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Abstract— We present the first controller for quasistatic
robotic planar pushing with single-point contact using only force
feedback. We consider a mobile robot equipped with a force-
torque sensor to measure the force at the contact point with
the pushed object (the “slider”). The parameters of the slider
are not known to the controller, nor is feedback on the slider’s
pose. We assume that the global position of the contact point is
always known and that the approximate initial position of the
slider is provided. We focus specifically on the case when it is
desired to push the slider along a straight line. Simulations and
real-world experiments show that our controller yields stable
pushes that are robust to a wide range of slider parameters
and state perturbations.

I. INTRODUCTION

Pushing is a nonprehensile manipulation primitive that
allows robots to move objects without grasping them, which
is useful for objects that are too heavy, cumbersome, or
delicate to be reliably grasped. In this work we investigate
robotic planar pushing with single-point contact using only
force feedback. The pusher is a mobile robot equipped with a
force-torque (FT) sensor to measure the contact force between
the robot and the pushed object (“the slider”). The parameters
of the slider are not known—this includes its geometry and
inertial parameters like mass and center of mass (CoM), but
we assume the slider’s shape is convex. It is assumed that
an approximate initial position of the slider is known but
that online feedback of its pose is not available—the only
measurement of the slider is through the contact force with
the pusher. We assume that the global position of the pusher
is known at all times (i.e., the robot can be localized). Finally,
we assume that all motion is quasistatic.

We focus specifically on pushing the slider along a desired
straight-line path, for which we found our controller to be
particularly suited. We envision such an approach being useful
for pushing unknown objects between distant waypoints,
where reliable localization of the object is not available. For
example, consider pushing objects through long, straight
hallways within warehouses or factories.

The main contribution of this work is to present the first
controller for pushing objects with single-point contact based
only on force feedback. We show that it successfully pushes
objects along a desired straight-line path with single-point
contact. We demonstrate the robustness of the controller by
simulating pushes using a wide variety of slider parameters
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Fig. 1: Our robot pushing a blue box across the floor using single-point
contact. The contact force is measured by a force-torque sensor in the robot’s
wrist, but no other measurements of the object are provided.

and initial states. We also present real hardware experiments
in which a mobile manipulator successfully pushes different
objects across a room (see Fig. 1). Notably, we do not assume
that sufficient friction is available to prevent slip at the contact
point. Indeed, we will see that slipping is a natural part of
the behaviour of our controller and does not necessarily lead
to task failure.

We first briefly described a preliminary version of this
controller in [1]. In the current work we refine the control
law, add a term to track a desired line, provide an analysis
of its robustness in simulation, and perform more numerous
and challenging real-world experiments.

II. RELATED WORK

Research on robotic pushing began with Mason [2]. The
approaches that followed were typically either open-loop
planning methods that rely on multi-point contact with a
fence for stability [3], [4] or feedback-based approaches
based on vision [5], [6] or tactile sensing [7], [8]. Tactile
sensing is the most similar to our work, though we assume
only a single contact force vector is available, rather than the
contact angle and normal that a tactile sensor provides.

An FT sensor is used with a fence to orient polygonal parts
using a sequence of one-dimensional pushes in [9], which
was shown to require less pushes than the best sensorless
alternative [10]. Another use of an FT sensor was in [11],
where FT measurements are used to detect slip while pushing.
In constrast, we do not detect slip; rather, our closed-loop
dynamics are stable despite (unmeasured) slip.

More recent work has turned to learned-based approaches
to model the complicated pushing dynamics arising from
uncertain friction distributions and object parameters [12],
[13]. Another line of work [14], [15] uses model predictive
control (MPC) for fast online replanning. These methods
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Fig. 2: Examples of a square and a circular slider, located at position r and
orientation φ in the global frame. The contact with the pusher is located at
point c, which is distance s along the slider’s edge. The contact force must
lie in the friction cone at the contact point (shown in green).

are powerful but typically assume at least visual feedback is
available (to localize the slider) and require either considerable
training data for learning or an existing model of the slider.
A survey on robotic pushing can be found in [16]. None of
these methods are based only on force feedback.

III. METHODOLOGY

We first describe the model of the slider used for simulation
and then present our controller for pushing the slider based
on force feedback.

A. Model of Quasistatic Pushing
We use a model of quasistatic planar pushing equivalent to

that presented in [8], which we briefly review here. Let p =
[fx, fy, τ ]T be the generalized force acting on the slider,
where (fx, fy) is the force and τ is the torque. Under the
ellipsoidal limit surface model, this force must lie within the
ellipsoid defined by

pTMp ≤ 1, (1)

whereM = diag(f−2max, f
−2
max, τ

−2
max) represents the maximum

frictional load between the slider and the support plane (i.e.,
the ground). When the object is moving, (1) holds with
equality. For simplicity we will assume uniform support
friction, which means that the center of friction corresponds
to the slider’s CoM projected onto the support plane. If we
assume that the slider’s pressure distribution is concentrated
at a particular distance d from the CoM, then τmax = d ·
fmax. When the pressure distribution is uniform, then d =
(
∫
A
‖a‖dA)/(

∫
A
dA), where A is the support area, dA is a

differential element of area of A, and a is the position of dA.
The system state is x = [x, y, φ, s]T , where r = [x, y]T

is the slider’s position, φ is its orientation, and s is the
distance of the contact point c along the slider’s edge (see
Fig. 2). The slider’s generalized velocity about the CoM and
expressed in the body frame is $ = [vx, vy, ω]T , with linear
velocity (vx, vy) and angular velocity ω. Under quasistatic
pushing, $ is in the direction normal to the boundary of (1).
Let vo ∈ R2 be the slider’s velocity at the contact point
and vp ∈ R2 be the pusher’s velocity; these are equal if the
contact is sticking, but the magnitude of vp is larger during
slipping. We have the relationship vo = W T

c $, where

W T
c =

[
1 0 −yc
0 1 xc

]
,

y = 0y = 0

ȳc

θf

θp
vp

f
c

Fig. 3: Example of our the pushing controller. The goal is to push the box
along the line y = 0 by pushing with velocity vp at the contact point c.
The pushing angle θp is proportional to the lateral offset ȳc and measured
force angle θf . In this example, the commanded vp will eventually rotate
the object so that the contact force points back toward the desired path
along y = 0. Depending on the contact friction coefficient µc, the contact
point is free to slip along the object’s edge over the course of a trajectory.

for contact point c = [xc, yc]
T expressed in the body frame.

We can conveniently express the slider’s equations of
motion as the solution to the quadratic program

min
$,α,η

α2

subject to $ = MWcη

vp = W T
c $ + αn̂⊥c

η ∈ FC,

(2)

where α is the contact’s velocity along the current edge of
the slider (i.e., the slip velocity), η is a vector parallel to
the contact force, n̂⊥c is a unit vector perpendicular to the
contact normal, and FC = {f ∈ R2 | |n̂⊥c · f | ≤ µcn̂c · f}
is the friction cone at the contact with friction coefficient µc.
If desired, we can obtain the actual contact force f by
substituting p = Wcη into the boundary of the limit
surface (1) to obtain

f = (ηTW T
c MWcη)−1/2η.

Intuitively, (2) tries to find the object velocity $ which
corresponds to a feasible contact force and produces as little
slip as possible. The system’s contact modes (sticking, sliding
left, sliding right) correspond to particular sets of active
constraints of (2). The pusher’s contact velocity vp is given
as the input to the system. If vp is pulling away from the
object (i.e., n̂c · vp < 0), then (2) is infeasible. Assuming
the pusher and slider maintain contact, we can simulate the
entire system forward in time by integrating $ and α. The
formulation (2) produces the same results as the analytical
equations in [8], but the correspondence between contact
modes and active constraints may aid the intuition.

B. Pushing Controller

We now turn our attention to generating the pusher
velocity vp given measurements of the contact force f . Let v̄p
and f̄ be these same quantities but expressed in the global
frame; indeed, since we do not assume to know the orientation
of the slider, we cannot work in the local frame. Let us express
these quantities in polar form as

v̄p = ‖v̄p‖ ·
[
cos θp
sin θp

]
, f̄ = ‖f̄‖ ·

[
cos θf
sin θf

]
.



TABLE I: Initial states and parameters used for simulation of the square
and circular sliders. Every combination of states and parameters is used, for
a total of 35 = 243 combinations per slider. The values of τmax depend on
the slider shape, with τ̄ computed assuming a uniform pressure distribution
and τ̂ computed assuming the pressure is concentrated at maximum distance
from the CoM.

Parameter Symbol Values Unit

Initial lateral offset y0 −40, 0, 40 cm

Initial contact offset s0 −40, 0, 40 cm

Initial orientation φ0 −π/8, 0, π/8 rad

Contact friction µc 0, 0.5, 1.0 −

Max. torsional load τmax 0.1τ̄ , τ̄ , τ̂ Nm

We set the pushing speed ‖v̄p‖ constant but control the
pushing angle θp. Our goal is to track a given straight-line
path, which we will assume without loss of generality to be
along the x-axis of the global frame (i.e., the line y = 0
with x increasing). Given an approximate initial position of
the slider, we assume that the robot can be positioned so
that it starts in contact with the slider and is approximately
aligned with the desired pushing direction. Our control law
is simply

θp = (kf + 1)θf + ky ȳc, (3)

where kf , ky > 0 are tunable gains and ȳc is the lateral
deviation of the contact point from the desired path (see
Fig. 3). The first term steers toward a stable pushing direction
and the second term steers toward the desired path. Ultimately,
the controller converges to a configuration where the contact
force lies along the desired path. Notice that the controller
does not depend explicitly on any slider parameters, and
can thus be used to push a variety of unknown objects. In
particular, we do not require knowledge of the support friction,
pressure distribution, or contact friction, which are often
uncertain and subject to change. Depending on the contact
friction coefficient µc, the contact point may slip or stick
along the edge of the object over the course of a successful
push, which is not a problem for our controller.

IV. SIMULATIONS

We first validate our controller in simulation with a square
and circular slider, as shown in Fig. 2, using the equations
of motion (2) and our control law (3). The square has side
length ` = 1 m and the circle has radius ρ = 0.5 m; the
CoMs are located at the centroids. For each slider, we assess
the robustness of our controller by running simulations with
different combinations of initial state x0 = [0, y0, φ0, s0]T ,
contact friction, and pressure distribution (encoded in τmax),
as listed in Table I. We use pusher speed ‖v̄p‖ = 0.1 m/s,
controller gains kf = 0.1 and ky = 0.01, and fmax = 1 N.
The simulation timestep is 10 ms.

The position trajectories for each of the 35 = 243 parameter
combinations per slider are shown in Fig. 4. Our controller
successfully steers both sliders to the desired path along the
positive x-axis for every parameter combination with the
same controller gains. While ky could be increased to reduce
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Fig. 4: Simulated trajectories for all 243 combinations of parameters given
in Table I for the square and circular sliders shown in Fig. 2. Each trajectory
has a duration of 10 min. All trajectories converge to the desired path y = 0
using our control law with the same set of gains kf = 0.1 and ky = 0.01.
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Fig. 5: Samples of simulated trajectories with initial state (x0, y0, s0, φ0) =
(0,−40 cm,−40 cm,−π/8) and a uniform pressure distribution. Results
are shown for each slider with low and high contact friction. Contact point
and pushing direction are shown in black. The orientation of the circular
slider is indicated by the red line between its center and edge, which is
aligned with the body frame’s x-axis.

the deviation from the desired path, we found that a larger ky
was not stable for all of these parameter combinations.

Four sample trajectories are shown in Fig. 5. In particular,
notice the difference between the two trajectories of the square
slider. The first has zero contact friction (µc = 0), and we
see that the contact point quickly slips toward the center of
the square’s edge. In contrast, the second trajectory has high
contact friction (µc = 1): the contact point does not slip and
a stable push is achieved with a large angle between the
contact normal and pushing direction.

V. HARDWARE EXPERIMENTS

We now demonstrate our controller in real-world experi-
ments. The robot used for pushing is a mobile manipulator
consisting of a UR10 arm mounted on a Ridgeback omnidi-
rectional base (see Fig. 1). The arm’s wrist is equipped with
a Robotiq FT 300 force-torque sensor. Since we are only
concerned with pushing in the x-y plane, we fix the joint
angles of the arm and the orientation of the base and only
control the linear velocity of the base by commanding v̄p.
The base is localized using a Vicon motion capture system,
which is also used to record the trajectories of the sliders.

We test our controller’s ability to push a box and a barrel
(shown in Fig. 6) across the floor, each of which contains 5 lb



Fig. 6: The “box” and “barrel” sliders used for real-world experiments. Each
is empty except for 5 lb weights located approximately at the colored circles.
The red weights are always present, but we add or remove the green weight
to vary the mass and pressure distribution of the box. Motion capture is
used to record the sliders’ trajectories, but is not used for control.
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Fig. 7: Position trajectories for real sliders pushed starting from various
lateral offsets. Ten trajectories using our pushing control law are shown for
each slider (in color). We compare against an open-loop controller, which
just commands the robot to move forward with constant speed ‖v̄p‖. Five
open-loop trajectories are shown for each slider (in black). The open-loop
trajectories end once contact between the pusher and slider is lost. All
open-loop trajectories fail within 2 m, whereas our controller is able to push
the objects across the full length of the room.

weights. We vary the amount of weight (either 5 or 10 lb)
in the box to provide additional variety in the slider mass
and pressure distribution. We assume that the height of the
contact point is such that the sliders do not tip over.

We continue to use ‖v̄p‖ = 0.1 m/s and kf = 0.1,
but we increase ky to 0.3. A lower value of ky was
required in simulation so that the controller was stable for
all combinations of parameters, but for these real-world
experiments we found that a higher ky is more effective
for tracking the desired path y = 0. In general, the controller
gains can be tuned to give better tracking performance when
the set of possible slider parameters is smaller.

The experimental results are shown in Fig. 7. Ten tra-
jectories using our pushing control law are shown for each
slider. We compare against an open-loop controller, which
just commands the robot to move forward with constant
speed ‖v̄p‖. Five open-loop trajectories are shown for each
slider. Open-loop pushing with single-point contact is unstable,
and indeed we see that the open-loop trajectories quickly fail.
In contrast, our closed-loop pushing controller successfully
pushes the sliders across the full 6 m length of the room.

It should be noted that the trajectories do not converge
perfectly to the desired path y = 0, at least not within the

available 6 m distance. This is expected in the real world,
as the slider is constantly perturbed by imperfections on the
surface of the ground as it slides, which must then be corrected
by the controller. Indeed, as can be partially seen in Fig.1,
the floor of the room has various pieces of tape and other
markings which change the surface friction properties as the
object slides. Regardless, in Fig. 7 we see that the controller
keeps the slider within a corridor of approximately 1 m width
around y = 0, even with considerable initial lateral offsets
between pusher and slider.

VI. CONCLUSION

We presented a control law for quasistatic robotic planar
pushing with single-point contact using only force feedback,
which does not require known slider parameters or pose
feedback, and we demonstrated its robustness in simulated
and real-world experiments. Subsequent work will further
investigate the theoretical properties of the controller and
apply it to more challenging environments, such as those
with obstacles.
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[16] J. Stüber, C. Zito, and R. Stolkin, “Let’s push things forward: A survey
on robot pushing,” Frontiers in Robotics and AI, vol. 7, 2020.


	Introduction
	Related Work
	Methodology
	Model of Quasistatic Pushing
	Pushing Controller

	Simulations
	Hardware Experiments
	Conclusion
	References

