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Abstract—Mobile manipulators combine the large workspace
of mobile robots with the interactive capabilities of manipulator
arms, making them useful in a variety of domains including
construction and assistive care. We propose a differential inverse
kinematics whole-body control approach for position-controlled
industrial mobile manipulators. Our controller is capable of task-
space trajectory tracking, force regulation, obstacle and singular-
ity avoidance, and pushing an object toward a goal location,
with limited sensing and knowledge of the environment. We
evaluate the proposed approach through extensive experiments
on a 9 degree-of-freedom omnidirectional mobile manipulator. A
video demonstrating many of the experiments can be found at
http://tiny.cc/crv21-mm.

I. INTRODUCTION

Having been in widespread use in industrial automation for
decades, manipulators are becoming more common in areas
like healthcare [1] and assistive robotics [2], where they are
expected to perform complex, interactive tasks with incomplete
knowledge of the environment. Mobile manipulators are
particularly versatile due to the extended workspace provided
by a mobile base, allowing them to efficiently perform tasks
such as large-scale 3D printing [3]. Such systems are becoming
increasingly diverse, with two-legged [4], four-legged [5], and
aerial [6] varieties in addition to the more typical wheeled
configurations. The redundancy of mobile manipulators allows
them to accomplish multiple tasks simultaneously, such as
avoiding obstacles with the base while tracking a task-space
trajectory with the end effector (EE).

In this work, we present a whole-body control approach for
our position-controlled industrial mobile manipulator based on
differential inverse kinematics. In contrast to motion planning
approaches which often have distinct, sequential planning and
execution phases, operating at the control level allows us to
react extremely quickly to sensor feedback, such as applied
force. In extensive hardware experiments, we demonstrate
accurate task-space trajectory tracking, force control, and
obstacle and singularity avoidance. We show that our control
approach can accomplish various useful tasks, including wiping
a surface and pushing an object, based on limited sensor
feedback and knowledge of the environment. Figure 1 shows
our robot engaging in some of the tasks described herein.
The goal of this work is to explore the capabilities of our
mobile manipulator and to provide a foundation of basic control
behaviours upon which more complex behaviours can be built.
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Figure 1: Examples of our mobile manipulator performing tasks using our
controller: obstacle avoidance (top), wiping a table (bottom left), and pushing
an object (bottom right). A video of the experiments can be found at
http://tiny.cc/crv21-mm.

A. Related Work

A central goal of our control approach is to solve the inverse
kinematics (IK) problem, which is the problem of determining
the joint-space configuration of a robot corresponding to a
particular task-space pose of the end effector. In control it is
typical to solve the IK problem on the differential (i.e. velocity)
level, exploiting the linear relationship between the joint-space
and task-space velocities. For redundant systems like our
mobile manipulator, where there are a greater number of input
degrees-of-freedom (DOFs) than the required output DOFs
for a given task, the solution can be found analytically using
least squares [7]. More sophisticated redundancy resolution
methods include the Extended Gradient, Projected Gradient, and
Reduced Gradient [8]. However, these methods do not handle
inequality constraints, which may include limits on the joint
positions and their derivatives [9] or more complex constraints
such as obstacle avoidance and field-of-view constraints [10].
Inequality constraints can be introduced by solving the differ-
ential IK problem as a general quadratic program (QP) [11],
which is the approach we take in this work.

Another method for resolving redundancy is to define
redundancy parameters that describe the geometrical relation
between the arm and mobile base, the values of which are
found by solving an optimization problem online [12], [13].
The advantage of redundancy parameters is that they provide
an interpretable notion of the system’s redundancy; however,



they may be difficult or impossible to define for certain robot
geometries [10].

The redundancy of a system can be exploited to complete
multiple tasks simultaneously. In [14] and [15], a task-priority
control framework is presented which organizes tasks in a
hierarchy. Higher-priority tasks are guaranteed to be satisfied
before lower-priority tasks by projecting the latter into the
null-space of the former. In [16], this framework is extended to
handle inequality constraints. Another approach for handling
inequality constraints within a task-priority framework is to
use hierarchical quadratic programming [17], [18]. The idea
of this approach is that each task is represented as a QP, and
the solutions of lower-priority QPs are constrained to lie in
the solution set of the higher-priority ones. In this work, we
employ the method of [17] to include a singularity-avoidance
objective alongside the controller’s primary task.

Recent literature on the control of position-controlled mobile
manipulators includes [19], which develops a controller for
moving to target Cartesian poses with the EE subject to the
limits on the joint velocities. Other work has used model
predictive control (MPC). The joint-space formulation of [10]
results in a quadratic optimization objective, allowing the
problem to be solved very efficiently. However, as noted by the
authors, accomplishing task-space objectives would require the
IK problem to be solved separately. In contrast, [20] handles
task-space objectives and constraints directly in a nonlinear
MPC problem, which is solved efficiently through the use of
sequential linear quadratic (SLQ) MPC [21]. Inspired by the
comprehensive nature of the work in [20], our approach is able
to solve many similar tasks, including task-space trajectory
tracking and admittance control. However, in contrast, we focus
on a simpler and less computationally demanding controller
formulation based on differential IK rather than MPC. We
also demonstrate different objectives, including singularity-
avoidance and a pushing task.

B. Contributions

Our hope is that this work provides a stimulating look
at the wide range of behaviours a mobile manipulator can
achieve, despite limited sensor feedback and knowledge of the
environment. The primary contributions of this paper are:

1) a whole-body differential IK control approach for position-
controlled industrial mobile manipulators capable of
handling task-space trajectory tracking, force control,
obstacle and singularity avoidance, and pushing behaviour;

2) extensive hardware experiments on our mobile manip-
ulation platform demonstrating the capabilities of the
controller and the system as a whole.

C. Notation

We denote vectors and matrices in boldface. The nota-
tion X > 0 or X ≥ 0 indicates that the matrix X is positive
definite or positive semidefinite, respectively. Unit vectors are
denoted with a caret (̂·), In denotes the n× n identity matrix,
and ‖x‖ denotes the Euclidean norm of x, with ‖x‖W =√
xTWx denoting the norm weighted by W ≥ 0.

II. SYSTEM MODEL

Our system is a position-controlled industrial mobile manipu-
lator with a 6 DOF robotic arm mounted on a 3 DOF omnidirec-
tional mobile base. We control the robot as single n = 9 DOF
system with generalized joint configuration q = [qTb , q

T
a ]T ,

where qb = [xb, yb, θb]
T represents the position and yaw angle

of the base with respect to the world and qa = [θ1, θ2, . . . , θ6]T

represents the joint angles of the arm. The input to the system
is the vector of joint velocities u = [uT

b ,u
T
a ]T . The discretized

motion model of the system is

qt+1 = qt + ∆tB(qt)ut,

where the subscript (·)t denotes the value at the current time,
∆t is the controller timestep, and B(q) maps the inputs u to
the generalized velocities q̇:

q̇ = B(q)u. (1)

For our system,

B(q) =

[
Bb(qb) 0

0 I6

]
,

where

Bb(qb) =

cos θb − sin θb 0
sin θb cos θb 0

0 0 1

 .
In the remainder of the paper, we will only explicitly use the
subscript (·)t when we are not referring to the current timestep.

The mobile base is equipped with a two-dimensional laser
range finder which provides range and bearing measurements
to obstacles within an arc in front of the base. The EE is
equipped with a force-torque sensor that measures the applied
wrench wee = [fT

ee, τ
T
ee]

T , where fee, τee ∈ R3 are the force
and torque, respectively.

III. METHODOLOGY

We use a differential inverse kinematics approach for our
controller, which relies on the linear mapping between joint
and Cartesian velocities,

Vee = J(q)q̇, (2)

where Vee = [vTee,ω
T
ee]

T is the spatial twist of the end effector,
with linear velocity vee ∈ R3 and angular velocity ωee ∈ R3,
and J(q) ∈ R6×9 is the geometric Jacobian of the robot.
Substituting (1) into (2), the control inputs u required to achieve
a given EE reference twist Vref must satisfy

JBu = Vref , (3)

where we have dropped the dependence of J and B on q for
brevity. Since our system is redundant, there are an infinite
number of solutions to (3). We follow the standard approach of
solving a QP to generate the optimal inputs at each timestep,

ut = argmin
u

‖JBu− Vref‖2Q + ‖u‖2R

s.t. umin ≤ u ≤ umax,
(4)
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Figure 2: Block diagram of our differential inverse kinematics control approach.
Our controller generates joint velocity commands u by solving a QP. Input
to the controller is the desired EE pose Pd, twist Vd, and wrench wd, as
well as the actual joint positions q, wrench wee, and positions of detected
obstacles O.

where Q ≥ 0 and R > 0 are weight matrices, and umin

and umax are bounds on the joint velocities. The first term of
the objective function of (4) prefers solutions that satisfy (3).
The second term serves as a regularizer and prefers solutions
with smaller Euclidean norm.

In subsequent sections we develop expressions for Vref

to accomplish EE pose trajectory tracking, force regulation,
and an object pushing task. We also discuss the addition of
an obstacle avoidance constraint and an additional objective
to avoid singular configurations of the robot arm. Figure 2
summarizes our approach in a block diagram.

A. Position and Orientation Tracking

Our first task is to track a desired Cartesian trajectory with
the EE. We compute a reference twist using the feedback law

V pose
ref = Kp∆P + Vd, (5)

where Kp ≥ 0 is a gain matrix, ∆P is the error between the
desired and current EE pose, and Vd is the feedforward desired
twist. We express the pose error as ∆P = [∆pT ,∆εT ]T ,
where ∆p = pd − pee is the position error and ∆ε is
the orientation error, calculated as follows. Let Qd and Qee

represent the desired and actual EE orientation quaternions,
respectively. The orientation error ∆ε is the vector part of the
error quaternion ∆Q = Qd ?Q−1

ee , where ? denotes quaternion
multiplication.

In contrast to approaches like [11] that formulate a QP with
pose tracking as an equality constraint, we prefer the flexible
form (4) that allows the controller to deviate from the desired
trajectory to avoid violating other constraints. For example,
safety constraints such as obstacle avoidance may require the
robot to deviate from the desired trajectory to avoid collision.

B. Admittance Control

Admittance control allows the robot to alter its motion based
on the force and torque applied at the EE [22]. We wish to
make the EE act like the spring-damper

∆V +Kp∆P +Kf∆w = 0, (6)

where ∆V = Vd−Vee, Kf ≥ 0 is a gain matrix, and ∆w =
wd − wee. In order to achieve (6), the EE must follow the
reference twist

V ad
ref = Vd +Kp∆P +Kf∆w, (7)

which is simply the pose tracking reference (5) with the addition
of a wrench error term. A pose tracking controller that ignores

applied forces is recovered when Kf = 0. Alternatively, a
controller that ignores pose errors and only reacts to force is
obtained whenKp = 0. Finally, force control can be performed
in certain Cartesian directions while pose tracking is performed
in others by making only one of the corresponding rows in Kp

and Kf non-zero.
This admittance law allows the robot to accomplish tasks

where force must be regulated in the direction normal to a
surface while a trajectory is tracked in the tangential directions,
such as drawing or wiping a table. The law also allows the
robot to change its motion in response to applied force, so
that it can stop in the case of an unexpected collision or be
manually moved by a human user.

C. Obstacle Avoidance

The mobile base is equipped with a two-dimensional laser
range finder that provides range and bearing measurements to
objects in an arc in front of the robot. For safety, we want our
controller to avoid collisions between the base and surrounding
obstacles. To do so, we model the base as a circle centered
at pb = [xb, yb]

T with radius rb. For each obstacle o in the set
of detected obstacles O, we calculate

n̂o =
po − pb
‖po − pb‖

,

do = ‖po − pb‖ − ro,

where po is the position of object o in the world frame.
Following the velocity damper approach originally introduced
in [23], if the distance to the obstacle do is less than a specified
influence distance di, we apply the constraint

n̂T
o ṗb ≤ ξ

do − ds
di − ds

, (8)

where ds > 0 is a safety distance that cannot be crossed and
ξ > 0 is a tunable scaling factor. Intuitively, this constraint
limits the allowable base velocity in the direction of the
obstacle n̂o. If the distance do is reduced to the safety
distance ds, then the base velocity is constrained to be less
than or equal to zero, so the base cannot move toward the
obstacle at all.

Since ṗb simply consists of the top two elements of q̇, we
can relate it to the control input u using

ṗb =
[
I2 0

]
q̇ =

[
I2 0

]
Bu,

which facilitates adding the constraint (8) to our QP (4).

D. Manipulability

The manipulability index (MI) [24], defined as

m(q) =
√

det(JJT ), (9)

quantifies the distance of the manipulator to a singular
configuration. Like [25], we seek to incorporate an objective
to maximize the manipulability into our controller to avoid
singular configurations of the arm. Configurations farther from



singularity also require lower joint velocities to achieve a given
EE twist. A first-order Taylor series expansion of m(q) yields

m(q + ∆q) ≈ m(q) +∇mT ∆q, (10)

where ∇m is the gradient of m(q). In contrast to [25], in
which

∇m =
[
∂m
∂q1

, . . . , ∂m
∂qn

]T
,

is calculated using finite differences, we follow a similar
approach to [26] and compute it analytically by evaluating

∂m

∂qi
= m(q) tr

(
(JJT )−1J

(
∂J

∂qi

)T
)
,

where tr(·) denotes the matrix trace, which avoids approx-
imation and which we found to be computationally faster.
Note that we only use the 6× 6 block of the Jacobian matrix
corresponding to the arm joints in the above calculation.
Substituting ∆q = ∆tBu into (10), we can maximize (9)
by adding the term

−w∆t∇mTBu (11)

to the objective of the QP (4), where w ≥ 0 is a scalar weight
and the negative sign results in the value being maximized.

However, this approach causes a conflict with our primary
objective to achieve Vref . Alternatively, instead of adding (11)
to the objective of (4), we can employ the task-priority approach
of [17] and solve a second QP at each timestep, which is
constrained to lie in the solution set of the first:

ut = argmin
u

− w∆t∇mTBu+ ‖u‖2R

s.t. JBu = JBu?

umin ≤ u ≤ umax,

(12)

where u? is the solution to the first QP (4). The constraints
from (4) are included, in addition to the new equality con-
straint JBu = JBu?, which ensures that the primary task (3)
is still optimally satisfied. For simplicity we include the same
regularization weight R in (12) as in (4), but in general these
need not be the same.

Subsequently, we will refer to the first approach as the
Objective approach, because (11) is added directly to the
objective function of (4). We will refer to the second approach
as the Constraint approach, as the optimal solution of (11) is
constrained to lie in the solution space of (4). The Constraint
approach is intuitively attractive because it does not interfere
with the primary task (3). In experiments presented below, we
confirm that the Constraint approach improves the MI without
reducing the pose tracking performance, while the Objective
approach reduces tracking performance as w increases.

E. Pushing

There is a rich literature on robot pushing (see [27] for
a recent survey), much of which is focused on modelling
the object being pushed. The model can then be used to
plan motions for the robot that push the object to a desired
position. Instead, we propose a simple heuristic pushing control

n̂push
n̂f = n̂p Goal

n̂p

n̂f

θ

n̂push

αpushθ

y

x

Aligned
Object

Misaligned
Object Goal

Figure 3: Top view of two scenarios in which the EE is in contact with a round
object (at the green point) and trying to move to the goal position (red point).
On the top, the object and EE are aligned so that n̂f = n̂p, and pushing
in that direction will successfully move toward the goal. On the bottom, the
object is misaligned. If the EE just pushes along n̂p toward the goal location,
the object would slip aside and contact would be lost. Instead, the EE pushes
in direction n̂push in order to turn the object toward the goal without losing
contact.

law that is easily incorporated into our differential IK QP
formulation (4). We do not model or even localize the object
being pushed, but rather generate motions based only on the
sensed force at the end effector and the target position. We
assume a single point of contact at the EE. Working in the x-y
plane, let ∆pxy = Sxy∆p and fxy = Sxyfee, where

Sxy =

[
1 0 0
0 1 0

]
.

We define

n̂p =
∆pxy
‖∆pxy‖

and

n̂f =

{
fxy/‖fxy‖ if ‖fxy‖ ≥ fT ,
n̂f,t−1 else,

(13)

where fT ≥ 0 is a force threshold that prevents n̂f from being
updated unless a sufficiently large force is present, which serves
to reject noise.

In a pushing scenario, force is the result of contact with
the pushed object, so n̂f represents a contact direction. The
controller must balance between moving in the direction n̂f to
stay in contact with the object and moving in the direction n̂p

to reach the goal location. With reference to Figure 3, if the
EE and object are aligned so that n̂f = n̂p, then moving in
that direction pushes the object toward the goal. If they are not
aligned, then the EE should actually move in a direction away
from n̂p to try to turn the object toward the target position.
We calculate the EE direction of motion using

n̂push = slerp(n̂f , n̂p, αpush), (14)

where slerp is the spherical linear interpolation function [28],
defined as

slerp(â, b̂, α) =
sin((1− α)θ)

sin θ
â+

sin(αθ)

sin θ
b̂,



Figure 4: The mobile manipulator used in the experiments, shown in the
configuration used at the start of trajectory executions. For reference, the base
is approximately 1.0m×0.8m in size.

for unit vectors â and b̂, where θ is the angle between them
and α is the interpolation parameter.

Somewhat unusually, we use a negative interpolation param-
eter, −1 ≤ αpush ≤ 0, because we want to move away from
the direction n̂p to turn the object toward the goal position.
The angle between n̂push and n̂f is proportional to the angle
between n̂f and n̂p, achieving the desired behaviour.

We found that the controller was more reliable if (13) was
modified to

n̂f =

{
fxy/‖fxy‖ if ‖fxy‖ ≥ fT ,
slerp(n̂f,t−1, n̂p, αf ) else,

so that in the absence of meaningful force measurements, n̂f

rotates toward the direction of the target position n̂p, where 0 ≤
αf ≤ 1 controls the rate of convergence. This way, if contact
with the object is lost, the EE will start moving back toward
the target position until contact is made again.

The twist reference supplied to (4) for the EE to push an
object is

V push
ref =

[
I2
0

]
vpushn̂push +

[
0 0
0 I4

]
Kp∆P , (15)

where the direction n̂push is followed in the x-y plane, and a
simple proportional law is used in the other Cartesian directions.
The speed in the pushing direction is controlled by vpush. In
our experiments we simply set this value to a constant, but
more sophisticated methods may scale the value based on the
distance to the goal location or the angle between n̂f and n̂p.

IV. EXPERIMENTS

We perform numerous experiments to validate our approach
on our physical mobile manipulator, shown in Figure 4. We
begin by describing our experimental setup, then present
results for pose tracking, admittance control, obstacle avoid-
ance, manipulability maximization, and pushing. A video
demonstrating many of the experiments can be found at
http://tiny.cc/crv21-mm.

A. Experimental Setup

The mobile manipulator used for experiments consists of
a 6 DOF UR10 industrial manipulator mounted on a 3 DOF
omnidirectional Ridgeback mobile base. The pose of the mobile
base is measured using a Vicon indoor motion capture system
and the arm’s joint angles are measured using its internal joint

Table I: RMS error of end effector position (in mm) and orientation (in rad)
for the seven trajectories with and without orientation tracking. Each value is
the average of three runs.

Position-only Full pose

Trajectory Position Orientation Position Orientation

Line 1.91 0.16 1.84 0.0010
Sine 5.58 0.35 5.60 0.0036
Figure 8 3.76 0.23 4.51 0.0030
Square 4.81 0.41 5.24 0.0023
Ellipse 3.07 0.27 3.07 0.0020
Spiral 4.59 0.22 5.56 0.0032
Rotate — — 3.27 0.0074

encoders. A Robotiq FT 300 force torque sensor at the EE
wrist measures the applied wrench. A Hokuyo UST-10LX laser
range finder is mounted at the front of the base, which we use
to detect obstacles in a 180◦ arc in front of the robot, with a
nominal detection range between 0.06 and 10 m.

Our proposed controller is implemented using ROS and the
QP solver qpOASES [29]. It is run on a computer with four
Intel Core i7 CPUs at 2.5 GHz and 8 GB of RAM. The control
rate is 125 Hz, the rate at which robot accepts input commands.
In all experiments, we set the regularization weight to R = I9.

B. Position and Orientation Tracking

We begin by demonstrating our controller’s accuracy when
tracking a desired EE position and orientation in free space,
using the pose tracking reference (5). We test on seven different
trajectories, each with a duration of 30 s. The six shown
in Figure 5 specify a constant orientation, with maximum
linear velocities between 0.13 m/s and 0.44 m/s. The seventh
trajectory (Rotate) maintains a constant position while rotating
the EE 90◦ about the z-axis, followed by 90◦ about the x-axis
(in the world frame).

We run two sets of experiments: once with only posi-
tion tracking, and once with both position and orientation
tracking. The exception is the Rotate trajectory, which only
produces movement if orientation tracking is performed.
To track position only and ignore orientation we set the
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0
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Figure 8
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Ellipse
Spiral

Figure 5: Six end effector paths used to test pose tracking. Each trajectory
has a duration of 30 seconds and a maximum linear speed between 0.13m/s
and 0.44m/s.



Table II: Control effort for six trajectories when only position is tracked.
Trajectories are executed using the full combined system, only the arm, and
only the base. Each value is the average of three runs.

Trajectory Combined Arm-only Base-only

Line 0.095 — 0.099
Sine 0.118 — 0.132
Figure 8 0.063 0.097 —
Square 0.091 — 0.103
Ellipse 0.039 0.095 0.045
Spiral 0.115 — —

weight Q = 100 diag(1, 1, 1, 0, 0, 0); to track the full pose,
we use Q = 100I6. In both cases, we set Kp = I6.

The root-mean-square (RMS) pose tracking errors are shown
in Table I. When only the position is tracked, the controller
deviates significantly from the desired orientation. When
orientation tracking is added, the orientation error is reduced
by about two orders of magnitude for each trajectory. There is
a small trade-off between orientation and position error for the
Figure 8, Square, and Spiral trajectories, where the position
error increases when orientation tracking is added. Overall, the
controller is found to produce accurate tracking results across
a variety of trajectories.

C. Control Effort

In our approach, we treat the robot as a single system
with n = 9 inputs. In this section, we examine how much
control effort is required when controlling the robot as a single
system versus using either the base or arm only. Table II shows
the average control effort ‖u‖ for six trajectories, where only
position is tracked. We use the same controller parameters as
the previous section. Trajectories are performed with only the
arm if they lie within the arm’s workspace. Likewise, they are
performed with only the base if they are confined to the x-y
plane, since the base cannot produce vertical motion by itself.
For all trajectories, the control effort is increased when only one
subsystem is used. Control effort is particularly increased when
only the arm is used, which suggests that these trajectories
cause the arm to move toward singular configurations and thus
require larger joint velocities to achieve a particular Cartesian
twist. Paired with the fact that some trajectories, such as Spiral,
are not feasible for either system alone, this result offers a
justification for the use of redundant mobile manipulators
controlled as a single system.

D. Admittance Control

To test our admittance control law (7), we perform two
experiments. In the first experiment, the robot is commanded
to apply increasingly large forces vertically against a table.
The actual and desired forces in the z-direction are shown in
Figure 6. As seen in the figure, the robot is able to successfully
apply forces from 5 N to 40 N with high accuracy.

The second experiment again requires the robot to regulate to
a desired force in the z-direction, but it is now also commanded
to simultaneously track a trajectory in the x-y plane. Such a
behaviour is required for tasks like wiping a surface, which
we demonstrate in the experimental video. Figure 7 shows the
results with an elliptical path. The path is traversed in 60 s and
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Figure 6: Actual and desired force in the z-direction for a force regulation
task.
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Figure 7: Top: force in the z-direction during a surface tracking task. Bottom:
the path followed by the EE in the x-y plane. The elliptical path is traversed
in 60 s and repeated three times with increasing desired force.

repeated three times with increasing desired force. There is a
slight deviation from the desired force each time the EE reaches
the far side of the elliptical path, but it is still able to track
the desired force and the desired trajectory with reasonable
accuracy.

In both experiments, we use Kp = diag(1, 1, 0, 1, 1, 1),
Kf = diag(0, 0, 0.005, 0, 0, 0), and Q = I6. We attach a
piece of foam to the end effector to reduce the stiffness of
the system, allowing the robot to move more quickly while
remaining stable.

E. Obstacle Avoidance

To test the obstacle avoidance constraint (8), we have the
robot navigate a slalom course composed of four obstacles. In
a first experiment, we have the robot follow a line with the EE
while avoiding the obstacles with the base. The trajectory is
a 4 m line in the x-direction with a 15 s duration. In this experi-
ment we only track position, using Q = 10 diag(1, 1, 1, 0, 0, 0)
and Kp = I6. Compared to the pose tracking experiments,
we have lowered the weight Q to ensure the system remains
stable at the increased speed. The velocity damper parameters
are di = 1 m, ds = 0.1 m, and ξ = 1. The circle approximating
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Figure 9: Robot traversing the slalom obstacle course, driven only by force
applied by a human user at the EE. Top: the applied force in the x-direction.
Bottom: the path of the base and EE through the obstacle course.

the base has radius rb = 0.5 m. The robot is successfully able
to navigate the course, as shown in Figure 8. The EE is able
to follow a fairly straight path with an RMS position error
of 4.22 cm despite the high speed and lateral motion of the
base to avoid obstacles.

We perform a second experiment combining obstacle avoid-
ance with admittance control. The robot navigates the same
slalom obstacle course, but instead of tracking a commanded
task-space trajectory, it is driven purely by force applied at the
EE by a human user. We use parameters Kp = 0, Kf = 0.1I6,
and Q = I6 for admittance control, and the same velocity
damper parameters as above. The results are shown in Figure 9.
The robot is successfully pulled through the course while
avoiding obstacles, but the EE path varies due to inconsistencies
in the applied force.

F. Manipulability

Next, we compare the Objective and Constraint formulations
for manipulability maximization. The robot is commanded
to track the Figure 8 trajectory, which requires significant
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Figure 10: Results of a MI maximization experiment while tracking the Figure 8
trajectory with various weights w on the MI maximization objective. The MI,
RMS position error, and RMS orientation error, each normalized such that the
value at w = 0 is 1, are compared between the two approaches.

arm movement, using (5) with Kp = Q = I6 and varying
values of the weight w for each approach. The average MI,
RMS position error, and RMS orientation error are shown in
Figure 10, where each is normalized so that the value obtained
with w = 0 is 1. While the Objective formulation produces
a slightly higher MI at large values of w, it comes at the
cost of significant position and orientation error. In contrast,
the Constraint formulation actually decreases tracking error
slightly at higher values of w. We hypothesize that increasing
the MI using the Constraint formulation actually results in joint
configurations that are able to respond to the given tracking
commands more effectively. Since our controller does not look
ahead over a prediction horizon, maximizing the MI appears
to endow it with an alternative, limited form of foresight.

G. Pushing

Finally, we demonstrate a pushing experiment using (15).
The robot is commanded to push a barrel (depicted in Figure 1)
toward the point (x, y) = (3, 0). The controller parameters
are vpush = 0.2 m/s, αpush = 0.5, αf = 0.01, and fT = 5 N.
The trajectory of the EE and barrel are shown in Figure 11.
Around t = 8 s, the barrel is manually perturbed in the y-
direction to test the controller’s ability to maintain contact with
the object. Immediately following the perturbation, the EE slips
before moving back toward the barrel and regaining contact.
The barrel is now offset in the y-direction, but by t = 25 s the
EE has moved across the barrel to push it back toward y = 0 m.
Meanwhile, the EE consistently pushes the barrel forward in
the x-direction for the entire duration of the experiment.

Our approach is not a perfect pushing solution: the barrel is
not pushed to the exact target point. However, it is a reasonable
heuristic for balancing between moving toward a goal position
while maintaining contact with an unknown object using only
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Figure 11: Results of a pushing experiment, where the object is manually
perturbed. The controller recovers contact with the object and continues to
push it toward the goal.

force measurements. Indeed, unless contact is lost and the
object is entirely removed from the path between the EE and
the target location, our approach is quite good at ensuring
stable contact between the object and EE.

V. CONCLUSION

We have presented a differential inverse kinematics control
strategy for position-controlled industrial mobile manipulators.
In extensive hardware experiments, we show that our controller
is capable of task-space trajectory tracking, force regulation,
obstacle and singularity avoidance, and pushing an object
toward a desired goal position, based on limited sensor feedback
and knowledge of the environment.

In future work, we are interested in exploring receding
horizon control approaches to improve performance and avoid
local minima. We would also like to focus more specifically
on particular mobile manipulation tasks. For example, we are
interested in using MPC for pushing in situations where the
properties of the object and environment may not be known.
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