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Abstract

This paper studies the problem of constructing in-block controllable (IBC) regions for affine systems. That is, we are concerned
with constructing regions in the state space of affine systems such that all the states in the interior of the region are mutually
accessible within the region’s interior by applying uniformly bounded inputs. We first show that existing results for checking in-
block controllability on given polytopic regions cannot be easily extended to address the question of constructing IBC regions.
We then explore the geometry of the problem to provide a computationally efficient algorithm for constructing IBC regions.
We also prove the soundness of the algorithm. We then use the proposed algorithm to construct safe speed profiles for robotic
systems. As a case study, we present several experimental results on unmanned aerial vehicles (UAVs) to verify the effectiveness
of the proposed algorithm; these results include using the proposed algorithm for real-time collision avoidance for UAVs.

1 Introduction

With the increasing desire for building the next genera-
tion of engineering systems that can safely interact with
their environment and possibly non-professional humans
(e.g., self-driving cars or assistive robots), there is an ur-
gent need for developing controller design methods that
respect all given safety constraints of the systems even
in the transient period. Hence, we set our goal to provide
the mathematical foundations for controller design un-
der safety constraints. Although safety constraints can
be accounted for using optimal/predictive control strate-
gies (Aswani et al. , 2008; Qin, Badgwell , 2003), there
are many fundamental questions in the area of controller
design under safety constraints that still require further
studies. For instance, consider a wheeled robot moving
on a bounded table, with additional limits on the robot’s
speed. Using Kalman’s controllability notion, we cannot
even answer the simple question whether the robot can
reach, starting from any initial position and speed, any
final position and speed while respecting the safety con-
straints and using uniformly bounded input force? This
shows the urgent need for finding checkable conditions
for controllability under safety constraints.

Hence, we recently introduced the study of in-block con-
trollability (IBC), which formalizes controllability under
given safety state constraints (Helwa, Caines , 2014a,
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2017). The notion of IBC can, however, be motivated
from several different perspectives. In (Helwa, Caines ,
2014c) ((Helwa, Caines , 2015a)), we showed that if one
constructs a special partition (cover) of the state space
of piecewise affine (PWA) hybrid systems (nonlinear
systems) such that each region of the partition (cover)
satisfies the IBC property, then one can systematically
study controllability and build hierarchical structures
for the PWA hybrid systems (nonlinear systems). We
note that similar to nonlinear systems, controllability of
PWA hybrid systems is a challenging open problem to
date (Thuan, Camlibel , 2014). Also, building hierarchi-
cal structures of dynamical systems allows us to design
controllers that achieve temporal logic statements at the
higher levels of the hierarchy, and then to systematically
realize these high-level control decisions at the lower lev-
els. Moreover, the IBC notion is useful in the context of
optimal control problems. In particular, the IBC condi-
tions ensure that all the optimal accessibility problems
within given safety constraints are feasible. Furthermore,
in this paper we use the IBC results to build safe speed
profiles for robotic systems. We then utilize these pro-
files to achieve obstacle avoidance and to determine the
feasibility of given reference trajectories for the robots.

The notion of IBC was utilized to build hierarchical
structures of finite state machines, nonlinear systems
on closed sets, and automata in (Caines, Wei , 1995),
(Caines, Wei , 1998), and (Hubbard, Caines , 2002), re-
spectively. However, these papers do not study condi-
tions for when the IBC property holds. In (Helwa, Caines
, 2014a, 2017), three necessary and sufficient conditions
were provided for IBC of affine systems on given poly-
topes. The conditions require solving linear program-
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ming (LP) problems at the vertices of the given poly-
tope. In (Helwa , 2015), the IBC conditions were ex-
tended to controlled switched linear systems, while in
(Helwa, Caines , 2014b), the notion of IBC was relaxed
to the case where one can distinguish between soft and
hard constraints. In (Brammer , 1972), (Sontag , 1984),
controllability of linear systems under input constraints
was studied, while in (Heemels, Camlibel , 2007), con-
trollability of continuous-time linear systems under state
and/or input constraints was studied under the assump-
tion that the system transfer matrix is right invertible.

In many practical scenarios, however, it may happen
that the given affine system is not IBC with respect to
(w.r.t.) the given polytope, representing the intersection
of the given safety constraints. Hence, it would be impor-
tant from a practical perspective to find the largest IBC
region inside the given region, representing the largest
safe region within which we can fully control our sys-
tem. Also, constructing IBC regions is an essential prob-
lem for building the partitions/covers in (Helwa, Caines
, 2014c), (Helwa, Caines , 2015a), so that one can make
use of the hierarchical control results of these papers.

In this paper, we first show the difficulties of directly
using the available results for checking IBC of affine sys-
tems on given polytopes to construct IBC regions. Sec-
ond, we provide a computationally efficient algorithm
for constructing IBC polytopes, and prove its sound-
ness. Third, we show how our proposed algorithm can
be useful for constructing safe speed profiles for robotic
systems. That is, we construct for each position of the
robot a corresponding safe speed range. The proposed
safe speed profiles are useful for robot speed scheduling
algorithms (Ostafew et al. , 2014; Kant, Zucker , 1986). If
the speed scheduling algorithms limit the selected speeds
to our proposed safe speed profiles, then safety of the
robot can be always achieved on the given constrained
position space by applying a feasible input within the ac-
tuation limits. We also show how the proposed safe speed
profiles can be used to achieve static/dynamic obstacle
avoidance. Moreover, our proposed algorithm guaran-
tees full controllability of the robots on the constructed
position-speed regions. Hence, in planning reference tra-
jectories, it would be important to select reference points
inside the proposed safe position-speed regions to en-
sure that they are reachable within the given state con-
straints and under the actuation limits. Finally, we ver-
ify our proposed results through several experimental
results on unmanned aerial vehicles (UAVs). Compared
to the brief version (Helwa, Schoellig , 2016), we hereby
include complete proofs, additional discussions and re-
marks, and experimental results on UAVs.

Notation: Let K ⊂ Rn be a set. The closure of K is
denoted by K, the interior by K◦, and the boundary
by ∂K. For vectors x, y ∈ Rn, x · y denotes the inner
product of the two vectors. The notation ‖x‖ denotes
the Euclidean norm of x. The notation co {v1, v2, . . .}

denotes the convex hull of a set of points vi ∈ Rn.

2 Related Work

Compared to the well-known controlled invariance prob-
lem (Blanchini , 1999; Dorea, Hennet , 1999), which re-
quires that all the state trajectories initiated in a set to
remain in the set for all future time, IBC has the ad-
ditional requirement of achieving mutual accessibility.
Also, unlike the invariant sets, we guarantee that any
state in the IBC set is reachable from any other state in
the IBC set within the set itself, and consequently, any
state in the IBC set can be selected as a point in a feasi-
ble reference trajectory for the system. In the literature,
several algorithms have been provided for constructing
controlled invariant sets. These algorithms can be clas-
sified into two main categories (Blanchini , 1999): (i) it-
erative algorithms for finding the largest invariant poly-
topic sets in given polytopes; these algorithms typically
end up with polytopes with high complexity (Blanchini
, 1999; Athanasopolous et al. , 2014), and (ii) eigen-
structure analysis algorithms leading to invariant poly-
topes with low complexity (Blanchini , 1999). Neverthe-
less, we emphasize that these algorithms cannot be used
for building IBC regions, which are different from the
invariant regions. Our proposed algorithm is not itera-
tive, and it is based on exploring the geometric struc-
ture of the affine system, which has some similarities to
the eigenstructure analysis algorithms for constructing
invariant sets. Consequently, our algorithm is computa-
tionally efficient, and it ends up with polytopic regions
with low complexity, which facilitates the construction
of feedback laws on the constructed polytopes. For our
geometric study of IBC, we utilize some geometric tools
used for the study of the reach control problem (RCP) on
polytopes; see (Habets, van Schuppen , 2004; Broucke ,
2010; Helwa, Broucke , 2013, 2015). Unlike RCP, in IBC,
we do not try to force the trajectories of the system to
leave the polytope through a prescribed exit facet.

Compared to the feasibility study of (Schoellig et al.
, 2011), we hereby take the safety position/speed con-
straints into consideration in determining the feasibil-
ity of given references, and not only the robot actuation
limits. In Section 6, we verify that the proposed algo-
rithm is computationally efficient by utilizing it to build
safe, controllable regions for UAVs online. Then, a con-
trol law is provided on the safe region to keep the system
inside the region, and hence ensure dynamic obstacle
avoidance. Collision avoidance strategies may be clas-
sified into: (i) motion planning strategies, and (ii) re-
active control strategies (Rodriguez-Seda et al. , 2014).
Motion planning strategies calculate a collision-free ref-
erence trajectory at initial sampling time based on the
estimated position of the obstacles. Fast replanning of
collision-free trajectories is needed for dynamic environ-
ments (Grzonka et al. , 2012). On the other hand, re-
active control strategies continuously calculate updated
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control inputs online based on obstacles detected. Thus,
these strategies are more suitable for fast-moving obsta-
cles (Rodriguez-Seda et al. , 2011, 2014; Frew, Sengupta
, 2004; Palafox, Spong , 2009). Our obstacle avoidance
strategy for UAVs is a reactive one, and it has similarities
to the strategy in (Rodriguez-Seda et al. , 2011) for fully-
actuated robots and in (Rodriguez-Seda et al. , 2014)
for nonholomonic, two-wheeled, ground vehicles. Unlike
most of the obstacle avoidance approaches in the liter-
ature, see for instance (Frew, Sengupta , 2004; Palafox,
Spong , 2009), our strategy takes the robot dynamics
and actuation limits into account, and does not put con-
straints on the shape/velocity of the moving obstacle.

3 Background

We present some geometric background relevant for the
remainder of the paper, see (Rockafellar , 1970). A set
K ⊂ Rn is affine if λx+ (1− λ)y ∈ K for all x, y ∈ K
and all λ ∈ R. If the affine set passes through the ori-
gin, then it forms a subspace of Rn. For subspaces A, B,
A + B := {a + b : a ∈ A, b ∈ B}. The set A + B
is also a subspace. The affine hull of a set K, denoted
by aff (K), is the smallest affine set containing K. We
mean by a dimension of a set K its affine dimension,
which is the dimension of aff (K). A hyperplane is an
(n − 1)-dimensional affine set in Rn, dividing Rn into
two open half-spaces. A finite set of vectors {x1, · · · , xk}
is called affinely independent if the unique solution to∑k

i=1 αixi = 0 and
∑k

i=1 αi = 0 is αi = 0 for all
i = 1, · · · , k. Affinely independent vectors do not all lie
in a common hyperplane. An n-dimensional simplex is
the convex hull of (n + 1) affinely independent points
in Rn. A simplex is a generalization of a triangle in 2D
to arbitrary dimensions. An n-dimensional polytope is
the convex hull of a finite set of points in Rn whose
affine hull has dimension n. Let {v1, · · · , vp} be a set of
points inRn, where p > n, and suppose that {v1, · · · , vp}
contains (at least) (n + 1) affinely independent points.
Then X := co {v1, · · · , vp} is an n-dimensional poly-
tope. A face of X is any intersection of X with a closed
half-space such that none of the interior points of X
lie on the boundary of the half-space. A facet of X is
an (n− 1)-dimensional face of X. A polytope is simpli-
cial if all its facets are simplices. We denote the facets
of X by F1, · · · , Fr, and we use hi to denote the unit
normal vector to Fi pointing outside of X. A triangula-
tion T of an n-dimensional polytope X is a finite collec-
tion of n-dimensional simplices S1, · · · , SL such that: (i)

X =
⋃L

i=1 Si; (ii) for all i, j ∈ {1, · · · , L} with i 6= j,
Si ∩ Sj is either empty or a common face of Si and Sj .

4 In-Block Controllability

We review IBC. Consider the affine control system:

ẋ(t) = Ax(t) +Bu(t) + a , x(t) ∈ Rn , (1)

whereA ∈ Rn×n, a ∈ Rn,B ∈ Rn×m, and rank(B) = m.
Throughout the paper, we assume that the input u :
[0,∞) → Rm is measurable and bounded on any com-
pact time interval to ensure the existence and uniqueness
of the solutions of (1) (Filippov, , 1988). Let φ(x0, t, u)
be the trajectory of (1) under a control law u, with ini-
tial condition x0 and evaluated at time t. We first review
the IBC notion (after (Caines, Wei , 1998)).

Definition 4.1 (In-Block Controllability (IBC))
Consider the affine control system (1) defined on an
n-dimensional polytope X. We say that (1) is in-block
controllable (IBC) w.r.t. X if there exists an M > 0 such
that for all x, y ∈ X◦, there exist T ≥ 0 and a control
input u defined on [0, T ] such that (i) ‖u(t)‖ ≤ M and
φ(x, t, u) ∈ X◦ for all t ∈ [0, T ], and (ii) φ(x, T, u) = y.

In (Helwa, Caines , 2014a), it was shown that for study-
ing IBC we can always apply a coordinate shift, and as-
sume without loss of generality (w.l.o.g.) that we study

˙̃x(t) = Ax̃(t) +Bũ(t) (2)

on a new polytope X̃ with 0 ∈ X̃◦. For notational
convenience and w.l.o.g., we will call X̃, x̃, and ũ just
X, x, and u, respectively, in the remainder of the pa-
per. Let J := {1, · · · , r} be the set of indices of the
facets of X, and J(x) := {j ∈ J : x ∈ Fj} be the set
of indices of the facets of X in which x is a point. We
define the closed, convex tangent cone to X at x as
C(x) := {y ∈ Rn : hj · y ≤ 0, j ∈ J(x)}, where hj is the
unit normal vector to Fj pointing outside X.

Theorem 4.1 ((Helwa, Caines , 2014a)) Consider
the system (2) defined on an n-dimensional simplicial
polytope X satisfying 0 ∈ X◦. The system (2) is IBC
w.r.t. X if and only if (i) (A,B) is controllable; (ii) the
so-called invariance conditions of X are solvable (that
is, for each vertex v ∈ X, there exists u ∈ Rm such that
Av+Bu ∈ C(v)); (iii) the so-called backward invariance
conditions of X are solvable (that is, for each vertex
v ∈ X, there exists u ∈ Rm such that−Av−Bu ∈ C(v)).

In (Helwa, Caines , 2014a), it was shown that condi-
tions (i)-(iii) of Theorem 4.1 are also necessary for IBC
on non-simplicial polytopes. For given polytopes, both
the invariance and backward invariance conditions can
be easily checked by solving a linear programming (LP)
problem for each vertex of the polytope. Note that solv-
ability of the invariance and backward invariance condi-
tions at the vertices implies by a simple convexity argu-
ment that they are solvable at all boundary points ofX.

Remark 4.1 The definition of IBC can be easily tailored
to the case when we have both state and input constraints.
Suppose u ∈ U ⊂ Rm, where U is a polytope having 0 ∈
U◦. For this case, the system is IBC if every x, y ∈ X◦ are
mutually accessible through X◦ using control inputs u ∈
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U . Similarly, the definitions of invariance and backward
invariance conditions are adapted to restrict u to lie in
U . It can be shown that for these tailored definitions,
conditions (i)-(iii) of Theorem 4.1 remain necessary for
IBC. Also, the proof of the sufficiency of conditions (i)-
(iii) in this case is similar to the one in Section V of
(Helwa, Caines , 2014a) under the mild assumption on
U that for any x̄ ∈ X satisfying Ax̄ ∈ Im (B), the image
of B, there exists a ū ∈ U◦ such that Ax̄+Bū = 0.

5 Construction of IBC Regions

We study the problem of constructing IBC regions for
affine systems. Following (Helwa, Caines , 2014a), we
know that w.l.o.g. the problem of studying IBC of an
affine system can be transformed to studying a linear
system on a new polytope X having 0 ∈ X◦. Thus, we
consider a linear system (2). Given the necessity of con-
dition (i) of Theorem 4.1 for IBC, in our study, we as-
sume w.l.o.g. that (2) is controllable. We then construct
around the origin an IBC polytopic region for (2).

Problem 5.1 (Construction of IBC Polytopes)
Given a controllable linear system (2), construct a poly-
tope X such that 0 ∈ X◦ and (2) is IBC w.r.t. X.

It can be easily shown that if (2) is IBC w.r.t. the poly-
tope X using uniformly bounded control inputs satisfy-
ing ‖u‖ ≤M , then for every λ > 0, it is also IBC w.r.t.
λX := {x ∈ Rn : x = λy, y ∈ X}, a λ-scaled version
of X, using control inputs satisfying ‖u‖ ≤ λM .

While checking IBC on given polytopes incorporates
solving LP problems, building IBC polytopes is consid-
erably more difficult. Theorem 4.1 suggests that we build
around the origin simplicial polytopes satisfying both
the invariance and backward invariance conditions. Two
difficulties are faced here. First, to build a polytope X
satisfying the invariance conditions (similar argument
holds for the backward invariance conditions), we would
need to select the vertices of X, vi, the unit normal vec-
tors to the facets ofX, hj , and the inputs at the vertices,
ui, such that hj ·(Avi+Bui) ≤ 0, for all j ∈ J(vi). Since
hj , vi, and ui are all unknowns, we have a set of bilin-
ear matrix inequalities (BMIs), the solving of which is
in general NP-hard (Toker, Ozbay , 1995). Second, even
if one constructs X satisfying both the invariance and
backward invariance conditions, one still needs to verify
that X is simplicial since the proof of the sufficiency of
Theorem 4.1 only holds for simplicial polytopes.

We explore the geometry of the problem, and try to pro-
vide a computationally efficient algorithm for building
IBC polytopes that avoids solving BMIs or using trial-
and-error. We initiated this geometric study in (Helwa,
Caines , 2015b) for hypersurface systems withm = n−1,
and here we extend the study of (Helwa, Caines , 2015b)
to a more general geometric case. To that end, let B :=

Im (B) be the image of B, and define the set of possible
equilibria of (2): O := { x ∈ Rn : Ax ∈ B }. At any
point inO, the vector field of (2) can vanish by proper se-
lection of the input u. Also, if x0 ∈ Rn is an equilibrium
point of (2) under some input, then x0 ∈ O (Broucke ,
2010). It can be verified that O is closed, affine, and its
dimension is m ≤ κ ≤ n (Helwa, Broucke , 2013). Note
that both B and O are properties of the system (2), and,
as such, they can be calculated before constructing X.
For the geometric caseO+B = Rn, we provide a compu-
tationally efficient algorithm for constructing IBC poly-
topes. We now show that this condition is more general
than the condition m = n − 1 considered in (Helwa,
Caines , 2015b). If m = n− 1, then the dimension of O
is n− 1 ≤ κ ≤ n (Helwa, Broucke , 2013). If κ = n, then
O+B = Rn clearly holds. We then show thatO+B = Rn

holds for the case when κ = n−1. We claim that B is not
subset of O. Otherwise, we have Ax + Bu ∈ B ⊂ O for
all x ∈ O, and so O is an invariant set under any selec-
tion of the input u, which contradicts controllability of
(2). If B is not subset of O, then we can identify a non-
zero vector b ∈ B such that b /∈ O. Since κ = n− 1, then
clearlyO+B = Rn. On the other hand, for the following
linear system, O + B = Rn holds, while m < n− 1:

ẋ(t) =


0 0 0 0

0 0 0 0

1 0 1 1

0 1 0 1

x(t) +


1 0

0 1

0 0

0 0

u(t). (3)

This shows that the geometric case considered in this
paper is more general than the one studied in (Helwa,
Caines , 2015b). Since the dimension of B is m and the
dimension of O is m ≤ κ ≤ n (Helwa, Broucke , 2013),
O+B = Rn may be achieved for systems having m ≥ n

2
as in (3). We start by reviewing a geometric result.

Lemma 5.1 ((Helwa, Caines , 2015b)) Consider
the system (2). For any polytope X, if v ∈ O is a vertex
of X or if B∩C◦(v) 6= ∅ at a vertex v of X, where C◦(v)
denotes the interior of C(v), then the invariance and
backward invariance conditions of X are solvable at v.

Since B and O are properties of the linear system and
can be calculated before constructing the polytope X,
Lemma 5.1 suggests that we can construct X such that
the vertices ofX lie onO, or the subspace B dips into the
interior of the tangent cones to X at the vertices. This
ensures that both the invariance and backward invari-
ance conditions are solvable. However, there is still the
difficulty that the proof of the sufficiency of Theorem 4.1
was carried out in (Helwa, Caines , 2014a) only for sim-
plicial polytopes, and, consequently, Theorem 4.1 may
not apply. Hence, we present the following main result.

Theorem 5.2 Consider a controllable linear system (2)
defined on an n-dimensional polytope X satisfying 0 ∈
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X◦. If for each vertex v ofX, either v ∈ O or B∩C◦(v) 6=
∅, then the system (2) is IBC w.r.t. X.

PROOF. By assumption and from Lemma 5.1, both
the invariance and backward invariance conditions are
solvable at the vertices of X. Although the three condi-
tions of Theorem 4.1 hold, X in our case is not necessar-
ily simplicial, and consequently we cannot exactly follow
the same sufficiency proof as in (Helwa, Caines , 2014a)
for Theorem 4.1. Indeed, the proof of Theorem 4.1 is di-
vided into three parts. In the first part, the invariance
conditions are used to construct a continuous piecewise
linear (PWL) feedback, and under the assumption that
X is simplicial, it is proved that all the trajectories initi-
ated in X◦ eventually tend to O through X◦, and reach
close to O in finite time. In the second part, controlla-
bility of (A,B) is used to construct a piecewise contin-
uous control input that makes the trajectories initiated
nearby O slide along O inside X◦ towards 0 ∈ X◦ in
finite time. Third, using the backward invariance condi-
tions and a similar argument to the first two parts, it is
shown that one can steer the backward dynamical sys-
tem ẋ = −Ax−Bu from any state in X◦ to the origin in
finite time through X◦ using uniformly bounded inputs.
Equivalently, one can steer (2) from the origin to any fi-
nal state inX◦ in finite time throughX◦ using uniformly
bounded inputs. One can see that the assumption that
X is simplicial is used in (Helwa, Caines , 2014a) only
in the first part of the proof to show that all trajectories
initiated in X◦ tend to O. As a result, our task is re-
duced to prove this part in our case for any polytope, not
necessarily simplicial. The details are in the appendix.

We now provide under the condition O+B = Rn a com-
putationally efficient algorithm, Algorithm 1, for con-
structing a polytope X such that 0 ∈ X◦ and the ver-
tices of X satisfy v ∈ O or B∩C◦(v) 6= ∅, which implies
from Theorem 5.2 that the given system is IBC w.r.t.X.

Algorithm 1 Construction of IBC polytopes

Given: A controllable linear system (2) satisfying
O + B = Rn; Suppose B = sp {b1, · · · , bm}, and
{om+1, · · · , on} are such that ok ∈ O for all k = m +
1, · · · , n and Rn = sp {b1, · · · , bm, om+1, · · · , on}.
Objective: Construct an n-dimensional polytope X
such that 0 ∈ X◦ and the system (2) is IBC w.r.t. X.
Steps:
(1) Construct an initial n-dimensional polytope P such

that 0 ∈ P ◦, and let {v1, · · · , vp} denote the ver-
tices of P .

(2) Let T = [b1 · · · bm om+1 · · · on] and TO =
[0 · · · 0 om+1 · · · on]. For vi, i = 1, · · · , p, calculate
ōi = TOT

−1vi.
(3) Select α > 1, and define õi := αōi for i = 1, · · · , p.
(4) Define X := co {v1, · · · , vp, õ1, · · · , õp}.

Theorem 5.3 Consider a controllable linear system (2)
satisfying O+B = Rn. Then, Algorithm 1 always termi-
nates successfully, and (2) is IBC w.r.t. the polytope X.

PROOF. Since O + B = Rn, one can always identify
om+1, · · · , on such that ok ∈ O for all k = m+ 1, · · · , n,
and Rn = sp {b1, · · · , bm, om+1, · · · , on}. Since T has
linearly independent columns, it is invertible. Hence, one
can always calculate ōi, õi, and then construct X. By
construction, 0 ∈ P ◦ ⊂ X◦. We now show that (2) is
IBC w.r.t. X. To that end, we prove that the vertices
of X satisfy v ∈ O or B ∩ C◦(v) 6= ∅. Notice that the
vertices of X are subset of {v1, · · · , vp, õ1, · · · , õp}. Let
ci = (ci1, ci2, · · · , cin) := T−1vi. It is straightforward to
show vi =

∑m
j=1 cijbj +

∑n
j=m+1 cijoj ,

∑m
j=1 cijbj =:

bvi ∈ B, and
∑n

j=m+1 cijoj ∈ O. From step 2, ōi =

TOci =
∑n

j=m+1 cijoj ∈ O. Thus, we have vi = bvi + ōi.
Since O is affine and 0 ∈ O, õi := αōi ∈ O. We then
study the vertices of X in {v1, · · · , vp}. Notice that ōi ∈
co {õi, 0}, and if ōi 6= 0, then õi 6= ōi. Since õi ∈ X
by construction and 0 ∈ X◦, then ōi ∈ X◦. If vi, i ∈
{1, · · · , p}, is a vertex of X and vi /∈ O, then vi − bvi =
ōi ∈ X◦ implies that −bvi ∈ B dips into the interior of
the tangent cone to X at vi, i.e. −bvi ∈ B ∩ C◦(vi) 6= ∅.
From Theorem 5.2, (2) is IBC w.r.t. X.

Remark 5.1 In Step 2 of Algorithm 1, T−1 should be
calculated only once. Algorithm 1 is not iterative, and it
represents a significant reduction of computational com-
plexity compared to the original formulation of the prob-
lem that requires solving BMIs or using trial-and-error.

Remark 5.2 As discussed before, for any λ > 0, (2) is
also IBC w.r.t. λX using λ-scaled inputs of the ones used
to solve mutual accessibility problems on X◦. This may
be useful in two ways. First, if it is required to keep the
system within given, hard safety constraints that form
a region Xc around the origin, then one can first use
Algorithm 1 to construct an IBC polytope X satisfying
0 ∈ X◦, and then one can simply scaleX such that λX ⊂
Xc. Second, for the case of input constraints (u ∈ U ⊂
Rm, where 0 ∈ U◦), we can similarly scale X such that
on λX, λ < 1, the IBC property is achieved using u ∈ U .

Remark 5.3 Finding the largest, scaled-version of X in
Xc can be achieved by solving the LP problem: maxλ such
that λvi ∈ Xc and λõi ∈ Xc, for each i ∈ {1, · · · , p}. If
u is restricted to lie in U , where 0 ∈ U◦, then the LP be-
comes maxλ such that λvi ∈ Xc, λõi ∈ Xc, λuvi

∈ U ,
λuõi ∈ U , λub,vi

∈ U , and λub,õi ∈ U , for each i ∈
{1, · · · , p}, where uvi , uõi (ub,vi

, ub,õi) are selected inputs
at vi, õi, respectively, satisfying the invariance (back-
ward invariance) conditions of X. Finding the largest
IBC polytope inside a safe set is more complex, and may
require more computationally complex algorithms.

Remark 5.4 The proof of Theorem 5.2 in the appendix
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x1

x2

Fig. 1. The constructed IBC polytope X in Example 5.1.

provides a systematic method for constructing a continu-
ous PWL feedback up(x) satisfying the invariance prop-
erty on the constructed IBC polytopeX. Moreover, onX,
one can follow the systematic procedure discussed in Re-
mark 5.1 of (Helwa, Caines , 2017) to construct bounded
control inputs satisfying the constrained mutual accessi-
bility between any two given states x0, xf ∈ X◦. Note
that, however, this solution satisfying the constrained
mutual accessibility is neither unique nor optimal. For
the optimal solution, one can utilize optimal/predictive
control strategies to find the optimal trajectory connect-
ing two pair of states x0, xf ∈ X◦ within X◦, which is a
feasible problem since X satisfies the IBC property.

Example 5.1 Consider the double integrator ẋ1 = x2,
ẋ2 = u. The system is controllable. We have O = {x ∈
R2 : x2 = 0}, the x1-axis, and B = sp {(0, 1)}, the
x2-axis. Hence, O + B = R2. We follow the steps of Al-
gorithm 1: (1) We construct P = co {v1, · · · , v4}, where
v1 = (−0.8,−1), v2 = (0.8,−1), v3 = (0.8, 1), and
v4 = (−0.8, 1). From Theorem 4.1, the system is not IBC
w.r.t. P ; (2) we have b1 = (0, 1), o2 = (1, 0), and we
calculate ō1 = ō4 = (−0.8, 0) and ō2 = ō3 = (0.8, 0);
(3) we select α = 1.25, and so õ1 = õ4 = (−1, 0)
and õ2 = õ3 = (1, 0); (4) the system is IBC w.r.t.
X = co {v1, · · · , v4, õ1, õ2} shown in Figure 1. /

6 Applications to Unmanned Aerial Vehicles

We utilize our proposed algorithm to construct safe, con-
trollable position-speed regions for an important class of
UAVs, namely quadrotors, and then show using experi-
mental results on a Parrot AR.Drone 2.0 platform how
these regions can be useful for the safe control of UAVs in
confined spaces and under actuation limits. The quadro-
tor has six degrees of freedom: the translational position
(x, y, z), measured in the inertial coordinate frame O,
and the vehicle Euler angles (φ, θ, ψ), rotating the iner-
tial frame into the body-fixed frame V, where φ is the roll
angle, θ is the pitch angle, and ψ is the yaw angle. Let
s := (x, y, z). The translational dynamics of the quadro-
tor are s̈ = RZYX(ψ, θ, φ)f̄ − ḡ, where f̄ = (0, 0, f), f is
the sum of the four rotor forces normalized by the vehi-
cle mass, ḡ = (0, 0, g), g = 9.8 m/s2, and RZYX(ψ, θ, φ)
is the rotation matrix from V to O; see (Schoellig et al.
, 2011). The Parrot AR.Drone 2.0 platform has an on-
board controller that takes four inputs: the desired pitch
angle θd, the desired roll angle φd, the desired verti-
cal velocity żd and the desired yaw angular velocity rd,

and then it calculates the required four motor forces. In
this paper, we assume that all the states of the quadro-
tor are measured. We first use standard, nonlinear con-
trollers to stabilize the z-value of the vehicle to a fixed
value z = zd, and the yaw angle to zero (ψd = 0). Then,
we manipulate θd and φd to control the vehicle’s mo-
tion in the x-, y-directions. Assuming that the nonlinear
controller successfully stabilizes the vehicle at z = zd
and ψ = ψd = 0, we can assume z̈ = 0 and ψ = 0
in the translational dynamics, and then the dynamics
can be reduced to ẍ = g tan(θ), ÿ = −g tan(φ)/cos(θ).
Now we linearize the reduced dynamics, so that we can
apply the proposed algorithm to calculate safe speed
profiles in the x-, y-directions. To that end, let v1 :=
g tan(θd) and v2 := −g tan(φd)/cos(θd). Equivalently,
θd = arctan(v1/g) and φd = arctan(−v2cos(θd)/g). If
the onboard controller successfully stabilizes φ and θ to
φd and θd, respectively, then the dynamics become

ẍ = v1, ÿ = v2, (4)

which are decoupled double integrators. Since the on-
board controller typically operates much faster than the
position controllers (200 Hz and 70 Hz, respectively, in
our experiments), it is reasonable to assume that φ and
θ are stabilized to φd and θd quickly, and (4) holds ap-
proximately. We have the following constraints on the
inputs to the onboard controller: |φd| ≤ 0.32 rad, and
|θd| ≤ 0.32 rad. It can be verified that if |vi| ≤ 3.247,
i ∈ {1, 2}, then the constraints on φd and θd are satisfied.

Based on the above, our role reduces to constructing
for (4) IBC regions under the limits |vi| ≤ 3.247, i ∈
{1, 2}. Suppose, for instance, that the position safety
constraints are: −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Similar to
Example 5.1, we use Algorithm 1 to construct the IBC
polytopes. Following Remark 5.2, one can always scale
the obtained IBC polytopes, so that the IBC property
holds on the scaled polytopes using inputs within the ac-
tuation limits. Indeed, for the double integrator system,
it can be shown that one can only scale the velocity com-
ponents of the states, and end up with new polytopes
satisfying the IBC property under the actuation limits.
For instance, Figure 2 shows the IBC region for the dy-
namics in the x-direction under |v1| ≤ 3.247. If one limits
the speed at x,−2 ≤ x ≤ 2, to the safe speed range, then
there exist feasible inputs that keep the state trajectory
inside the IBC region. Moreover, we provide in the proof
of Theorem 5.2 a constructive method for synthesizing
a PWL feedback that keeps the state trajectories inside
the IBC regions. Indeed, one can further simplify the
computation of the PWL control law in this application.
By selecting P in Step 1 of Algorithm 1 to be a symmet-
ric square around the origin, the constructed X under
v1 ∈ [−vmax, vmax] will have the shape in Figure 1, and
it is symmetric around the origin. Let x1 = x, x2 = ẋ,
and x2,max denote the maximum x2-component in X.
For the vertices on O, the ones with zero-velocity com-
ponents, we select v1 = 0. Then, we select v1 = −vmax
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Fig. 2. The IBC region in the x-direction for the position safety
constraints −2 ≤ x ≤ 2 and under the actuation limit |θd| ≤ 0.32

rad, and samples of actual trajectories starting at different initial
states (marked with a cross) inside and outside the IBC region.

and v1 = vmax for the vertices with positive and nega-
tive velocity components x2, respectively, which satisfy
the invariance conditions of X. Using this selection of
the inputs at the vertices and the triangulation in Fig-
ure 5, it can be verified that the PWL feedback reduces
to a linear feedback v1 = − vmax

x2,max
x2, which can be sim-

ply calculated online.

Figure 2 shows samples of the state trajectories, under
the proposed feedback in the previous paragraph, ini-
tiated at different critical states inside the IBC region
(blue trajectories). For all the shown initial conditions
in the IBC region, the proposed feedback successfully
keeps the state trajectories in the IBC region, and pre-
vents the violation of the constraints. After decelerating
the vehicle to zero velocity, one can apply a robust hov-
ering controller to keep the vehicle in place. Figure 2 also
shows two cases where the vehicle is initiated at high
initial velocities, outside the safe speed profile, in the di-
rection of x = 2 (red trajectories). For these cases, the
proposed feedback, built based on the vehicle’s actuator
limits, cannot decelerate the vehicle before collision.

In the second experiment, we compare the proposed safe
speed profile to the ones that can be obtained by intu-
ition or by the controlled invariance property. One can
argue that the states in the red triangles in Figure 3
should be included in the safe position-speed region since
starting from any state in the red triangles, the position
constraints are not violated. However, these states in the
red triangles are not reachable from all other states in-
side the safe region within the region itself. Hence, our
algorithm automatically truncates these red triangles to
ensure full controllability on the safe region. In Figure 3,
we show the state trajectories of connecting the origin
to some points in the red triangles. The dotted blue tra-
jectories are obtained from simulation by applying the
standard, open-loop control law of connecting two states
based on the control Gramian (equation (15) of (Helwa,
Caines , 2014a), with tf = 10 s). The solid blue trajec-
tories are obtained experimentally by applying similar
acceleration profiles to the real system. One can see that
the vehicle cannot reach the points in the red triangles
without violating the safety position constraints. Hence,
the points of reference trajectories should be always se-
lected inside the IBC region to ensure that they can be
reached from other safe states within the safe region.

One advantage of our proposed algorithm is that it is
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x
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Fig. 3. The state trajectories connecting the origin to some points
outside the IBC region (dotted lines: simulations; solid lines:

experiments). Points within the red triangles are not reachable

from other points in the safe region within the region itself.
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Fig. 4. The Euclidean distance between the x-,

y-coordinates of the vehicle centre and the dynamic obstacle
(
√

(x1 − x2)2 + (y1 − y2)2). Blue line: with the proposed al-

gorithm for updating the safe speed profile online. Green line:

without updating the safe speed profile online (the experiment
was stopped after collision). (a) two vehicles; (b) moving human.

computationally efficient, and this enables us to imple-
ment the algorithm in real time at 70 Hz to achieve dy-
namic obstacle avoidance when dynamic obstacles inter-
sect with the vehicle’s path. In particular, the position
constraints are updated based on the detected obstacles,
and then we calculate corresponding safe speed profiles.
On the constructed IBC region, we then utilize the cal-
culated linear feedback to keep the vehicle’s trajectories
within the IBC region, as discussed before. In the third
experiment, we let the vehicle track a sinusoidal refer-
ence in the y-direction with a frequency of 0.1 Hz, while
stabilizing the x-value to xd = 0 and keeping a constant
height. We then run another vehicle, our dynamic ob-
stacle, to track a sinusoidal reference in the x-direction
with a frequency of 0.1 Hz, while stabilizing the y-value
to yd = 0 and again keeping a constant height. The two
vehicles collide if their x-, y-coordinates coincide. Fig-
ure 4(a) shows that the proposed algorithm, running on
the first vehicle, prevents the collision between the two
vehicles. We also illustrate in green the case where we
do not run our proposed algorithm in real time. One can
see that the Euclidean distance between the two vehi-
cles drops below 0.5 m in this case, which we consider
a crash given the vehicle body radius of 0.32 m. In Fig-
ure 4(b), we repeat the same experiment after replac-
ing the second vehicle with a random human motion.
Our proposed algorithm again prevents the collision. A
demo is at: https://drive.google.com/folderview?
id=0BxQ2msoW3w5sampMRG9rZzluVjg&usp=sharing.

7 Conclusions

We studied the problem of constructing IBC regions for
affine systems. That is, we construct safe regions in the
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Fig. 5. An illustrative figure for the triangulation used in the
proof of Theorem 5.2.

state space within which we can fully control the given
affine system using uniformly bounded inputs. After for-
mulating the problem, we discussed the faced difficul-
ties if one tries to directly exploit the existing results for
checking IBC on given polytopes. Instead, we provided a
novel, computationally efficient algorithm for construct-
ing IBC regions, and proved its soundness. As a case
study, we showed how our proposed algorithm can be
useful for achieving real-time collision avoidance and for
checking feasibility of reference trajectories for UAVs.

Appendix

Continuation of the Proof of Theorem 5.2: We con-
struct a continuous PWL feedback up(x) under which all
the trajectories initiated in X◦ tend to O through X◦.
At a vertex v̄ ∈ O, select input ū such that Av̄+Bū = 0,
which is always possible by the definition of O. Next,
for the vertices vi satisfying B ∩ C◦(vi) 6= ∅, identify
b̄i ∈ B ∩ C◦(vi). Since b̄i ∈ C◦(vi), then by definition
hj ·b̄i < 0, for all j ∈ J(vi). Also, since b̄i ∈ B, there exists
ūi ∈ Rm such that Būi = b̄i. Now for ui = ciūi ∈ Rm,
where ci > 0, we have hj ·(Avi+Bui) = hj ·Avi+cihj ·b̄i,
for all j ∈ J(vi). The second term of the right-hand side
is always negative, and we can always select ci > 0 suf-
ficiently large such that hj · (Avi + Bui) < 0, for all
j ∈ J(vi). The above control assignment at the vertices
of X satisfies the invariance conditions, and for the ver-
tices having vi /∈ O and B ∩ C◦(vi) 6= ∅, it satisfies
the invariance conditions strictly (with strict inequali-
ties). At x = 0, select u = 0. We construct a special
triangulation of X using the point set {v1, · · · , vp, 0},
where {v1, · · · , vp} are the vertices of X, such that if Si

is an n-dimensional simplex in the triangulation, then
0 ∈ Si is a vertex of Si. This can be carried out by tri-
angulating each facet of X, Fj , into (n− 1)-dimensional
simplices, and then taking the convex hull of 0 ∈ X◦

and the (n − 1)-dimensional simplices to form a trian-
gulation of X consisting of n-dimensional simplices Si

with the desired property. Figure 5 shows a 2D illus-
tration of the triangulation. Based on the control values
selected at {v1, · · · , vp, 0}, one can always construct on
each simplex Si a unique affine feedback kix+ gi. More-
over, [ki gi]

T = [V̄ 1̄]−1w̄, where V̄ is a matrix whose
rows are the transpose of the vertices of Si, 1̄ is a col-
umn of ones, and w̄ is a column of the transpose of the
selected inputs at the vertices of Si (Habets, van Schup-
pen , 2004). Since u = 0 at x = 0 by assignment and
0 ∈ Si, then gi = 0; that is, the feedback on each Si
is linear. It can be easily shown that the overall control

law is a continuous PWL feedback, denoted by up(x),
and by a simple convexity argument, up(x) satisfies the
invariance conditions of X at every x ∈ ∂X.

Let f(x) := Ax+Bup(x). Since 0 is a vertex in each Si,
f(0) = 0 and f(x) is linear on each Si, then the vector
field on ∂(λX) represents λ-scaled vectors of the vector
field on ∂X for any λ ∈ (0, 1). Therefore, up(x) satisfies
the invariance conditions of λX for any λ ∈ (0, 1), and
so for any x0 ∈ λX, φ(x0, t, up) ∈ λX for all t ≥ 0.

We next show that for every x0 ∈ X◦, φ(x0, t, up)→ O
as t →∞, which implies by a simple argument that we
can steer the trajectories to an ε-neighborhood of O in
finite time, where ε > 0 can be selected arbitrarily small.
Since 0 ∈ X◦ by assumption, it is known that X can be
expressed as X = {x ∈ Rn : ni · x ≤ 1, i = 1, · · · , r},
where ni ∈ Rn, ni · x = 1 if x ∈ Fi and ni · x < 1 if
x ∈ X, x /∈ Fi. We define V (x) = maxi∈{1,··· ,r} ni · x.
Notice that if x ∈ ∂X, then V (x) = 1. Similarly, if
x ∈ ∂(λX) for λ ∈ (0, 1), then V (x) = λ. One can
show that V (x) is locally Lipschitz, and its upper right
Dini derivative D+

f V (x) = maxi∈I(x) ni ·(Ax+Bup(x)),

where I(x) = {i ∈ {1, · · · , r} : ni · x = V (x)} (Danskin,
, 1966). With the aid of invariance conditions, it is shown
in Lemma 5.3 of (Helwa, Caines , 2014a), which also
applies to non-simplicial polytopes, that D+

f V (x) ≤ 0

for each x ∈ X. We hereby show that additionally {x ∈
X : D+

f V (x) = 0} ⊂ O. Notice that for a vertex

vi ∈ O, f(vi) = 0 by assignment, and so D+
f V (vi) = 0.

Next, the rest of the vertices of X satisfy B∩C◦(vi) 6= ∅
by assumption, and we assigned the control inputs at
these vertices to satisfy the invariance conditions strictly.
Thus, nj · (Avi + Bup(vi)) < 0, for all j ∈ J(vi). Note
that j ∈ I(vi) if by definition nj · vi = V (vi) = 1, i.e.,
vi ∈ Fj . Then by the strict invariance conditions, we
have nj · (Avi + Bup(vi)) < 0 for all j ∈ I(vi), and so
D+

f V (vi) < 0 for all the vertices vi /∈ O. Let x̄ ∈ ∂X be
arbitrary, and suppose that x̄ ∈ Sk. Let Sx̄ denote the
smallest sub-simplex of Sk such that x̄ ∈ S◦x̄, the relative
interior of Sx̄. Since x̄ ∈ S◦x̄, we can write x̄ =

∑
s αsvs,

where αs > 0,
∑

s αs = 1, and vs are the vertices of Sx̄,
which are a subset of the vertices of the n-dimensional
simplex Sk. Since the vector field f(x) is linear on the
simplex Sk by construction, we have f(x̄) =

∑
s αsf(vs).

We now study D+
f V (x̄). It is straightforward to show

I(x̄) ⊂ I(vs) for every vertex vs ∈ Sx̄. Then, D+
f V (x̄) =

maxi∈I(x̄) ni ·
∑

s αsf(vs) ≤
∑

s αs maxi∈I(x̄) ni · f(vs)

≤
∑

s αs maxi∈I(vs) ni · f(vs) =
∑

s αsD
+
f V (vs). Since

αs > 0 and D+
f V (vs) ≤ 0 for every s, then D+

f V (x̄) = 0

only if D+
f V (vs) = 0 for all the vertices vs ∈ Sx̄, which

happens only if vs ∈ O for every vertex vs ∈ Sx̄. For
this case, since the set O is affine, then x̄ ∈ O. To sum
up, for any x ∈ ∂X, if D+

f V (x) = 0, then x ∈ O. Since

the vector field on ∂(λX) represents λ-scaled vectors
of the vector field on ∂X for all λ ∈ (0, 1), it can be
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easily shown that for any x ∈ X, if D+
f V (x) = 0, then

x ∈ O, i.e., {x ∈ X : D+
f V (x) = 0} ⊂ O. Recall

that D+
f V (x) ≤ 0 for all x ∈ X. By LaSalle’s Invariance

Principle, we know that the trajectories φ(x0, t, up) tend
to {x ∈ X : D+

f V (x) = 0} ⊂ O as t→∞. Combining
this with the proof in the previous paragraph, for any
x0 ∈ X◦, φ(x0, t, up) eventually tends to O through X◦.
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