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Keep it Upright: Model Predictive Control for
Nonprehensile Object Transportation with Obstacle

Avoidance on a Mobile Manipulator
Adam Heins and Angela P. Schoellig

Abstract—We consider a nonprehensile manipulation task in
which a mobile manipulator must balance objects on its end
effector without grasping them—known as the waiter’s problem—
and move to a desired location while avoiding static and dynamic
obstacles. In contrast to existing approaches, our focus is on fast
online planning in response to new and changing environments.
Our main contribution is a whole-body constrained model pre-
dictive controller (MPC) for a mobile manipulator that balances
objects and avoids collisions. Furthermore, we propose planning
using the minimum statically-feasible friction coefficients, which
provides robustness to frictional uncertainty and other force
disturbances while also substantially reducing the compute time
required to update the MPC policy. Simulations and hardware
experiments on a velocity-controlled mobile manipulator with up
to seven balanced objects, stacked objects, and various obstacles
show that our approach can handle a variety of conditions that
have not been previously demonstrated, with end effector speeds
and accelerations up to 2.0 m/s and 7.9 m/s2, respectively. Notably,
we demonstrate a projectile avoidance task in which the robot
avoids a thrown ball while balancing a tall bottle.

I. INTRODUCTION

We consider the nonprehensile object transportation task
known as the waiter’s problem [1], which requires the robot to
transport objects from one location to another while keeping
them balanced on a tray at the end effector (EE), like a
restaurant waiter. Nonprehensile manipulation [2] refers to the
case when the manipulated objects are subject only to unilateral
constraints [3] and thus retain some degrees of freedom (DOFs);
that is, they are not fully grasped. In contrast to prehensile
manipulation, a nonprehensile approach allows the robot to
carry many objects at once with a simple, non-articulated EE
(e.g., a tray; see Fig. 1 and 8). Furthermore, a nonprehensile
approach skips the potentially slow grasping and ungrasping
processes, and can handle small or delicate objects which
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Figure 1: Our mobile manipulator balancing a pink bottle while avoiding a
thrown volleyball (ball circled in red with approximate trajectory in white;
approximate end effector trajectory in blue). The controller has less than 0.75 s
between first observing the ball and a potential collision. A video of our
experiments is available at http://tiny.cc/keep-it-upright.

cannot be adequately grasped [4]. Beyond food service, efficient
object transportation is useful across many industries, such as
warehouse fulfillment and manufacturing.

Specifically, we address the waiter’s problem using a velocity-
controlled mobile manipulator. Mobile manipulators are capable
of performing a wide variety of tasks due to the combination
of the large workspace of a mobile base and the manipulation
capabilities of robotic arms. We are particularly interested
in having the mobile manipulator move and react quickly,
whether to avoid obstacles or simply for efficiency. However,
a challenge of mobile manipulation is that moving across the
ground causes vibration at the EE, which requires our object
balancing strategy to be robust to such disturbances.

The goal of this work is to develop a controller for a mobile
manipulator to quickly transport objects to a desired location
without dropping them or colliding with any static or dynamic
obstacles, the trajectories of which may not be known a priori.
Objects are held on a tray at the EE under frictional contact
(i.e., without the use of grasping or adhesive), and they should
neither fall over nor slip off the tray. We assume that the
geometry, inertial properties, and initial poses of the objects
are known, but we do not assume that feedback of the objects’
poses is available online. We assume the robot is velocity-
controlled and a kinematic model is available; its dynamic
model is not required.

This work makes the following contributions:
1) Control: We propose the first whole-body model pre-

dictive controller (MPC) for a mobile manipulator solv-
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ing the waiter’s problem. Compared to existing MPC-
based approaches to this problem, which have only been
demonstrated on fixed-base arms, our controller optimizes
the joint-space trajectory online directly from task-space
objectives and constraints, without the use of a higher-
level planning step. Furthermore, the controller uses the
minimum statically-feasible friction coefficients, which
provides robustness to frictional uncertainty, vibration,
and other real-world disturbances. When the minimum
statically-feasible friction coefficients are zero, we show
that the MPC problem can be solved more efficiently.

2) Experiments: We present the first demonstrations of the
waiter’s problem with a real velocity-controlled mobile
manipulator balancing up to seven objects; balancing
an assembly of stacked objects; and avoiding static and
dynamics obstacles, including a thrown volleyball (see
Fig. 1). The EE achieves speeds and accelerations up
to 2.0 m/s and 7.9 m/s2, respectively.

3) Code: Our code is available as an open-source library at
https://github.com/utiasDSL/upright.

After discussing related work in Sec. II and background
information in Sec. III and IV, we present our robust balancing
constraints in Sec. V and our controller in Sec. VI. Simulations
and hardware experiments follow in Sec. VII and VIII, and
Sec. IX concludes the paper.

II. RELATED WORK

Prior examples of robots directly inspired by waiters in a
restaurant include [5]–[7], but these are mobile robots without
manipulator arms. In contrast, a mobile manipulator has addi-
tional DOFs that provide redundancy and a larger workspace,
at the cost of requiring a larger and more computationally-
demanding control problem.

One approach for balancing objects is to use some manner of
sensor feedback to infer the object states. In [8], a manipulator
performs the classic inverted pendulum task. In [9], a controller
is developed to stabilize a tray based on data from an attached
accelerometer and gyroscope. In [10], an object is balanced on a
tray by a humanoid robot based on force-torque measurements
from the robot’s wrists. While the focus of [10] is correcting for
an object’s loss of balance, we focus on generating fast motions
that maintain open-loop balance without object feedback.

A two-dimensional version of the waiter’s problem is
addressed in [11], in which a parallel manipulator is mounted
on a mobile robot to compensate for the sensed acceleration of
the system. The manipulator is controlled to act like a pendulum
to minimize the tangential forces acting on a transported object.
Simulation of pendular motion has also been used for the slosh-
free transport of liquids [12], [13], though these works focus
on imposing particular dynamics on the EE rather than directly
constraining its motion. EE acceleration constraints are imposed
in [14] to avoid dropping grasped objects or spilling liquids,
but nonprehensile object transportation is not addressed.

The waiter’s problem has also been addressed using off-
line motion planning. Time-optimal path planning (TOPP)
approaches minimize the time required to traverse a provided
path subject to the constraint that the transported objects remain

balanced. In [15], convex programming is used to solve the
TOPP problem. In [16], a robust time-scaling approach is
used to handle confidence bounds on model parameters like
friction, which is combined with iterative learning to learn
the bounds. Other planning-based approaches do not assume
a path is provided. A kinodynamic RRT-based planner is
applied to the nonprehensile transportation task in [4], which
demonstrates solving a task where no quasistatic solution exists.
An optimization-based planner is applied to the task in [1]. In
contrast to these offline planning approaches, our method runs
online to react quickly to changes in the environment.

In [17] and [18], a reactive controller automatically regulates
the commanded motion to ensure the object remains balanced.
A similar approach is applied to legged robots in [19], where
the desired trajectory is generated by a spline-based planner.
This is one of the only works to use a full mobile manipulator (a
quadruped) for the waiter’s problem, but it is demonstrated only
in simulation and does not consider dynamic obstacles. To our
knowledge, the only physical mobile manipulator experiments
for the waiter’s problem have been performed on a humanoid
in [20], but similar to [10] they focus on the detection and
rejection of disturbances to the object’s stability rather than
fast object transportation.

Finally, like us, some recent works use MPC to address the
waiter’s problem. In [21], a dual-arm approach is proposed
in which a time-optimal trajectory is planned and MPC is
used to compute the applied wrench required to realize the
object’s trajectory. Another MPC approach is described in [22],
which is designed to track a manipulator’s joint-space reference
trajectory. In contrast, our MPC approach optimizes the joint-
space trajectory online while considering task-space objectives
and constraints, which allows us to respond quickly to changes
in the environment like dynamic obstacles, and we also
show how reducing the friction coefficients in the controller
constraints can provide robustness and computational savings.

III. SYSTEM MODEL

We start with the models of the robot and balanced objects.

A. Robot Model

We consider a velocity-controlled mobile manipulator with
state x = [qT ,vT , v̇T ]T , where q is the generalized position,
which includes the planar pose of the mobile base and the
arm’s joint angles, and v is the generalized velocity. We include
acceleration in the state and take the input u to be jerk, which
ensures a continuous acceleration profile [22]. The input is
double-integrated to obtain the velocity commands sent to the
actual robot. We require only a kinematic model, which we
represent generically as

ẋ = a(x) +B(x)u,

with a(x) ∈ Rdim(x) and B(x) ∈ Rdim(x)×dim(u).

B. Object Model

We model each object O as a rigid body subject to the
Newton-Euler equations

wC +wGI = 0, (1)
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where wC is the total contact wrench and wGI is the gravito-
inertial wrench, expressed in the body frame as

wGI ,

[
fGI

τGI

]
= −

[
m(v̇o −Rog)

Jω̇o + ωo × Jωo

]
,

where fGI and τGI are the gravito-inertial force and torque, m
is the object’s mass, vo and ωo are the body-frame linear and
angular velocity of the object’s CoM, g is the gravitational
acceleration, and J is the object’s inertia matrix taken about the
CoM. The rotation matrix Ro represents the object’s orientation
with respect to the world and is used to rotate gravity into the
body frame.

IV. BALANCING CONSTRAINTS

To control the interaction between the EE and balanced
objects in the most general case, we would need to reason
about the hybrid dynamics resulting from different contact
modes (sticking, sliding, no contact, etc.). Instead, our approach
is to enforce constraints that keep the system in a single
mode (sticking); that is, we constrain the robot’s motion so
that the balanced objects do not move with respect to the
EE. This is known as a dynamic grasp [2]. Now assuming
the object is in the sticking mode, we define the object’s
orientation as Ro = Re, such that it is aligned with the
EE’s orientation Re. Furthermore, we have vo = ve +ωe × c
and ωo = ωe, where ve and ωe are the EE’s linear and angular
velocity in the body frame and c is the position of the object’s
CoM with respect to the EE. Thus we can write the object’s
gravito-inertial wrench as

wGI = −
[
m(v̇e −Reg) +m(ω̇×e + ω×e ω

×
e )c

Jω̇e + ω×e Jωe

]
, (2)

where (·)× converts a vector to a skew-symmetric matrix such
that a×b = a × b for any a, b ∈ R3. We assume that the
inertial parameters m, c, and J are known. Let us group the
remaining variables, along with the EE position re, into the
tuple e = (Re, re,$e, $̇e), where $e = [vTe ,ω

T
e ]T is the

EE’s generalized velocity, which we refer to as the EE state. We
can compute e from the robot state x via forward kinematics,
in which case we may explicitly write e(x). As can be seen
in (2), the object’s motion is completely determined by e when
sticking; the remainder of this section describes the constraints
required to maintain the sticking mode. We do not use online
feedback of the object state—given the initial object poses
with respect to the EE, the controller generates trajectories to
keep those poses constant in an open-loop manner.

A general approach for ensuring an object sticks to the EE
can be obtained by including all contact forces directly into
the optimal control problem and constraining the solution to be
consistent with the desired (sticking) dynamics, which has been
previously applied to the waiter’s problem in, e.g., [17] and [22].
Consider an arrangement of objects with N total contact
points {Ci}i∈I and corresponding contact forces {fi}i∈I ,
where I = {1, . . . , N} (see Fig. 2). By Coulomb’s law, each fi
must be inside its friction cone. We use an inner pyramidal
approximation of the friction cone

‖f ti ‖1 ≤ µifni , (3)

C5

C1

C2
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C6
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C8
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Figure 2: A bottle (red) and globe (blue) balanced on a tray. This arrangement
has a total of N = 9 contact points (black dots), with each object having n = 5
(C5 is shared). Contact forces (arrows) at each contact point must belong to
their friction cones (one shown in green). The circular contact patch of the
bottle is approximated by a quadrilateral. The contact force acting on each
object at the shared contact point C5 must be equal and opposite. If µi = 0,
the friction cone at Ci collapses to the line along the normal n̂i.

φ

g

Figure 3: Planar view of two arrangements of objects, each with two objects
balanced on a tray and a total of four contact points (black dots). Left: the
support planes (dashed lines) of each object are parallel, so the orientation
shown is feasible in the presence of gravity with no friction forces (i.e., we
can take µi = 0 for all i ∈ I). Right: the support planes are not parallel, so
some friction is always required to balance this arrangement.

where fni , n̂Ti fi is the force along the contact normal n̂i,
f ti is the force tangent to n̂i, and µi is the friction coefficient.

The total contact wrench acting on an individual object is

wC ,

[
fC
τC

]
=
∑
j∈J

[
fj

rj × fj

]
, (4)

where fC and τC are the total contact force and torque, J ⊆ I
is the subset of contact indices for this particular object, and rj
is the location of Cj with respect to the object’s CoM. The
object is successfully balanced for a given e if a set of contact
forces can be found each satisfying (3) and consistent with (1),
(2), and (4). We assume that contact patches can be represented
as polygons with a contact point at each vertex; as in [17] we
always use four points with equal µ.

However, we need an extra constraint for each contact point
shared between two objects (as opposed to contact points
between an object and the tray; again refer to Fig. 2): per
Newton’s third law, the contact force acting on each object must
be equal and opposite. Let Oa and Ob be two objects in contact
at some point Ci, and denote fai and f bi the corresponding
contact forces acting on Oa and Ob, respectively. Then we
have the constraint

fai = −f bi . (5)

To lighten the notation going forward, we gather all contact
forces into the vector ξ = [fT1 , . . . ,f

T
N ]T , and write

(e, ξ) ∈ B

to indicate that the EE state e and contact forces ξ together
satisfy the balancing constraints (1)–(5) for all objects.

V. ROBUST CONTACT FORCE CONSTRAINTS

The constraint (3) ensures all contact forces are inside
their respective friction cones. However, this assumes accurate
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knowledge of the friction coefficients, and the constraint
may also be violated by unmodelled force disturbances like
vibrations and air resistance. To improve the controller’s
robustness, it is thus desirable for the tangential contact forces
to be small, keeping the forces away from the friction cone
boundaries [17]. We propose to plan trajectories using the
minimum statically-feasible values of the friction coefficients;
that is, the smallest coefficients for which there exists an EE
orientation Re and contact forces ξ satisfying the balancing
constraints with zero EE velocity and acceleration. This ensures
that the controller can always converge to a stationary position.
Again considering an arbitrary arrangement of objects, we
obtain the minimum statically-feasible friction coefficients by
solving the optimization problem1

argmin
Re,ξ,{µi}i∈I

1

2

∑
i∈I

αiµ
2
i

subject to µi ≥ 0, i ∈ I
(e, ξ) ∈ B,
e = (Re,0,0,0),

(6)

where {αi}i∈I are a set of weights. If we have nominal
estimates of the friction coefficients {µ̄i}i∈I , we set each
weight αi = 1/µ̄i to lower each coefficient proportionally;
otherwise we set αi = 1 for all i ∈ I. In the common case
when the support planes of each object are parallel to each
other (see Fig. 3), the solution to (6) is simply µi = 0 for
all i ∈ I with Re such that the support planes are orthogonal
to gravity. An example when the solution of (6) is not µi = 0
for all i ∈ I is discussed in Sec. VII-B. The problem (6) need
only be solved once for a given arrangement of objects.

While choosing the minimum friction coefficients may at
first appear overly conservative, this approach has a number
of benefits. First, it removes the need for accurate friction
coefficient estimates, which requires time-consuming physical
manipulation of the objects to estimate. Second, mobile
manipulation can produce significant EE vibration, requiring
robust motions to ensure objects are balanced. Third, in the
common case when µi = 0 for all i ∈ I, the optimal control
problem can be simplified as follows. In general we require
one contact force variable fi ∈ R3 per contact point, each
constrained to satisfy (3). However, when µi = 0, we can
parameterize the force with a single scalar fi ≥ 0 such
that fi = fin̂i. This reduces the number of force decision
variables by two thirds and replaces (3) with a simple bound,
making the optimization problem faster to solve.

We solved (6) assuming the EE was stationary, since we do
not assume to know the full EE trajectories a priori. However,
in general it is not possible to accelerate multiple objects
while assuming zero friction, even when there is a feasible
stationary solution. To see this, first consider a single object
on a tray with its support plane orthogonal to gravity and
with µi = 0 for all i ∈ I. From (4) we have fCxy = 0,
where the subscript (·)xy denotes the tangential component.

1It is not necessary to explicitly use a rotation matrix to parameterize
orientation in (6): any representation of SO(3) can be used. We use Euler
angles. Note also that the balancing constraints are independent of the EE’s
position, so we set re = 0. See the appendix for more details.

Substituting (2) into (1) with fCxy
= 0 and dividing out m

gives us [v̇e −Reg + (ω̇×e + ω×e ω
×
e )c]xy = 0. So far this is

fine: we can plan trajectories that always satisfy this equation.
However, if we have two objects Oa and Ob with CoMs ca

and cb, respectively (e.g., the left arrangement in Fig. 3), then
the EE trajectory needs to satisfy both

[v̇e −Reg + (ω̇×e + ω×e ω
×
e )ca]xy = 0, (7)

[v̇e −Reg + (ω̇×e + ω×e ω
×
e )cb]xy = 0, (8)

at all times, where the only difference between (7) and (8)
is the CoM c. In general, we cannot find an EE trajectory
with non-zero accelerations that always satisfies both equations.
However, if there is some friction force, the right-hand sides
of (7) and (8) are no longer restricted to be identically zero
and also need not be equal to each other. Thus we choose to
soften the object dynamics constraints (see the next section),
which allows tangential contact force to be used when needed,
but with a penalty. This approach still requires tuning: instead
of tuning friction coefficients, we now must tune the penalty
weights. The benefit is that we obtain computational savings
when each force can be represented by a non-negative scalar.

VI. CONSTRAINED MODEL PREDICTIVE CONTROLLER

We now formulate a model predictive controller to solve the
waiter’s problem. The controller optimizes trajectories x(τ),
u(τ), and ξ(τ) over a time horizon τ ∈ [t, t+ T ] by solving
a nonlinear optimization problem at each control timestep t.
Suppressing the time dependencies, the problem is

argmin
x,u,ξ

1

2

∫ t+T

τ=t

L(x,u, ξ) dτ

subject to ẋ = a(x) +B(x)u (system model)
(e(x), ξ) ∈ B (balancing)
0 ≤ d(x) (collision)

¯
x ≤ x ≤ x̄ (state limits)

¯
u ≤ u ≤ ū (input limits)

(9)

where the stage cost is

L(x,u, ξ) = ‖∆r(x)‖2Wr
+ ‖x‖2Wx

+ ‖u‖2Wu
+ ‖ξ‖2Wf

,

with ‖·‖2W = (·)TW (·) for weight matrix W . The EE position
error is ∆r(x) = rd − re(x). We focus on the case where
the desired position rd is constant, to assess the ability of
our controller to rapidly move to a new position without a
priori trajectory information. The matrices Wr and Wx are
positive semidefinite; Wu and Wf are positive definite. Notice
that we do not include a desired orientation: we allow the
balancing constraints to handle orientation as needed. If µi = 0,
then only a scalar fi is included as a decision variable for
each contact force (contained in ξ) and (3) is replaced by
the constraint fi ≥ 0. The vector d(x) contains the distances
between all pairs of collision spheres representing obstacles and
the robot body, which must be non-negative to avoid collisions.
When dynamic obstacles are used, then we also augment the
state x to predict their motion (see Sec. VIII-B). We assume
that the system can always reach a feasible state that achieves
the desired EE position. We discretize the prediction horizon
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Figure 4: An arrangement consisting of a red box balanced on a tray along
with a black fixture, which is rigidly attached to the tray. The fixture adds
contact points (shown in green) up the side of the box, which our controller
can exploit to accelerate faster.

of (9) with a fixed timestep ∆t and solve it online using
sequential quadratic programming (SQP) via the open-source
framework OCS2 [23], with required Jacobians computed using
automatic differentiation. We assume that T can be chosen
sufficiently long to obtain stability. We use the Gauss-Newton
approximation for the Hessian of the cost and we soften the
constraints with L2 penalties [24]. The optimal state trajectory
produced by (9) is tracked by a low-level joint controller at
the robot’s control frequency. More details can be found in the
appendix.

VII. SIMULATION EXPERIMENTS

We begin with simulations to gain insight into the perfor-
mance of our controller in an idealized environment. We use
a simulated version of our experimental platform, a 9-DOF
mobile manipulator consisting of a Ridgeback mobile base and
UR10 arm, depicted in Fig. 8. In all experiments (simulated
and real) we use ∆t = 0.1 s, T = 2 s, and weights

Wr = I3, Wx = diag(0I9, 0.1I9, 0.01I9),

Wu = 0.001I9, Wf = 0.001Idim(ξ),

where In is the n× n identity matrix. We use a single SQP
iteration per control policy update.

A. Balancing Constraint Comparison

We first consider the example shown in Fig. 4, consisting of
a box balanced on a tray and in contact with a fixture, which is
rigidly attached to the tray. We perform experiments with and
without the fixture, which is a cube of side length ` = 5 cm.
The box has mass m = 0.5 kg, height h = 20 cm, and a
square base with side length δ = 6 cm. The CoM is located
at the centroid, the mass distribution is uniform, and µi = 0.2
for all i ∈ I. The task is to move the EE to a desired goal
point rd = [−2, 1, 0]T (all desired positions are given in meters
relative to the initial EE position) without dropping the box.
We compare the trajectories that result from imposing four
different sets of balancing constraints:
• None: No constraints.
• Upward: A constraint to keep the tray oriented upward.
• Full: The full set of balancing constraints (e, ξ) ∈ B with

each µi set to 90% of the true value.2

2We only use 90% of the true (measured or simulated) value to provide
some robustness to small constraint violations arising from discretization errors
and other numerical disturbances. We subtract a small margin from the support
area for the same reason. This is more important in the hardware experiments,
where there are more sources of noise and disturbances.
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Figure 5: Left: Force applied to the simulated box during motion. Right:
Corresponding ZMP trajectories. With no constraints (None) or the Upward
constraint, the force leaves the friction cone and the ZMP leaves the support
area (safety margins in dashed lines), so the box slides and tips over (and
is dropped). The Full constraints touch but do not pass the boundaries; the
Robust constraints stay far from the boundaries in both cases.
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Figure 6: Top: Distance of EE to goal location. Bottom: Tilt angle with respect
to the upward-pointing (i.e. gravity-aligned) orientation. The Full and Robust
constraints limit acceleration to keep the box balanced; the Robust approach
also uses higher tilt angles. The None and Upward approaches accelerate
faster—and drop the box. When the fixture is added, the Full and Robust
constraints can exploit it to achieve convergence speeds more similar to the
None and Upward cases. Notice that, except for the Upward constraint, there
is no need for the tilt angle to be near zero.

• Robust: The full set of constraints (e, ξ) ∈ B with
{µi}i∈I computed using (6). Unless otherwise stated, the
solution is µi = 0 for all i ∈ I.

In ideal conditions, the Full and Robust constraints should both
keep the objects balanced, but the Full constraints provide less
of a safety margin. The Upward approach would work if the
motion were quasistatic (i.e., with negligible accelerations),
but that would not be fast or reactive.

In Fig. 5, the force acting on the object and the zero-
moment point (ZMP) are shown relative to the friction cone and
support area, respectively. The ZMP is the point about which
horizontal moments are zero; if it is outside of the support area,
then the object tips. Unsurprisingly, the None and Upward
approaches significantly violate both the friction cone and
ZMP constraints, resulting in the box being dropped. The Full
approach produces motion at the boundary of the constraints
but does not violate them, while the Robust approach stays
away from the boundaries. In Fig. 6, we see that the robustness
of the Robust approach comes at the cost of slower convergence
and higher tilt angles compared to the Full approach. When
the fixture is added, the Full and Robust approaches can both
exploit it to converge nearly as fast as when no constraints are
used at all. Notice that the tilt angle for the None and Full
approaches need not converge to zero: the None approach does
not consider the EE orientation at all, while the Full approach
may converge to any orientation that satisfies the balancing
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Figure 7: Left: Initial position of wedge (green) and box (red) arrangement.
Middle: Initial side view. The box is tilted 15◦ relative to the ground due to
the slope of the wedge. Right: The position at t = 6 s. The controller has
oriented the tray so that both the wedge and box are tilted 7.5◦ relative to
the ground, such that each requires as small a µ as possible.

constraints.

B. Non-Parallel Support Planes

Next we show an example when the solution to (6) is
not simply µi = 0 for all i ∈ I. The setup consists
of a wedge supporting a box at an incline of φ = 15◦,
similar to the right side of Fig. 3. For simplicity we assume
that µ is constant between each pair of objects, so we need
only solve (6) for the friction coefficient between the tray
and wedge µtw and between the wedge and box µwb. We
obtain µtw = µwb = 0.132, which corresponds to a tilt angle
of θ = arctan(0.132) ≈ 7.5◦ relative to the ground for each
object, meaning the wedge and box can be oriented so as to
split the angle φ between them. Using µtw = µwb = 0.132
for the controller and µtw = µwb = 0.2 for the simulator, we
run the simulation with the same goal rd = [−2, 1, 0]T . The
initial and final configurations are shown in Fig. 7. Note that
we need not start in a configuration which the controller thinks
is feasible (since the constraints are soft), but the controller
will steer toward one over the course of the trajectory. If we
were to dispense with (6) and simply try to enforce µi = 0 for
all i ∈ I, the controller fails to converge because no feasible
stationary solution exists.

VIII. HARDWARE EXPERIMENTS

In simulation we gained insight into the behaviour of the
controller without the influence of real-world effects like sensor
noise or EE vibrations. We now perform experiments on our
real mobile manipulator to assess our approach in more realistic
scenarios. Position feedback is provided for the arm by joint
encoders and for the base by a Vicon motion capture system,
which is used in a Kalman filter to estimate the full robot state.
We also use motion capture to track the position of the balanced
objects, which is only used for error reporting. The controller
parameters and weights are the same as in the previous section.
The controller is run on a standard laptop with eight Intel
Xeon CPUs at 3 GHz and 16 GB of RAM. The robot and
balanced objects are shown in Fig. 8; the corresponding object
parameters are given in Table I. A video of the experiments
can be found at http://tiny.cc/keep-it-upright.

A. Static Environments

We perform a large set of experiments with different
combinations of objects and desired EE positions, each using
the None, Upward, Full, and Robust constraint methods
described above. The desired positions are rd1 = [−2, 1, 0]T ,
rd2 = [2, 0,−0.25]T , and rd3 = [0, 2, 0.25]T . The object error

Figure 8: Top left: Real experimental setup. Robot is shown holding the Bottle
object. Obstacle locations marked with pylons. Top right: Corresponding
simulated experimental setup with collision spheres on the robot in red and on
the obstacles in blue. Bottom row: Bottle, Arch, and Cups object arrangements
used for experiments. The arch is an example of non-coplanar contact (the
three blocks composing the arch are not attached together). The bottle is filled
with sugar and the cups each contain bean bags instead of liquid to avoid
spills in the lab.

Table I: Approximate parameters for balanced objects shown in Fig. 8. CoM
and inertia are estimated from mass and geometry.

Arrangement # of
objects

# of
contacts

Mass per
object [g]

Friction
coefficients

Bottle 1 4 827 tray-bottle: 0.26

Arch 3 16 180 tray-block: 0.30
block-block: 0.42

Cups 7 28 200 tray-cup: 0.28

and controller compute time in an obstacle-free environment are
shown in Fig. 9; results for an environment with static obstacles
are shown in Fig. 10. We model obstacles as collections of
spheres; spheres also surround parts of the robot body for
collision checking (see top right of Fig. 8). As expected, the
None and Upward approaches almost always fail—the notable
exception is for goal rd2 , which requires more base motion
and is thus slower than the other trajectories. The Robust
constraints typically produce the lowest object error or are
close to it. In general we expect the Robust constraints to
have the lowest error, given that they reduce the tangential
contact forces and can thus resist unmodelled force disturbances.
However, we noticed that the larger tilt angles required by the
Robust constraints can occasionally result in some sliding of
the objects.

Computationally the Robust constraints scale much better
with the number of contacts than the Full constraints, since
they require less decision variables and use simpler constraints.
The Full constraints also require reasonably accurate friction
coefficient estimates; the effectiveness of the Robust constraints
show that we need not fear frictional uncertainty and (when
statically feasible) can set µi = 0 for all i ∈ I to reduce
compute time. The static obstacle results in Fig. 10 are similar
to those for free space except for a modest increase in compute
time. Sample trajectories are shown in Fig. 11.

B. Dynamic Environments

We now consider environments that change over time due
to dynamic obstacles. Dynamic obstacles are modelled as
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Figure 9: Object error (top row) and policy compute time (bottom row) for
different combinations of objects, goal positions, and constraints in free space.
The object error is the maximum distance the object moves from its initial
position relative to the tray. In arrangements with multiple objects, only a
single one is tracked. The bar shows the average of three runs; the error
bars show the minimum and maximum values. One or more objects were
completely dropped in all cases where the minimum error is beyond the axis
limits. The compute time is the average time required to compute an updated
MPC policy (i.e., one iteration of (9)). The bar shows the average across the
three runs (up to the first 6 s of the trajectory); the dot shows the maximum
value from any of the runs.
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Figure 10: The same results as shown in Fig. 9 but in an environment with
static obstacles and only showing the Full and Robust approaches. Compared
to Fig. 9, the errors are similar while the compute times are slightly higher.

spheres with known radii, but the controller does not know
their trajectories a priori.

1) An Unexpected Obstacle: Here we test the controller’s
ability to react to unexpected events. We make the controller
aware of a new obstacle at varying times t, and the policy
must be quickly updated to avoid a collision. The setup is
simple: we use the static obstacle environment and goal rd2
with the Bottle arrangement and a new “virtual” obstacle (the
obstacle does not physically exist, but the controller thinks
it is present). At time t the new obstacle instantly appears
in front of the robot (represented by the green sphere in
Fig. 8)—imagine a restaurant customer suddenly backing out
their chair. The results for different t are shown in Fig. 12.
The appearance of the obstacle causes significant changes
in the trajectory of both the EE and base, but the object is
continually balanced despite the sudden change, even when the
collision constraint is violated by the obstacle’s appearance. The
maximum object error and policy compute time were 18 mm
and 23 ms, respectively, across three runs of each of the four
obstacle appearance times t. The trajectory with t = 1 s
achieved the highest EE velocity and acceleration of all our
experiments, at 2.0 m/s and 7.9 m/s2, respectively.
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Figure 11: Samples of trajectories to goal rd1 for the Bottle and Cup
arrangements with different constraints. Free space results are solid lines;
results with static obstacles (shown only for Full and Robust) are dashed. The
addition of static obstacles modestly changes the shape of the trajectories. The
Full and Robust trajectories differ between the two object arrangements; in
particular, notice that Full constraints converge to a much smaller tilt angle
with the Bottle compared to the Cups. The Bottle’s higher CoM makes it
easier to tip, so it requires a smaller tilt angle when stationary.
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Figure 12: Top: Distance of EE (solid) and base (dashed) positions from
a nominal trajectory with a virtual obstacle suddenly appearing at different
times t (also marked with crosses on x-axis). The nominal trajectory has no
dynamic obstacle. Bottom: Minimum distance between any collision sphere on
the robot and the dynamic obstacle. Notice that in some cases the appearance
of the obstacle actually violates the collision constraints, which could also
happen with a physical obstacle if the collision sphere was conservatively
large. Regardless, the Bottle was never dropped.

2) Projectile Avoidance: Finally, we consider a ball with
position rb and state b = [rTb , ṙ

T
b ]T modelled as a simple

projectile with r̈b = g. We neglect drag and other possible
nonlinear terms, because avoiding an object requires a less
accurate model than when catching [25] or batting it [26]. The
ball is thrown toward the EE, and the robot must move to
avoid the objects being hit while also keeping them balanced.
For these experiments we use the Bottle arrangement and the
Robust constraint method. The controller is provided with
feedback of b once the ball exceeds the height of 1 m; the state
is estimated using the motion capture system. The state b and
the projectile dynamics are added to (9) to predict the ball’s
motion. We found it most effective to use a form of continuous
collision checking in which the controller tries to avoid a tube
around the entire future trajectory of the ball. Once the ball
has passed the EE, the constraint is removed.

The results for 20 throws are shown in Fig. 14 and images
from one throw are shown in Fig. 13. Throws are split evenly
between two directions: toward the front of the EE and toward
its side. In all cases, the controller has less than 0.75 s to
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Figure 13: Example of the robot dodging the volleyball (circled red) while
balancing the bottle, with frames spaced by ∆ = 0.15 s. Once the ball has
passed, the EE moves back to the initial position.
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Figure 14: The projectile avoidance results over 20 trials. In each plot the
red dot is the mean, the error bars represent the standard deviation, and the
blue dots are the minimum and maximum values. Left: The time at which
collision would first occur if the robot did not move. In all cases the controller
has less than 0.75 s to react. Right: Maximum penetration distance between
the (virtual) collision spheres around the ball and EE. The “Initial” values
represent the maximum penetration distances that would have occurred if the
robot had not moved. The “Actual” values are what really happened given
that the robot did move.

react and avoid the ball. Out of the 20 trials, there is one
in which the ball would not have penetrated the collision
sphere even if the robot did not move, and another where
the bottle was actually dropped. This failure was not due
to a collision, but because the bottle tipped over due to the
aggressive motion used to avoid the ball. Also notice that the
controller does not always completely pull the robot out of
collision: there is a trade-off between balancing the object and
avoiding collision. However, since the collision spheres are
conservatively large, we did not experience any failures due
to collisions. In these experiments the controller only tries
to avoid collisions between the ball and EE; collisions with
the rest of the robot’s body are not avoided. The maximum
object error and policy compute time were 32 mm (ignoring
the single failure) and 20 ms, respectively, across the 20 trials.

IX. CONCLUSION

We presented an MPC-based approach for balancing objects
with a velocity-controlled mobile manipulator and demonstrated
its performance in simulated and real experiments in a variety
of static and dynamic scenarios. In particular, our method is
able to react quickly to moving obstacles. We also proposed
using minimal values of µ to add robustness to frictional
uncertainty and other force disturbances, and demonstrated
that this approach is effective and computationally efficient in
real-world experiments. Future work will explore the effect of
uncertainty in the objects’ inertial parameters and the use of
object state feedback in the controller.

APPENDIX

This appendix provides additional implementation details to
complement the main body of the manuscript.

A. Robot Kinematic Model

In the main body of the manuscript we leave the robot kine-
matic model general to accommodate different systems. The

actual kinematic model for the robot used in our experiments
is

ẋ = Ax+Bu, (10)

where

A =

09 I9 09

09 09 I9
09 09 09

 , B =

09

09

I9

 ,
with 0n denoting a n× n matrix of zeros. The fact that our
mobile base is omnidirectional gives us a linear model, but the
nonlinear equations of motion arising from a nonholonomic
base, for example, can also be handled, since the MPC
problem (9) is already nonlinear.

B. Minimum Statically-Feasible Friction Coefficients

Here we provide more details on the structure of the
optimization problem (6), used to obtain the minimum statically-
feasible friction coefficients. For simplicity we assume that a
single object is balanced. We use roll-pitch-yaw Euler angles θ
to parameterize rotation. In this case (6) has the form

argmin
θ,ξ,{µi}i∈I

1

2

∑
i∈I

αiµ
2
i (11a)

subject to µi ≥ 0, i ∈ I (11b)
Fifi ≥ 0, i ∈ I (11c)∑
i∈I

[
fi

ri × fi

]
=

[
−mRe(θ)g

0

]
, (11d)

where Re(θ) is the mapping from θ to the corresponding
rotation matrix and

Fi =


1 0 0
µi −1 −1
µi −1 1
µi 1 −1
µi 1 1


[
n̂Ti
STi

]

with Si an orthonormal basis for the tangential component of fi,
such that (11c) is equivalent to the friction cone constraint (3).
This is the same friction model that appears in, e.g., [21].
For multiple objects, each would need a set of Newton-Euler
equality constraints (11d). We would also need to include the
constraint (5) for any contact points between two of the objects.

The problem (6) is always non-convex due to the product of
decision variables µi and fi in the friction cone constraint and
the nonlinear mapping Re(θ), but we did not have a problem
solving it with the SLSQP solver [27] from scipy.

C. Soft Constraints

Here we provide details the soft constraints used in (9). We
soften all of the constraints in (9) except for the system model
constraints ẋ = a(x) +B(x)u.

Consider a general inequality constraint g(x,u) ≤ 0
(equality constraints are just treated as two-sided inequalities
with equal lower and upper limits). We soften the constraint
by introducing a slack variable s ≥ 0 as another decision
variable in the optimization problem and relaxing the inequality
constraint to g(x,u) ≤ s. The optimizer is encouraged to
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make s small (and thus reduce constraint violation) by adding
a term penalizing s to the objective function. In this work we
use an L2 penalty of the form wss

2 for each slack variable,
where ws > 0 is a tunable weight. We use ws = 100
for all slacks except for the projectile avoidance constraint,
which uses ws = 4/d2, where d = 0.35 m is the specified
minimum distance between the end effector and the predicted
projectile trajectory. We found that the relative weight between
the slack penalties for the balancing constraints and the
projectile avoidance constraints was the most difficult part
of the controller to tune, hence the different slack weight for
the projectile avoidance constraint.

When the constraints are soft, the relative magnitudes of
the constraint violations must also be considered (which
are weighed against each other in the problem’s objective
function). In particular, we adjust the Newton-Euler dynamics
constraints (1) for each object to

m−1
(
wC +wGI/

√
N
)

= 0.

Dividing by the object’s mass m ensures that balancing heavier
objects is not prioritized over lighter objects. Dividing the
gravito-inertial wrench by

√
N reduces the magnitude of the

contact force variables in the optimization problem as the
number of contact points N increases. The idea is that we do
not want the penalties on (1) to dominate the other objectives
and penalties in the problem (9) just because more objects and
contact points have been added to the problem. We found this to
be particularly useful with the Cups arrangement (where N =
28).

D. Model Predictive Controller Details

Here we provide some additional details about the MPC
problem (9). The state and input constraints used for the robot
in (9) are

q̄ =

[
1013

2π16

]
, v̄ =

1.112

213

314

 , ˙̄v =

2.512

1
1016

 , ū =

[
2013

8016

]
,

where x̄ = [q̄T , v̄T , ˙̄vT ]T ,
¯
x = −x̄,

¯
u = −ū, and 1n denotes

an n-dimensional vector of ones.
As stated in the main manuscript, (9) is solved using

sequential quadratic programming. The quadratic program (QP)
subproblems are solved using the QP solver HPIPM [24]. The
automatic differentiation library CppAD [28] is used to obtain
the Jacobians required to construct the QP subproblems.

E. Low-level Joint Controller

The MPC problem (9) typically cannot be solved at the
same frequency that the robot accepts commands, so we need
a strategy to compute inputs between solutions of (9). Suppose
we compute a new MPC policy using (9) at time t, which is
valid until time t+T . Then at each control time τ ∈ [t, t+T ],
we can compute the jerk input u(τ) using an affine state
feedback controller of the form

u(τ) = K(τ)(x?(τ)− x(τ)) + k(τ), (12)

where x? is the optimal state trajectory, K is the feedback gain
matrix, and k is the feedforward input, all obtained from the
most recent policy. In particular, at each control timestep t, (9)
is discretized and linearized to form a quadratic program (QP),
which is solved using an interior point method (IPM) [24]. The
terms K and k are obtained from the Riccati recursion used to
solve the linear system arising from the Karush-Kuhn-Tucker
conditions in the final iteration of the IPM used to solve the
QP (see [24] as well as [29] and [30] for more details). The
upshot of (12) is that we can cheaply generate inputs u based
on the most recent MPC solution, unless more time than the
horizon T has elapsed since the solution, which never occurred
during our experiments.

In simulation we do not run in real time, which allows us to
recompute the policy every 10 ms of simulation time, regardless
of the actual required compute time. We use (12) to generate
the input at every step of the simulation, which has a timestep
of 1 ms. In our hardware experiments, the MPC policy (9) is
solved in a separate process. We limit policy updates to at
most once every 10 ms and we use (12) to generate commands
at the robot’s control frequency of 125 Hz.

F. State Estimation

Two Kalman filters are used for state estimation in our
hardware experiments. One is used to estimate the state of
the robot x and the other is used to estimate the state of the
projectile b during the dynamic obstacle avoidance experiments
in Sec. VIII-B.2. Both the robot and projectile models are
linear, allowing us to use the standard linear Kalman filter (see
e.g. [31]). We are provided with position measurements for both
systems: for the robot, the pose of the mobile base is provided
by a Vicon motion capture system, and the joint angles of
the arm are provided by its joint encoders. The position of
the projectile is also obtained from the Vicon system. In the
following, we describe the discrete-time equations of motion
and the covariance matrices required for each Kalman filter.

1) Robot Kalman Filter: Discretizing (10) gives us the
discrete-time model

x+ = Āx+ B̄u,

where

Ā =

I9 δtI9 (1/2)δt2I9
09 I9 δtI9
09 09 I9

 , B̄ =

(1/6)δt3I9
(1/2)δt2I9

δtI9

 ,
are obtained from Taylor series expansions of x and we have
used (̄·) to denote the discrete-time system matrices. The
sampling time is δt = 8 ms, which is the duration of each
iteration of the robot control loop. We measure generalized
positions q, and so our measurement model is q = C̄x, where

C̄ =
[
I9 09 09

]
.

The other ingredients we need for the Kalman filter are the
process covariance Q̄, the measurement covariance R̄, and the
initial state covariance P0. In experiment we use Q̄ = B̄QB̄T

with Q = 10I9, R̄ = 0.001I9, and P0 = 0.1I27.
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2) Projectile Kalman Filter: The discrete-time equations of
motion for the projectile are

b+ = Ābb+ B̄bg,

where

Āb =

[
I3 δtI3
03 I3

]
, B̄b =

[
(1/2)δt2I3

δtI3

]
,

and the measurement model is rb = C̄bb, with

C̄b =
[
I3 03

]
.

Here we use a sampling time of δt = 10 ms, which is the
rate at which measurements are received from the motion
capture system. In experiment we use process covariance Q̄b =
B̄bQbB̄

T
b with Qb = 1000I3, measurement covariance R̄b =

0.001I3, and initial state covariance Pb0 = I6.
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