustness vector r(t).
To that end, let P ∈ R2N ×2N be the unique positive definite
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matrix satisfying AT P + PA = −Q, where Q ∈ R2N ×2N is a
positive definite matrix. We define r(t) as follows

r(t) =

⎧
⎨

⎩

−ρ(t) B T P e(t)
‖B T P e(t)‖ ‖BTPe(t)‖ > ε,

−ρ(t)B T P e(t)
ε ‖BTPe(t)‖ ≤ ε,

(14)

where ρ(t) ∈ R is the last received upper bound on ‖η‖ from
the GPs, i.e., we use

ρ(t) = ρk ,∀t ∈ [kTs, (k + 1)Ts), (15)

and ε is a small positive number. It should be noted that ε is a
design parameter that can be selected to ensure high-accuracy
tracking, as we will discuss in the next section.

V. THEORETICAL GUARANTEES

Having discussed the proposed strategy, we now justify that
it achieves both robust stability and high-accuracy tracking. To
that end, we make some reasonable assumptions. First, since the
GPs provide an estimate of the upper bound of the uncertainty
in discrete time, we must rely on the last calculated upper bound
until a new value is calculated, see (15). Hence, we impose the
following assumption on the sampling rate of the GPs:

Assumption 5.1: The GPs run at a sufficiently fast sampling
rate such that the calculated upper bound on ‖η‖, ρk , remains
correct between two consecutive sampling time instants, i.e.,
‖η(t)‖ ≤ ρk for t ∈ [kTs, (k + 1)Ts).

In practice, one should select the GP sampling interval as
small as the computational resources permit. In Section VII,
we successfully implement the proposed approach in real time
on a 6 DOF robot. Thus, this assumption should not limit the
applicability of the approach.

We impose another assumption to ensure that the added ro-
bustness vector r(t) will not cause the uncertainty vector norm
‖η(q(t), q̇(t), acmd(t))‖ to blow up. It is easy to show that the
function η(q, q̇, acmd) is smooth, and so ‖η‖ attains a maximum
value on any compact set in its input space (q, q̇, acmd). How-
ever, since from (11) and (14), acmd is a function of ρ(t), an
upper bound on ‖η‖, one still needs to ensure the boundedness
of ‖η‖ for bounded q, q̇ or bounded tracking error e. Hence, we
present the following assumption.

Assumption 5.2: For a smooth, bounded desired trajectory
(qd(t), q̇d(t)), there exists ρ̄ > 0 such that ‖η‖ ≤ ρ̄ for each
e ∈ D, where D is a compact set containing {e ∈ R2N :
eT Pe ≤ e(0)T Pe(0)}, and e(0) is the initial tracking error.

Remark 5.1: Following [1], it can be shown that Assump-
tion 5.2 is satisfied for small uncertainties in the inertia matrix
M(q). In particular, it can be shown that if ρ(t) in (14) satisfies
ρ(t) ≤ ‖η(t)‖ + c, where c is a positive scalar, and the uncer-
tainty in the matrix M(q), M̃(q), is sufficiently small such that
‖M−1(q)M̃(q)‖ < 1 is satisfied, then Assumption 5.2 holds
(see the supplementary material for details). This argument is
true even if we have large uncertainties in the other system
matrices, C(q, q̇) and g(q). As indicated in Chapter 8 of [1],
if the bounds on ‖M‖ are known (m ≤ ‖M‖ ≤ m), then one
can always select M̂ in (4) such that ‖M−1(q)M̃(q)‖ < 1 is
satisfied. In particular, by selecting M̂ = m+m

2 I , where I is
the identity matrix, it can be shown that ‖M−1(q)M̃(q)‖ ≤
m−m
m+m < 1. Consequently, it is not difficult to satisfy the

condition ‖M−1(q)M̃(q)‖ < 1 in practice, and Assumption 5.2
is not restrictive.

From Assumption 5.2, we know that ‖η(t)‖ ≤ ρ̄ if e(t) ∈ D,
and consequently, it is reasonable to saturate any estimate of
ρ(t) beyond ρ̄. Hence, we suppose that the estimation of ρ is
slightly modified to be

ρ(t) = min(ρGP (t), ρ̄), (16)

where ρGP (t) is the upper bound on the uncertainty norm ‖η‖
calculated by the GPs in equations (9), (10), and (15). It is
straightforward to show that with the choice of ρ(t) in (16)
and for bounded smooth trajectories, the condition e(t) ∈ D for
all t ≥ 0 implies that acmd(t) in (11) is always bounded, and
so x = (q, q̇, acmd) always lies in a compact set. To be able to
provide theoretical guarantees, we also assume w.l.o.g. that the
small positive number ε in (14) is selected sufficiently small
such that

√
ερ̄

2λmin (Q)
� δ1 , (17)

where δ1 > 0 is such that Bδ1 (0) ⊂ {e ∈ R2N : eT Pe <
e(0)T Pe(0)}, and λmin (Q) > 0 is the smallest eigenvalue of
the positive definite matrix Q.

Based on Assumptions 4.1, 5.1 and 5.2, we provide the fol-
lowing main result.

Theorem 5.1: Consider the Lagrangian system (1) and a
smooth, bounded desired trajectory (qd(t), q̇d(t)). Suppose that
Assumptions 4.1, 5.1, and 5.2 hold, and that ρ̄ in (16) is a
correct (possibly conservative) upper bound on the uncertainty
norm ‖η‖. Then, the proposed, robust, learning-based control
strategy in (4), (11), and (14), with the uncertainty upper bound
ρ calculated by (16) and the design parameter ε satisfying (17),
ensures with high probability of at least (1 − δp)N that the track-
ing error e(t) is uniformly ultimately bounded with an ultimate
bound that can be made arbitrarily small through the selection
of the design parameter ε.

Proof: From Assumption 5.2, we know that ‖η(t)‖ ≤ ρ̄
when e(t) ∈ D, where D is a compact set containing {e ∈
R2N : eT Pe ≤ e(0)T Pe(0)}. In the first part of the proof, we
assume that the upper bound ρGP (t) calculated by (9), (10) and
(15) is a correct upper bound on ‖η(t)‖ when e(t) ∈ D. Thus,
in the first part of the proof, we know that ρ(t) calculated by
(16) is a correct upper bound on ‖η(t)‖ when e(t) ∈ D, and we
use Lyapunov stability analysis to prove that e(t) is uniformly
ultimately bounded. Then, in the second part of the proof, we
use Lemma 4.1 to evaluate the probability of satisfying the as-
sumption that ρGP (t) is a correct upper bound on ‖η(t)‖ when
e(t) ∈ D, and hence, the probability that the provided guaran-
tees hold.

The first part of the proof closely follows the proof of the
effectiveness of the robust controller in Theorem 3 of Chapter 8
of [1], and we include the main steps here for convenience. Con-
sider a candidate Lyapunov function V (e) = eT Pe. From (12),
it can be shown that V̇ = −eT Qe + 2wT (η + r), where w =
BT Pe. Then, from (14), we must study two cases.

For the case where ‖w‖ > ε, we have

wT (η + r) = wT

(

η − ρ
w

‖w‖
)

= wT η − ρ‖w‖

≤ ‖η‖‖w‖ − ρ‖w‖
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from the Cauchy-Schwartz inequality. Since {e ∈ R2N :
eT Pe ≤ e(0)T Pe(0)} ⊂ D by definition and from Assump-
tion 5.2, we know that ‖η‖ ≤ ρ̄. Also, by our assumption in
this part of the proof, ‖η‖ ≤ ρGP . Then, from (16), ‖η‖ ≤ ρ,
and wT (η + r) ≤ 0. Thus, for this case, V̇ ≤ −eT Qe, which
ensures exponential decrease of the Lyapunov function.

Next, consider the case where ‖w‖ ≤ ε. If w = 0, then V̇ =
−eT Qe < 0. Then, for ‖w‖ ≤ ε and w = 0, it is easy to show

V̇ = −eT Qe + 2wT (η + r) ≤ −eT Qe + 2wT

(

ρ
w

‖w‖ + r

)

.

From (14), we have

V̇ ≤ −eT Qe + 2wT

(

ρ
w

‖w‖ − ρ
w

ε

)

.

It can be shown that the term 2wT (ρ w
‖w‖ − ρw

ε ) has a maximum

value of (ερ)/2 when ‖w‖ = ε/2. Thus, V̇ ≤ −eT Qe + (ερ)/2.
From (16), ρ ≤ ρ̄, and consequently V̇ ≤ −eT Qe + (ερ̄)/2. If
the condition eT Qe > (ερ̄)/2 is satisfied, then V̇ < 0. Since Q
is positive definite by definition, then eT Qe ≥ λmin (Q)‖e‖2 ,
where λmin (Q) > 0 is the smallest eigenvalue of Q. Hence,
if λmin (Q)‖e‖2 > (ερ̄)/2, then V̇ < 0. Thus, the Lyapunov

function is strictly decreasing if ‖e‖ >
√

ερ̄
2λm i n (Q) . Let Bδ be

the ball around the origin of radius δ :=
√

ερ̄
2λm i n (Q) , Sδ be

a sufficiently small sublevel set of the Lyapunov function V
satisfying B̄δ ⊂ S◦

δ , and Bc be the smallest ball around the
origin satisfying Sδ ⊂ B̄c . Since the Lyapunov function V is
strictly decreasing outside B̄δ , the tracking error e(t) eventually
reaches and remains in Sδ ⊂ B̄c , and so the tracking error e(t)
is uniformly ultimately bounded, and its ultimate bound is the
radius of Bc . Note that from (17), Bδ ⊂ {e ∈ R2N : eT Pe <
e(0)T Pe(0)} ⊂ D, and ρ is a correct upper bound on ‖η‖. One
can see that δ and hence the radius of Bc depend on the choice
of the design parameter ε. Indeed, ε can be selected sufficiently
small to make Bδ and Bc arbitrarily small.

In the second part of the proof, we calculate the probability
of our assumption in the first part that ρGP (t) is a correct upper
bound on ‖η(t)‖ when e(t) ∈ D. Recall that e(t) ∈ D implies
that x(t) is in a compact set, as discussed after (16). From
Assumption 5.1, our problem reduces to calculating the prob-
ability that ρGP is a correct upper bound on ‖η‖ for all the
sampling time instants. Using the confidence region proposed
in Lemma 4.1 for calculating the upper bound on the abso-
lute value of each element of η, and under Assumption 4.1, the
probability that this upper bound is correct for all samples is
higher than (1 − δp) from Lemma 4.1. Since the N GPs are
independent and the added noise to the output observations ωv

is uncorrelated, the probability that the upper bounds on the ab-
solute values of all the elments of η, and hence the upper bound
on ‖η(t)‖, are correct is higher than (1 − δp)N . �

Remark 5.2: Although in practice it is difficult to estimate
the upper bound ρ̄ in (16), one can be conservative in this choice.
Unlike robust control techniques that keep this conservative
bound unchanged, (16) relaxes the bound ρ̄ when the GPs learn
a lower upper bound from collected data. It can be shown that
if ρ(t) ≤ ρ′ < ρ̄ for all t, then the tracking error will converge
to an ultimate ball Bc ′ smaller than Bc .

Remark 5.3: In theory, ε can be selected sufficiently small
to ensure arbitrarily accurate tracking as shown in the proof of
Theorem 5.1. Achieving that for cases with large uncertainties
may be limited by the actuation limits of the robots. Incor-
porating the actuation limits in the theoretical analysis is an
interesting direction for future research.

VI. SIMULATION RESULTS

The proposed approach is first verified via simulations on a 2
DOF planar manipulator using MATLAB Simulink.

We use the robot dynamics (1) for the system, where M ,
C, and g are as defined in Chapter 7 of [1]. For the system
parameters, a value of 1 kg is used for each link mass, 2 m for
each link length, and 1 kg·m2 for each link inertia. The joints are
assumed to have no mass and are not affected by friction. Then, it
is assumed that these parameters are not perfectly known. Thus,
in the inverse dynamics controller (4), we use parameters with
different levels of uncertainty. For the PD controller parameters,
we use Kp = 2I and Kd = I for all simulations, where I is
the identity matrix. The desired trajectories are sinusoidal with
different amplitudes and frequencies. All simulation runs start
at zero initial conditions.

We use 2 GPs to learn η in (5). Each GP uses the squared
exponential kernel parameterized with ση,i = 1, σω,i = 0.001,
and lj,i = 0.5, for all j ∈ {1, . . . , 6} and i ∈ {1, 2}. The GPs
run at 10 Hz and use the past n = 20 observations for prediction.
Note that for fixed n, the parameter β in Lemma 4.1 is a constant
scalar, the value of which depends on the preselected, desired
probability (1 − δp). Hence, to generate confidence intervals,
we use [μk − 3σk , μk + 3σk ], which is simple to implement and
found to be effective in practice [15]. For the robust controller,
we use ε = 0.001.

A sequence of 12 trajectories is run for 3 different cases of
model uncertainty. Each case makes the M̂ matrix differ from
the M matrix by using values for the estimated link masses that
differ from the true values. In particular, in the three uncertainty
cases, the estimated mass differs from the actual mass by 10%,
20%, and 30% for each link.

The tracking performance is compared between four con-
trollers: a nominal controller with no robust control, a ro-
bust controller with a fixed upper bound on the uncertainty
norm ρ = 1000, a learning-based inverse dynamics controller
in which GPs are used to learn the error of the nominal in-
verse model at the torque level Δu with a non-robust outer-loop
controller, and our proposed robust learning controller. For the
robust controller, we intentionally selected ρ quite large to em-
ulate a possible practical scenario when it is not obvious be-
forehand how much uncertainty is present in the system, so a
large value is a safe but conservative choice. For fairness of
comparison, in our proposed approach, we also use 1000 as the
initial guess of the upper bound on the uncertainty, ρ̄ in equation
(16). Unlike the fixed robust controller that keeps this conserva-
tive value unchanged, our proposed algorithm updates it when
a less-conservative upper bound is learned using the GPs. The
root-mean-square (RMS) error of the joint angles was averaged
over the 12 trajectories. The results are in Table I. On average,
our proposed controller reduces the tracking errors by 95.8%
compared to the nominal controller, by 78.2% compared to the
fixed, robust controller, and by 66% compared to the non-robust
learning controller that learns Δu.
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TABLE I
AVERAGE RMS TRACKING ERROR (IN RAD) OVER 12 TRAJECTORIES FOR

DIFFERENT CONTROLLERS ON A 2 DOF MANIPULATOR

Fig. 2. The UR10 industrial manipulator used in the experiments.

VII. EXPERIMENTAL RESULTS

The proposed approach is tested on a UR10 6 DOF manipu-
lator (Figure 2) using the Robot Operating System (ROS).

A. Experimental Setup

The interface to the UR10 does not permit direct torque
control. Instead, only position and velocity control of the
joints are available, with joint velocity saturation limits of
(2.16, 2.16, 3.15, 3.2, 3.2, 3.2) rad/s. Thus, for our proposed ap-
proach, we implement only the GP regression models and the
robust, outer-loop controller. The commanded acceleration acmd

calculated by the outer-loop controller in (11) is integrated to
obtain a velocity command that can be sent to the UR10. To
test our approach for various uncertainties, we introduce artifi-
cial model uncertainty by adding a function η(q, q̇, acmd) to our
calculated acceleration command acmd .

The PD gains of the outer-loop controller are tuned to achieve
good tracking performance on a baseline desired trajectory in a
nominal scenario with no added uncertainty. A desired trajec-
tory of qd = 0.25(1 − cos(2.0t)) for each joint is used for this
purpose, with gains selected to produce a total joint angle RMS
error less than 0.01 rad. This resulted in Kp = 7I and Kd = I ,
where I is the identity matrix.

We use 6 GPs to learn the uncertainty vector η, each of which
uses the squared exponential kernel. The prior variance and
length scale hyperparameters are optimized by maximizing the
marginal likelihood function, while each noise variance is set
to 0.001. Hyperparameter optimization is performed offline on
data collected from sinusoidal trajectories. We test the proposed
method using two sets of hyperparameters, trained in two dif-
ferent ways: (i) basic training, where the optimization is done
using approximately 1,000 data points under linear uncertainty
η = 0.5q̇, and (ii) improved training, where the optimization
is done using 5,000 data points under nonlinear uncertainty
η = 0.25(q − q̇ + sin(q) − sin(q̇)), with sin applied element-
wise. The GPs are implemented and tuned using the Python

Fig. 3. Joint RMS error of the nominal controller and the proposed robust
learning controller for 15 different uncertainties and a desired trajectory qd =
0.25(1 − cos(2.0t)) for each joint. Compared to the nominal controller, the
proposed method reduces the average error by 41.7% (basic training) and 53.7%
(improved training).

library GPy. For prediction, each GP uses the past n = 50 ob-
servations collected at 10 Hz. For the confidence intervals, we
use [μk − 3σk , μk + 3σk ] for simplicity [15]. For the robust
learning controller, we use ε = 0.1 and ρ̄ = 8.

B. Results

The performance of the proposed robust learning con-
troller is initially compared to that of the nominal, outer-loop
PD controller using a single trajectory and various cases of
model uncertainty. Fifteen different cases of uncertainty of
the form η(q, q̇, acmd) are tested over the desired trajectory
qd = 0.25(1 − cos(2.0t)) for each joint, with the results shown
in Figure 3. The average RMS errors for the nominal controller,
the proposed controller with basic training, and the proposed
controller with improved training are 0.118 rad, 0.070 rad, and
0.058 rad, respectively. For a standard robust controller with
fixed ρ, it is necessary to use trial-and-error to find a suitable
value for ρ. We test its performance for Uncertainty #13 in
Figure 3, ηi = 0.5 sin(q2 + q3) for all i ∈ {1, . . . , 6}, and the
same desired trajectory qd . If we select ρ ≥ 5, the robot enters
a protective stop mode. Instead, if we select ρ = 0.5, the robot
does not enter a protective stop mode but it has a RMS error of
0.093 rad, which is worse than the proposed approach which has
a RMS error of 0.075 rad for this case. One can verify that for this
combination of uncertainty and desired trajectory ‖η‖ ≤ 1.23
for the entire run, and ρ = 0.5 is an incorrect upper bound of
the uncertainty. One can find fixed values of ρ for which the per-
formance is similar to the proposed approach for this particular
case, such as ρ = 1.5, which yields a RMS error of 0.075 rad.
However, this particular value of ρ does not necessarily perform
well for other combinations of uncertainty and trajectory. For
example, if a fixed value of ρ = 1.5 is used for Uncertainty #1
in Figure 3, ηi = 0.5q̇i + 0.5 for all i ∈ {1, . . . , 6}, the RMS
error is 0.156 rad. This is worse than the proposed approach,
which has a RMS error of 0.147 rad for this case. Thus, one
can use trial-and-error to find a value for ρ that is safe and gives
similar performance to the proposed method for a particular run.
However, this trial-and-error process must be repeated for differ-
ent desired trajectories, initial conditions, and/or uncertainties,
which is neither practical nor safe.

Further experiments were performed to verify the gen-
eralizability of the proposed approach for different desired
trajectories. A single uncertainty case, η = 0.3q̇ + 0.01q � q̇,
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TABLE II
RMS TRACKING ERROR (IN RAD) FOR SIX TRAJECTORIES WITH UNCERTAINTY

η = 0.3q̇ + 0.01q � q̇, WHERE � IS THE ELEMENTWISE PRODUCT

Fig. 4. Box plots of six testing scenarios swith different combinations of
uncertainty and trajectory, each repeated five times. The bottom and top edges
of each box show the 25th and 75th percentiles, respectively. The whiskers show
the extreme values. It is clear that the performance is highly repeatable.

where � is the elementwise product, is selected and the
performance of the proposed and nominal controllers under
this uncertainty is compared on five additional trajectories. The
results are in Table II. The six trajectories are shown in a video at
http://tiny.cc/man-traj. The proposed method provides an aver-
age overall improvement of 41.7% with basic training and 53.7%
with improved training compared to the nominal controller.
Figure 4 shows the high repeatability of this improvement.

VIII. CONCLUSIONS

We have provided a novel, learning-based control strategy
based on GPs that ensures stability of the closed-loop system
and high-accuracy tracking of smooth trajectories for an im-
portant class of Lagrangian systems. The main idea is to use
GPs to estimate an upper bound on the uncertainty of the lin-
earized model, and then use the uncertainty bound in a robust,
outer-loop controller. Unlike most of the existing learning-based
inverse dynamics control techniques, we have provided a proof
of the closed-loop stability of the system that takes into consid-
eration the regression errors of the learning module. Moreover,
we have proved that the tracking error converges to a ball with a
radius that can be made arbitrarily small. Furthermore, we have
verified the effectiveness of our approach via simulations on a
planar manipulator and experimentally on a 6 DOF industrial
manipulator.
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