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Abstract— This paper studies the problem of constructing
in-block controllable (IBC) regions for affine systems. That is,
we are concerned with constructing regions in the state space
of affine systems such that all the states in the interior of the
region are mutually accessible through the region’s interior by
applying uniformly bounded inputs. We first show that existing
results for checking in-block controllability on given polytopic
regions cannot be easily extended to address the question of
constructing IBC regions. We then explore the geometry of the
problem to provide a computationally efficient algorithm for
constructing IBC regions. We also prove the soundness of the
algorithm. Finally, we use the proposed algorithm to construct
safe speed profiles for fully-actuated robots and for ground
robots modeled as unicycles with acceleration limits.

I. INTRODUCTION

Given the “safety first” engineering concept, there is an
urgent need for developing mathematical foundations for
control design under safety constraints. This is particularly
relevant for safety-critical systems, in which violating the
safety constraints may lead to severe consequences. Opti-
mal/predictive controllers have received special interest for
decades since they optimize the system’s behavior, while
respecting given, hard safety constraints [1], [25]. This is
typically achieved by solving a constrained optimization
problem at each sampling instant. Nevertheless, there is still
a critical need for checkable conditions which define when
we can fully control a system under given safety constraints.
Such conditions ensure that all the optimal accessibility
problems within given safety constraints are feasible.

We recently introduced the study of in-block controlla-
bility (IBC) to formalize the study of controllability under
safety constraints [12], [17]. The notion of IBC was first
introduced for finite-state machines in [4], and was then
extended to nonlinear systems on closed sets [5] and to
automata [19]. In these three papers, the notion of IBC
was used to build hierarchical system structures. However,
these papers do not provide conditions for when the IBC
property holds. In [12], [17], three easily checkable necessary
and sufficient conditions are provided for IBC of affine
systems on given polytopes. The conditions require solving
linear programming (LP) problems at the vertices of the
polytope. The notion of IBC was relaxed in [13] to the
case where one can distinguish between soft and hard safety
constraints, and the IBC conditions were extended in [9]
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to controlled switched linear systems. The notion of IBC
is also used to build special partitions/covers of the state
space of piecewise affine (PWA) hybrid systems/nonlinear
systems, respectively, in which each region satisfies the IBC
property. These partitions/covers are used to build hierarchi-
cal structures and systematically study mutual accessibility
problems of these systems (see [14] and [15], respectively).
A similar controllability study to IBC can be found in
[8], where controllability of continuous-time linear systems
under state and/or input constraints was studied under the
assumption that the system transfer matrix is right invertible.
Compared to the controlled invariance problem [2], IBC has
the additional requirement of achieving mutual accessibility.
This basic, additional property enables us to use IBC as a
basis for building hierarchical control structures [14], [15].

However, in many practical cases, the given affine system
is not IBC with respect to (w.r.t.) the given polytope. Hence,
it would be important, from practical point of view, to con-
struct the largest possible IBC region within the given poly-
tope, which intuitively represents a large, safe region within
which we can fully control the system. Constructing IBC
regions is also useful for building the IBC partitions/covers
in [14] and [15], respectively, as discussed above.

In this paper, we first show that while checking IBC on
given polytopes is easy, building polytopes that satisfy the
IBC property requires solving bilinear matrix inequalities
(BMIs), which is NP-hard, in general (see [26]). Secondly,
we explore the geometry of the problem, and provide a
computationally efficient algorithm for constructing IBC re-
gions, which avoids solving BMIs. This geometric approach
was introduced in [16] for affine hypersurface systems, a
special class of affine systems in which m = n − 1, where
m is the number of inputs and n is the system dimension.
In this paper, we extend the geometric study of [16] to a
more general geometric case that can be satisfied for affine
systems having m ≥ n

2 . We also prove the soundness of the
algorithm. In our geometric study of IBC, we exploit some
geometric tools used for the reach control problems (RCP),
found in [3], [7], [10], [11]. Thirdly, we show how our
proposed algorithm can be useful for constructing safe speed
profiles for several classes of robotic systems, including
fully-actuated robots and ground robots modeled as unicycles
with acceleration limits (that is, constructing a safe speed
range at each position of the robot). The proposed safe speed
profiles are useful for robot speed scheduling algorithms
[21]–[24]. In particular, if the speed scheduling algorithms
limit the speeds to the proposed safe speed profiles, then
safety of the robots can always be achieved by a feasible
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input and, for example, guarantee obstacle avoidance. One
advantage of the proposed safe speed profiles is that they
guarantee full controllability of the robots on the constructed
position-speed regions. Moreover, the proposed algorithm
ensures that any state in the constructed safe position-speed
region is reachable from all other states in the safe region
while always staying in the safe region. Hence, it would be
useful to select the states of the reference trajectories from
the proposed safe position-speed regions to ensure that they
are reachable within the safety constraints.

The paper is organized as follows. Section II reviews IBC.
In Section III, we study the problem of constructing IBC
regions, and provide a computationally efficient algorithm.
In Section IV, we provide applications of the proposed
algorithm to robotic systems. Section V concludes the paper.
For the geometric background, refer to Section II of [12].

Notation: Let K ⊂ Rn be a set. The closure of K is
denoted by K, the interior by K◦, and the boundary by ∂K.
For vectors x, y ∈ Rn, x ·y denotes the inner product of the
two vectors. The notation ‖x‖ denotes the Euclidean norm
of x. The notation co{v1, v2, . . .} denotes the convex hull of
a set of points vi ∈ Rn. For subspaces A, B, A + B :=
{a+ b : a ∈ A, b ∈ B}.

II. IN-BLOCK CONTROLLABILITY

In this section we review in-block controllability (IBC).
Consider the affine control system:

ẋ(t) = Ax(t) +Bu(t) + a , x(t) ∈ Rn , (1)

where A ∈ Rn×n, a ∈ Rn, B ∈ Rn×m, and rank(B) = m.
Throughout the paper, we assume that the input u : [0,∞)→
Rm is measurable and bounded on any compact time interval
to ensure the existence and uniqueness of the solutions of (1)
[6]. Let φ(x0, t, u) be the trajectory of (1) under a control
law u, with initial condition x0 and evaluated at time t. Next,
let X := co {v1, · · · , vp} denote an n-dimensional polytope,
with vertex set {v1, · · · , vp}, and facets, i.e., (n − 1)-
dimensional faces, F1, · · · , Fr. Let hi denote the unit normal
vector to Fi pointing outside X . An n-dimensional simplex
is a special case of X with p = n+ 1.

Definition 2.1 (In-Block Controllability (IBC) (after [5])):
Consider the affine control system (1) defined on an n-
dimensional polytope X . We say that (1) is in-block
controllable (IBC) w.r.t. X if there exists an M > 0 such
that for all x, y ∈ X◦, there exist T ≥ 0 and a control
input u defined on [0, T ] such that (i) ‖u(t)‖ ≤ M and
φ(x, t, u) ∈ X◦ for all t ∈ [0, T ], and (ii) φ(x, T, u) = y.

That is, the system is IBC w.r.t. X if all the states in
the interior of X are mutually accessible through its interior
using uniformly bounded inputs. We review below the main
result on IBC. In [12], it was shown that for studying IBC,
we can always apply a coordinate shift, and assume without
loss of generality (w.l.o.g.) that we study a linear system

˙̃x(t) = Ax̃(t) +Bũ(t) (2)

on a new polytope X̃ with 0 ∈ X̃◦. For notational con-
venience and w.l.o.g., we would call X̃ , x̃, and ũ just

X , x, and u, respectively, in the rest of the paper. Let
J := {1, · · · , r} be the set of indices of the facets of X ,
and J(x) := {j ∈ J : x ∈ Fj} be the set of indices of the
facets of X in which x is a point. We define the closed,
convex tangent cone to X at x as C(x) := {y ∈ Rn :
hj · y ≤ 0, j ∈ J(x)}. Recall that a polytope is simplicial
if all its facets are simplices.

Theorem 2.1 ( [12]): Consider the system (2) defined on
an n-dimensional simplicial polytope X satisfying 0 ∈ X◦.
Then, the system (2) is IBC w.r.t. X if and only if
(i) (A,B) is controllable;

(ii) the so-called invariance conditions of X are solvable
(that is, for each vertex v ∈ X , there exists u ∈ Rm

such that Av +Bu ∈ C(v));
(iii) the so-called backward invariance conditions of X are

solvable (that is, for each vertex v ∈ X , there exists
u ∈ Rm such that −Av−Bu ∈ C(v)).

In [12], it was shown that conditions (i)-(iii) of The-
orem 2.1 are also necessary for IBC on non-simplicial
polytopes. For given polytopes, both the invariance and the
backward invariance conditions can be easily checked by
solving an LP problem for each vertex of the polytope1.

Remark 2.1: The definition of IBC can be easily tailored
to the case when we have both state and input constraints.
Suppose u ∈ U ⊂ Rm, where U is a polytope having
0 ∈ U◦. For this case, the system is IBC if every x, y ∈ X◦
are mutually accessible through X◦ using control inputs
u ∈ U . Similarly, the definitions of invariance conditions
and backward invariance conditions are adapted to restrict u
to lie in U . It can be shown that for these tailored definitions,
conditions (i)-(iii) of Theorem 2.1 remain necessary for IBC.
Also, the proof of the sufficiency of conditions (i)-(iii) in
this case is similar to the one in Section V of [12] under
the mild assumption on U that for any x̄ ∈ X satisfying
Ax̄ ∈ Im (B), the image of B, there exists a ū ∈ U◦ such
that Ax̄+Bū = 0. Details are omitted for brevity.

III. CONSTRUCTION OF IBC REGIONS

In this section, we study the problem of constructing IBC
regions for affine systems. Following [12], we know that
w.l.o.g. the problem of studying IBC of an affine system
can be transformed to studying a linear system on a new
polytope X with 0 ∈ X◦. Thus, we consider a linear system
(2). Given the necessity of condition (i) of Theorem 2.1 for
IBC, in our study of constructing IBC polytopes, we assume
w.l.o.g. that (2) is controllable. We then construct around the
origin an IBC polytope for (2).

Problem 3.1 (Construction of IBC Polytopic Regions):
Given a controllable linear system (2), construct a polytope
X such that 0 ∈ X◦ and (2) is IBC w.r.t. X .

It can be easily shown that if (2) is IBC w.r.t. the polytope
X using uniformly bounded inputs satisfying ‖u‖ ≤M , then
it is also IBC w.r.t. λX := {x ∈ Rn : x = λy, y ∈ X}, a

1The invariance conditions and the backward invariance conditions are
only checked at the vertices of X since solvability of these conditions at
the vertices implies by a simple convexity argument that they are solvable
at all boundary points of X [7].
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λ-scaled version of X , for every λ > 0 and using uniformly
bounded inputs satisfying ‖u‖ ≤ λM .

While checking IBC on given polytopes is easy and incor-
porates solving LP problems, building IBC polytopic regions
is considerably more difficult. Theorem 2.1 suggests that
we build around the origin simplicial polytopes satisfying
both the invariance and the backward invariance conditions.
Two difficulties are faced here. First, to build a polytope X
satisfying the invariance conditions (similar argument holds
for the backward invariance conditions), we would need to
select the vertices of X , vi, the unit normal vectors to the
facets of X , hj , and the control inputs at the vertices, ui,
such that hj · (Avi + Bui) ≤ 0, for all j ∈ J(vi). Since
hj , vi, and ui are all unknowns in this case, we have a set
of bilinear matrix inequalities (BMIs), the solving of which
is in general NP-hard [26]. Second, even if one constructs a
polytope X satisfying both the invariance conditions and the
backward invariance conditions, one still needs to verify that
X is simplicial since the proof of the sufficiency of Theorem
2.1 only holds for simplicial polytopes.

To face these difficulties, one can exploit available soft-
ware packages for solving BMIs offline such as PENBMI
[18]. Another possible approach is to use trial-and-error with
the aid of Theorem 2.1. It is clear that these two approaches
are computationally expensive, and for the second approach,
there is no guarantee that one will eventually find the IBC
polytope. Instead, in this paper, we explore the geometry of
the problem, and try to provide a computationally efficient
algorithm for building IBC polytopes that avoids solving
BMIs. We initiated this geometric study in [16] for hyper-
surface systems with m = n − 1, and here we extend the
study of [16] to a more general geometric case. To that end,
let B := Im (B) be the image of B, and define the set of
possible equilibria of (2):

O := { x ∈ Rn : Ax ∈ B } . (3)

At any point in O, the vector field of (2) can vanish by proper
selection of the input u. Also, if x0 ∈ Rn is an equilibrium
point of (2) under some input, then x0 ∈ O [3]. It can be
verified that O is closed, affine, and its dimension is m ≤
κ ≤ n [10]. Notice that both B and O are properties of
the system (2), and, as such, they can be calculated before
constructing the polytope X .

For the geometric case O + B = Rn, we provide a
computationally efficient algorithm for constructing IBC
polytopes. We now show that this geometric condition is
more general than the condition m = n − 1 considered in
[16]. If m = n−1, then the dimension of O is n−1 ≤ κ ≤ n
[10]. If κ = n, then O + B = Rn clearly holds. We then
show that O + B = Rn holds for the case when κ = n− 1.
We claim that B is not subset of O. Otherwise, we have
Ax+Bu ∈ B ⊂ O for all x ∈ O, and so O is an invariant set
under any selection of the control input u, which contradicts
controllability of (2). If B is not subset of O, then we can
identify a non-zero vector b ∈ B such that b /∈ O. Since
κ = n − 1, then clearly O + B = Rn. On the other hand,
for the following linear system, O + B = Rn holds, while

m < n− 1:

ẋ(t) =


0 0 0 0
0 0 0 0
1 0 1 1
0 1 0 1

x(t) +


1 0
0 1
0 0
0 0

u(t). (4)

Indeed, since the dimension of B is m and the dimension
of O is m ≤ κ ≤ n [10], O + B = Rn may be achieved
for systems having m ≥ n

2 as in (4), which is a significant
relaxation of the condition of [16]. We also consider our
study as a milestone in studying the general case in the
future. We start by reviewing two geometric results of [16].

Lemma 3.1 ( [16]): Consider the linear system (2). For
any polytope X , if v ∈ O is a vertex of X , then the
invariance conditions and the backward invariance conditions
of X are solvable at v.

Lemma 3.2 ( [16]): Consider the linear system (2). For
any polytope X , if B ∩ C◦(v) 6= ∅ at a vertex v of X ,
where C◦(v) denotes the interior of C(v), then the invariance
conditions and the backward invariance conditions of X are
solvable at v.

Since B and O are properties of the linear system and can
be calculated before constructing the polytope X , Lemmas
3.1 and 3.2 suggest that we construct the polytope X such
that the vertices of X lie on O, or the subspace B dips
into the interior of the tangent cones to the constructed
polytope X at the vertices. This ensures that both the
invariance conditions and the backward invariance conditions
are solvable at the vertices of the constructed polytope X .
However, as mentioned before, there is still the difficulty that
the proof of the sufficiency of Theorem 2.1 was carried out
in [12] only for simplicial polytopes, and so Theorem 2.1
may not apply. An extension of Theorem 2.1 is needed.

Theorem 3.3: Consider a controllable linear system (2)
defined on an n-dimensional polytope X satisfying 0 ∈ X◦.
If for each vertex v of X , either v ∈ O or B ∩ C◦(v) 6= ∅,
then the system (2) is IBC w.r.t. X .

Proof: By assumption and from Lemmas 3.1, 3.2, both
the invariance and the backward invariance conditions are
solvable at the vertices of X . Although the three conditions
of Theorem 2.1 hold, X in our case is not necessarily sim-
plicial, and so we cannot exactly follow the same sufficiency
proof in [12] of Theorem 2.1. Indeed, the proof of Theorem
2.1 is divided into three parts. In the first part, the invariance
conditions are used to construct a continuous piecewise
linear (PWL) feedback, and under the assumption that X
is simplicial, it is proved that all the trajectories initiated in
X◦ eventually tend to O through X◦, and so they reach close
to O in finite time. Then, in the second part, controllability
of (A,B) is used to construct a piecewise continuous input
that makes the trajectories initiated nearby O slide along O
inside X◦ towards 0 ∈ X◦ in finite time. Third, using the
backward invariance conditions and a similar argument to the
first two parts, it is shown that one can steer the backward
dynamical system ẋ = −Ax−Bu from any state in X◦ to
0 in finite time through X◦ using uniformly bounded input.
Equivalently, one can steer the system (2) from 0 to any
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final state in X◦ in finite time through X◦ using uniformly
bounded input. One can see that the assumption that X is
simplicial is used in [12] only in the first part of the proof
to show that all trajectories initiated in X◦ tend to O, and
so our task is reduced to prove this part in our case for any
polytope, not necessarily simplicial. The details of the proof
are omitted from this conference paper for brevity.

We now provide under the geometric condition O + B =
Rn a computationally efficient algorithm for constructing a
polytope X such that 0 ∈ X◦ and the vertices of X satisfy
v ∈ O or B ∩ C◦(v) 6= ∅, which implies from Theorem 3.3
that the given system is IBC w.r.t. X . We then prove the
soundness of the algorithm.

Algorithm 3.1:
Given: A controllable linear system (2) satisfying O+ B =
Rn; Suppose B = span{b1, · · · , bm}, and {om+1, · · · , on}
are such that ok ∈ O for all k = m + 1, · · · , n and Rn =
span{b1, · · · , bm, om+1, · · · , on}.
Objective: Construct an n-dimensional polytope X such that
0 ∈ X◦ and the system (2) is IBC w.r.t. X .
Steps:

1) Construct an initial n-dimensional polytope P such
that 0 ∈ P ◦, and let {v1, · · · , vp} denote the vertices
of P .

2) Let T := [b1 · · · bm om+1 · · · on] and TO :=
[0 · · · 0 om+1 · · · on]. For vi, i = 1, · · · , p, calculate
ōi = TOT

−1vi.
3) Select α > 1, and define õi := αōi for i = 1, · · · , p.
4) Define X := co{v1, · · · , vp, õ1, · · · , õp}. /
Theorem 3.4: Consider a controllable linear system (2)

satisfying O + B = Rn. Then, Algorithm 3.1 always
terminates successfully, and (2) is IBC w.r.t. X .

Proof: Since O + B = Rn, one can always identify
om+1, · · · , on such that ok ∈ O for all k = m+1, · · · , n, and
Rn = span{b1, · · · , bm, om+1, · · · , on}. Since T has linearly
independent columns, it is invertible. Hence, one can always
calculate ōi, õi, and then construct X . By construction, 0 ∈
P ◦ ⊂ X◦. We now prove that the vertices of X satisfy v ∈ O
or B∩C◦(v) 6= ∅. Let ci = (ci1, ci2, · · · , cin) := T−1vi. It is
straightforward to show vi =

∑m
j=1 cijbj +

∑n
j=m+1 cijoj ,∑m

j=1 cijbj =: bvi ∈ B, and
∑n

j=m+1 cijoj ∈ O.
From step 2, ōi = TOci =

∑n
j=m+1 cijoj ∈ O. Thus,

vi = bvi + ōi. Since O is affine and 0 ∈ O, õi := αōi ∈ O.
Notice that ōi ∈ co{õi, 0}, and if ōi 6= 0, then õi 6= ōi. Since
õi ∈ X and 0 ∈ X◦, ōi ∈ X◦. Now if vi, i ∈ {1, · · · , p},
is a vertex of X , then vi − bvi = ōi ∈ X◦ implies that
−bvi ∈ B dips into the interior of the tangent cone to X at
vi, i.e. −bvi ∈ B ∩ C◦(vi) 6= ∅. From Theorem 3.3, (2) is
IBC w.r.t. X .

As discussed before, for any λ > 0, (2) is also IBC w.r.t.
λX using λ-scaled inputs of the ones used to solve mutual
accessibility problems on X◦. This may be useful in two
ways. First, if it is required to keep the system within given,
hard safety constraints that form a region Xc around the
origin, then one can first use Algorithm 3.1 to construct an
IBC polytopic region X satisfying 0 ∈ X◦, and then one can
simply scale X such that λX ⊂ Xc. Here, λX represents a

x1

x2

Fig. 1. The constructed IBC polytope X in Example 3.1.

safe region, within which we can fully control our system.
Second, for the case of input constraints (u ∈ U ⊂ Rm,
where 0 ∈ U◦), we can similarly scale X such that on λX ,
λ < 1, the IBC property is achieved using u ∈ U .

Example 3.1: Consider the double integrator ẋ1 = x2,
ẋ2 = u. The system is evidently controllable. We have O =
{x ∈ R2 : x2 = 0}, the x1-axis, and B = span{(0, 1)},
the x2-axis. Hence, O + B = R2. We follow the steps
of Algorithm 3.1: (1) We construct P = co{v1, · · · , v4},
where v1 = (−0.8,−1), v2 = (0.8,−1), v3 = (0.8, 1), and
v4 = (−0.8, 1) 2; (2) we have b1 = (0, 1), o2 = (1, 0), and
we calculate ō1 = ō4 = (−0.8, 0) and ō2 = ō3 = (0.8, 0);
(3) we select α = 1.25, and so õ1 = õ4 = (−1, 0) and
õ2 = õ3 = (1, 0); (4) the system is IBC w.r.t. X =
co{v1, · · · , v4, õ1, õ2} shown in Figure 1. /

IV. APPLICATIONS TO ROBOTICS

We show how Algorithm 3.1 can be useful for constructing
safe speed profiles for different robotic systems.

A. Fully-Actuated Robots

Consider a fully-actuated robot with N links, modeled by:

D(q)q̈ + C(q, q̇)q̇ + g(q) = B(q)τ, (5)

where q = (q1, · · · , qN ) is the vector of generalized coordi-
nates3, q̇ = (q̇1, · · · , q̇N ) is the vector of velocities, τ is the
vector of generalized applied forces4, and D is a positive
definite matrix. For fully-actuated robots, it is well-known
that B ∈ RN×N is full-rank, and so one can use the feedback
law

τ = B−1(q)(C(q, q̇)q̇ + g(q) +D(q)u) (6)

to convert (5) into the equivalent controllable linear system

q̈ = u, (7)

which is a set of decoupled double integrators, q̈i = ui, in the
different generalized coordinates. Suppose that we have the
position constraints qi ∈ [qi,min, qi,max], the velocity limits
of the robot q̇i ∈ [q̇i,min, q̇i,max], where 0 ∈ (q̇i,min, q̇i,max),
and the actuator limits τi ∈ [τi,min, τi,max], where 0 ∈
(τi,min, τi,max). Assume that the position space is free of
kinematic singularities, and that w.l.o.g. 0 ∈ (qi,min, qi,max)
for each i. Operating the robot within the maximum velocity

2One can verify using Theorem 2.1 that the system is not IBC w.r.t. P .
3The element qi represents the angle of link i if joint i is revolute (we

assume qi ∈ (−π, π]), or it is the displacement if joint i is prismatic.
4That is forces and/or torques.
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limits does not ensure that the robot remains within the
required position limits, and consequently it does not ensure
safety of operation such as collision avoidance. Instead, it is
required to define a safe speed profile for the robot. That is,
for each value of qi within the position limits, we define a
corresponding range of safe velocities, resulting in an overall
safe region in the position-velocity state space.

We assume that for the given position-speed limits, the
feedback linearization (6) can be carried out within the actu-
ator limits of the robot, provided that for each i, ui is selected
within [ui,min, ui,max], where 0 ∈ (ui,min, ui,max). Hence,
our task is reduced to finding for (7) a safe controllable
region, within the given position-speed ranges, while taking
into account the limits on ui. It is straightforward to verify
that for the controllable system (7), O + B = R2N , and so
Algorithm 3.1 can be used. Since (7) is a set of decoupled
double integrators, one can apply Algorithm 3.1 for each
subsystem q̈i = ui to find a safe speed profile for each
generalized coordinate qi (similar problem to Example 3.1).

As discussed after Theorem 3.4, although Algorithm 3.1
does not directly take the actuator limits into consideration
in calculating the IBC polytope X , one can always scale
X to find another IBC polytope λX , in which all the
mutual accessibility problems are achieved using control
inputs within the actuator limits. For the double integrator
example (ẋ1 = x2, ẋ2 = u, u ∈ [umin, umax], where
0 ∈ (umin, umax)), this can be simply done as follows. One
should first verify after constructing X using Algorithm 3.1
that at each vertex of X not in O = {x ∈ R2 : x2 = 0},
both the strict invariance and the strict backward invariance
conditions are achieved using inputs u ∈ [umin, umax] 5. If
the verification result is positive, then in spite of the actuator
limits, it can be shown the system is IBC w.r.t. X using
inputs u satisfying u ∈ [umin, umax]. Instead, with the aid
of the fact that here B = span{(0, 1)}, it can be shown that
one can always scale the x2-component of the vertices of
X (scale the velocity profile) to end up with a new IBC
polytope X ′ for which the mutual accessibility problems are
achieved using inputs u within [umin, umax].

To make our discussion more concrete, consider a double
integrator with position limits −1 ≤ x1 ≤ 1, velocity limits
−1 ≤ x2 ≤ 1, and actuator limits −9 ≤ u ≤ 9. It is
required to find a safe controllable position-speed region
within the given limits. Using Algorithm 3.1, we constructed
in Example 3.1 the IBC polytope X shown in Figure 1. One
can easily verify that under −9 ≤ u ≤ 9, both the strict
invariance and the strict backward invariance conditions are
solvable at the vertices outside O, and so the system is IBC
w.r.t. X using control inputs −9 ≤ u ≤ 9. Now suppose that
we have tighter actuator limits −4.5 ≤ u ≤ 4.5. For this
case, it can be easily verified that the invariance conditions
are not solvable at the vertex v3 = (0.8, 1) /∈ O, and so
we need to scale the set X , or as discussed above, scale the
velocity-component of the vertices not in O. For a scaling

5Since the polytope X is known from Algorithm 3.1, this verification can
be carried out by solving LP problems.

x1

x2

Fig. 2. The constructed IBC polytope X′ under −4.5 ≤ u ≤ 4.5.

Pos

Vel

Fig. 3. A safe speed profile obtained by intuition or using the controlled
invariance property.

factor λ = 0.9 of the velocity components, one can verify
that for the new polytope X ′ shown in Figure 2, both the
strict invariance and the strict backward invariance conditions
are solvable at the vertices of X ′ not in O. Hence, X ′

satisfies the IBC property under −4.5 ≤ u ≤ 4.5.
We now show the advantages of the proposed safe speed

profiles in Figures 1, 2 compared to the ones obtained by
intuition or using the controlled invariance property (see, for
instance, the polytope XI in Figure 3). First, our proposed
method provides a systematic procedure for obtaining the
vertices of the safe polytope, an advantage compared to the
intuitive method, especially for complex systems. Second,
our constructed polytopes satisfy the IBC property, and so
there is no loss of generality (in terms of controllability) in
restricting the robot to operate in the proposed safe regions.
On the other hand, the regions found by intuition or through
the controlled invariance property are not necessarily IBC.
Third, since any state in our proposed safe position-speed
regions is reachable from any other state in the region within
the region itself, then in planning a reference trajectory
for the robot, it would be useful to select the states of
the reference trajectory inside the proposed regions, which
ensures that they can be reached within the safety constraints
and the actuator limits. On the other hand, one can verify
that the state xs ∈ XI , shown in Figure 3, is not reachable
from 0 ∈ X◦I within XI , i.e., it is not reachable from other
states in the safe region within the region itself. One can see
from Figures 1, 2 that our proposed algorithm automatically
excludes these non-reachable parts of the safe region.

B. Ground Robots
We consider ground robots, modeled by:

ẋ1 = x4cos(x3)

ẋ2 = x4sin(x3)

ẋ3 = u2

ẋ4 = u1,

(8)

where (x1, x2) is the position of the robot in a world frame,
x3 is its orientation w.r.t. the x1-axis, x4 is the linear driving
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velocity, u1 is the linear driving acceleration input, and u2
is the steering velocity input. Notice that (8) differs from the
kinematic model of unicycles, in which it is assumed that one
can directly control the linear driving velocity. While under
the kinematic model we can ensure safety of the ground
robots since we can decelerate the robot to zero velocity
immediately, this is not the case for the more practical model
(8). Imagine a scenario in which the robot is initiated at a
high linear velocity x4 in the direction of the edges of a
given region. It may happen that with the limits on u1, we
cannot decelerate the robot fast enough to avoid collision.
Hence, we study the construction of safe speed profiles for
(8). We assume that for low linear velocities, |x4| ≤ x4,min,
we can safely connect any two states of (8) in the given
position-velocity limits, and so the problem would be only
in operating the robot at high linear velocities.

The system (8) can be feedback linearized as follows
(Chapter 5 of [20]). By defining the outputs y1 = x1,
y2 = x2, and using the feedback linearization law:[

u1
u2

]
=

[
cos(x3) −x4 sin(x3)
sin(x3) x4 cos(x3)

]−1 [
v1
v2

]
, (9)

we get ÿ1 = ẍ1 = v1 and ÿ2 = ẍ2 = v2, which are two
decoupled double integrators representing the dynamics in
the two Cartesian directions. The matrix in (9) is invertible
at any state except those having x4 = 0. Thus, for very
low linear velocities, one should not use (9) to avoid the
singularity problem. Similar to the previous subsection, given
position and velocity limits in the two Cartesian directions
as well as limits on the acceleration inputs v1, v2 in these
directions, one can exploit Algorithm 3.1 to construct an IBC
region for the linearized system. This region represents safe
speed profiles for the robot in the two Cartesian directions.
Now to connect any two states x0, xf within the obtained
safe region, one can start by finding a connecting trajectory
x(t), t ∈ [0, tf ], for the linearized model. Then, one can
depend on the equivalence between the linearized model and
(8) as long as x4 does not drop to a low value. For the parts
of the trajectory x(t) with low x4, one should avoid using
(9), and directly control the nonlinear model (8) to connect
the two states of the trajectory having low linear velocities,
which can always be done safely by assumption as stated
at the end of first paragraph in this subsection. Details are
omitted from this conference paper for brevity.

V. CONCLUSIONS

We studied the problem of constructing IBC regions for
affine systems, which are safe regions within which we
can fully control the given affine system using uniformly
bounded inputs. After formulating the problem, we discussed
the difficulties that are faced if one tries to directly exploit
the existing results for checking IBC on given polytopes.
Instead, we provided a computationally efficient algorithm
for constructing IBC regions, and proved its soundness. As
sample case studies, we showed how our proposed algorithm
can be useful for constructing safe speed profiles for different
classes of robotic systems.
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