
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022 1

Fly Out The Window: Exploiting Discrete-Time
Flatness for Fast Vision-Based Multirotor Flight

Melissa Greeff1, SiQi Zhou1, and Angela P. Schoellig1

Abstract—Recent work has demonstrated fast, agile flight using
only vision as a position sensor and no GPS. Current feedback
controllers for fast vision-based flight typically rely on a full-
state estimate, including position, velocity and acceleration. An
accurate full-state estimate is often challenging to obtain due to
noisy IMU measurements, infrequent position updates from the
vision system, and an imperfect motion model used to obtain
high-rate state estimates required by the controller. In this work,
we present an alternative control design that bypasses the need
for a full-state estimate by exploiting discrete-time flatness, a
structural property of the underlying vehicle dynamics. First, we
show that the Euler discretization of the multirotor dynamics is
discrete-time flat. This allows us to design a predictive controller
using only a window of inputs and outputs, the latter consisting of
position and yaw estimates. We highlight in simulation that our
approach outperforms controllers that rely on an incorrect full-
state estimate. We perform extensive outdoor multirotor flight
experiments and demonstrate reliable vision-based navigation.
In these experiments, our discrete-time flatness-based controller
achieves speeds up to 10 m/s and significantly outperforms similar
controllers that hinge on full-state estimation, achieving up to
80% path error reduction.

Index Terms—Aerial Systems: Mechanics and Control; Aerial
Systems: Perception and Autonomy; Vision-Based Navigation

I. INTRODUCTION

MULTIROTOR unmanned aerial vehicles (UAVs), see
Fig. 1, are mechanically simple and highly maneuver-

able, which makes them suitable to a wide range of appli-
cations such as infrastructure inspection [1], transportation,
search-and-rescue missions, and mapping operations. This has
challenged researchers to develop multirotor systems that can
move beyond lab demonstrations to real-world scenarios where
GPS may not always be reliable due to poor satellite coverage,
multipath propagation or jamming. As such, in recent years
significant advancements have been made in enabling high-
performance flight using vision-based sensing as a lightweight
and versatile alternative [2]-[4].

Control design within the visual navigation pipeline tends
to rely on high-rate state estimates (generally 50-200 Hz

Manuscript received: September, 9, 2021; Revised December, 10, 2021;
Accepted January, 31, 2022.

This paper was recommended for publication by Editor Pauline Pounds
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by (organizations/grants which supported the work.)

1The authors are with the Dynamic Systems Lab (www.dynsyslab.org)
at the University of Toronto Institute for Aerospace Studies (UTIAS)
and the Vector Institute for Artificial Intelligence, Toronto. This work
was supported by Drone Delivery Canada, Defence Research and
Development Canada, and the Natural Sciences and Engineering Research
Council of Canada. Email: melissa.greeff@mail.utoronto.ca,
siqi.zhou@robotics.utias.utoronto.ca,
schoellig@utias.utoronto.ca

Digital Object Identifier (DOI): see top of this page.

DJI M600 Pro

Ronin Gimbal

Nvidia TX2

StereoLabs Camera

Fig. 1. Multirotor system used for autonomous vision-based flight experi-
ments. We use a DJI M600 Pro with Ronin-MX gimbal and a StereoLabs
camera. All computation is performed onboard on the Nvidia TX2.

for position control). In contrast, the visual system often
estimates lower-rate (currently 10-35 Hz) and noisy position
(and orientation) information compared to GPS or Vicon.
The mismatch between the control requirements and visual
measurement is addressed with an additional state estimator
that uses a prediction model and/or integrates IMU measure-
ments, to determine high-rate state estimates. Traditionally,
the controllers and planners are designed independently of
the state estimator [2]-[5]. Control design tends to assume
perfect state estimation. Historically, this has been motivated
by the separation principle, which theoretically guarantees that
optimality is retained for certain linear stochastic systems
when control and state estimation are decoupled. However,
the required assumptions for these guarantees, that is, a linear
model and zero-mean Gaussian output noise, are practically
never satisfied by vision-based multirotor systems in real-
world operations.

Moreover, obtaining an accurate full-state estimate using
visual navigation for multirotor control is challenging due to
typically noisy IMU measurements, an infrequent position up-
date from the vision system due to the required computational
time and an imperfect motion model used to obtain high-rate
state estimates required by control.

Related work tends to address the challenge of high-
performance control under imperfect state estimation by (i)
improving the state estimate by incorporating additional sen-
sors, for example, IMU, laser range-finders, event cameras,
e.t.c. [3], [6]; (ii) designing robust control to account for the
worst-case state estimation error learnt offline from data [9],
[8]; or (iii) performing output feedback control by coupling
control and state estimation [10]-[12].

In this work, we present an alternative approach that by-

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

passes the full state estimation requirement by exploiting a
property known as discrete-time flatness. This property allows
us to design a controller for vision-based flight that uses a
window of inputs and special flat outputs, specifically position
and yaw, and avoids inaccurate velocity and acceleration
estimates.

II. RELATED WORK AND CONTRIBUTIONS

1) Improve state estimation: Autonomous vision-based
flight typically relies on visual or visual-inertial odometry
(VIO), when an IMU is added, within a simultaneous local-
ization and mapping (SLAM) [3] or visual teach and repeat
(VT&R) framework [2], [4]. For example, vision-based drone
racing relies on SLAM [3], [6]. In drone racing the multirotor
must fly through static gates. The drift in VIO is compensated
for by using a deep neural network (DNN) to learn a robust
gate model. The identified gate locations are accounted for
in an extended Kalman filter (EKF) to improve the multirotor
state estimate. The state is then used in time-optimal trajectory
planners [5] and simple lower-level controllers, for example,
PD control or model predictive control (MPC). This estimation
approach is task-specific and relies on static gates. Another
approach, improves state estimates by fusing Ultra-wideband
(UWB) range measurements with VIO in an EKF [7].

2) Design robust control for worst-case state estimation:
In [8], a bound on the state estimation error is learned offline
using data. A robust controller is synthesized that ensures a
bounded system response despite estimation errors. This has
been applied to vision-based flight for multirotors in [9]. This
results in conservative performance and can sometimes lead
to an infeasible problem. Moreover, the current theory applies
to linear models and, therefore, has only been applied to flight
near hover.

3) Couple control and state estimation: While commonly
MPC considers state feedback, output feedback MPC ap-
proaches exist and rely on only measurements (or outputs).
Robust output feedback MPC explicitly considers bounded
measurement noise and incorporates a state estimator within
the optimization problem in MPC [10]. Robust output feed-
back MPC can be a tube-based method (which guarantees con-
straint satisfaction despite measurement noise) [10]-[12] or a
minmax method (which optimizes the worst-case performance)
[13]. Current theory applies to linear models only [10]-[12].
Moreover, the main practical limitation is that these methods
are slow to compute. Even for low-dimensional linear systems,
the controller can often only be implemented at around 5 Hz
[10]. For vision-based navigation, the measurement noise
may vary and can be difficult to evaluate prior to flight.
Furthermore, overestimating the measurement noise can lead
to conservative performance.

In this work, we present a predictive controller that does
not rely on the full-state estimate for vision-based multirotor
flight. The contributions of this work are three-fold:
• To the best of our knowledge, this is the first work to

demonstrate that the property known as discrete-time flat-
ness holds for the Euler discretization of multirotors. This
means that only a window of input (thrust and torques)

and output (position and yaw) samples is required for
control design.

• We highlight in simulation how the approach outperforms
controllers that rely on a poor full-state estimate as a
result of noisy position measurements (and higher-order
derivative estimation) or large initial state uncertainty.

• In outdoor experiments, we show the application of our
proposed discrete-time flatness-based controller to vision-
based flight at speeds up to 10 m/s and how it outperforms
controllers that hinge on accurate full-state estimation.

III. BACKGROUND

A. Differential Flatness

We recall the formal definition of differential flatness [14].
Definition 1 (Differential Flatness): A nonlinear system

model,
ẋ(t) = f(x(t),u(t)), (1)

with t ∈ R+, x ∈ Rn, u ∈ Rm is differentially flat if
there exists an output y(t) ∈ Rm, whose components are
differentially independent (i.e., the components are not related
to each other through a differential equation), such that the
following holds:

y = H̃(x,u, u̇, ...,uδ),

x = Λ̃(y, ẏ, ...,yr−1),

u = F̃ (y, ẏ, ...,yr), (2)

where H̃, Λ̃, F̃ are smooth functions, δ and r are the maximum
orders of the derivatives of u and y needed to describe the
system and y = [y1, y2, ...ym]T is called the flat output.

�
More intuitively, the system (1) is flat if there exists a

one-to-one correspondence (or mapping) between its solutions
(x(t),u(t)) and solutions y(t) of a trivial systems (with the
same number of inputs, i.e., yr = ṽ where ṽ ∈ Rm is a new
fictitious input). This means that both the state x(t) and the
input u(t) at time t can be determined from the (flat) output
y(t) and a finite number of its derivatives.

The property of differential flatness (with position and yaw
as output) is well-established for multirotors [15] and has been
exploited for efficient trajectory generation in [15] and model
predictive control in [16].

B. Discrete-Time Flatness

The discrete-time counterpart of differential flatness, com-
monly referred to as forward-difference flatness (or difference
flatness), has recently been introduced in [17], [18]. The main
difference is that time derivatives in Definition 1 are replaced
by forward-shifts of the output [19].

Definition 2 (Discrete-Time Flatness): A nonlinear system
model,

xk+1 = f(xk,uk), (3)

with k ≥ 0, xk ∈ Rn, uk ∈ Rm is difference flat if there
exists an output yk ∈ Rm whose components are independent

GREEFF et al.: FLY OUT THE WINDOW 3

(i.e., the components are not related to each other through a
difference equation), such that the following holds:

yk = H(xk,uk,uk+1, ...,uk+δ),

xk = Λ (yk,yk+1, ...,yk+r−1) , (4)

uk = F (yk,yk+1, ...,yk+r) , (5)

where H,Λ, F are smooth functions, δ and r are the maximum
number of forward shifts of u and y needed to describe the
system and yk = [y1,k, y2,k, ...ym,k]T is called the flat output.

�
More intuitively, the system (3) is flat if there exists a

one-to-one correspondence (or mapping) between its solutions
(xk,uk) and solutions yk of a trivial system (i.e., they do not
satisfy a difference equation, but rather yk+r = vk where
vk ∈ Rm is a new fictitious input). This means that both the
state xk and input uk at time step k can be determined from
a finite number of future values of the output yk [19]. The
key concept of discrete-time flatness is that the trajectory of
the (flat) output in a certain finite window uniquely determines
the state and input at any time step [20].

Unfortunately, differential flatness of (1) does not necessar-
ily imply difference flatness of a discretization (either exactly
if possible or using Euler discretization) of (1). A counterex-
ample is provided in [19]. However, in this paper, we show
that difference flatness still applies to an Euler discretization of
the multirotor dynamics and how we can exploit this property
in control design using only input and output information
(i.e., bypassing the more traditional requirement for full-state
information).

IV. METHODOLOGY

We show that discrete-time flatness, as described in Defini-
tion 2, holds for the Euler discretization of the full multirotor
dynamics model (from [14]). We also, briefly, show that this
property holds for a simpler 2-D motion model, with under-
lying first-order pitch and roll dynamics (as a result of lower-
level attitude controllers), which is used in our simulation
and experimental results in Sec. V and VI. In Sec. IV-C, we
illustrate how discrete-time flatness can be used in a predictive
controller that uses only input and (flat) output information.

A. Discrete Flatness of Euler-Discretized Multirotor Dynam-
ics Model

1) Dynamics Model: We consider the following discrete-
time model (using the Euler discretization approximation of
the model in [14]):

xk+1 = xk + δtẋk,

where δt is the time step of the discretiza-
tion and the state at time step k, xk =
[xk, ẋk, yk, ẏk, zk, żk, θk, φk, ψk, pk, qk, rk]T comprises
of the 3-D position xk, yk, zk, the 3-D velocity ẋk, ẏk, żk,
the vehicle roll φk, pitch θk and yaw ψk, and the angular

velocities (in the vehicle frame) pk, qk, rk at time step k. The
translational dynamics are: ẍk

ÿk
z̈k + g

 =
Tk
m

R13
k

R23
k

R33
k

 , (6)

where ẍk, ÿk, z̈k are the 3-D accelerations at time step k, Tk
is the commanded thrust at time step k, g is the gravitational
constant, m is the vehicle mass, and R is the rotation matrix
from the body to inertial frames.

The notation Rαβk denotes the α row and β column entry
of rotation matrix R at time step k. The rotational dynamics
are: ṗkq̇k

ṙk

 =

−
(Izz−Iyy)

Ixx
qkrk + 1

Ixx
τxk

− (Ixx−Izz)
Iyy

pkrk + 1
Iyy
τyk

− (Iyy−Ixx)
Izz

pkqk + 1
Izz
τzk

 , (7)

where ṗk, q̇k, ṙk are the angular accelerations and τxk , τ
y
k , τ

z
k

are the commanded torques, about the respective axes, at
time step k. We have assumed a diagonal inertial matrix with
diagonal components Ixx, Iyy, Izz .

2) Discrete-Time Flatness Derivation: We consider the
output comprising of the 3-D position and yaw at time step k:

yk = [xk, yk, zk, ψk]T .

We show that both state xk, (4) in Definition 2, and input
uk = [Tk, τ

x
k , τ

y
k , τ

z
k]T , (5) in Definition 2, can be determined

from forward shifts of the output yk.
a) State from Forward Shifts of Output: From the dis-

cretized position dynamics we obtain the velocity at time step
k in terms of forward shifts of the output, i.e., ẋk = xk+1−xk

δt

and ẏk = yk+1−yk
δt , and żk = zk+1−zk

δt . Similarly, velocity at
time step k + 1 can be described in terms of forward shifts
of the output, i.e., ẋk+1 = xk+2−xk+1

δt , ẏk+1 = yk+2−yk+1

δt ,
żk+1 = zk+2−zk+1

δt . Given that [R13
k , R

23
k , R

33
k]T is a unit

vector in (6), we can obtain this vector from forward shifts
of the output as [R13

k , R
23
k , R

33
k]T = tk

|tk| where:

tk =

 xk+2−2xk+1+xk

δt2
yk+2−2yk+1+yk

δt2
zk+2−2zk+1+zk

δt2 + g

 . (8)

We obtain the pitch θk and roll φk at time step k in terms
of 2 forward shifts of the output by plugging in the above
expressions for R13

k , R
23
k , R

33
k into:

θk = atan

(
R13
k

R33
k

Cψk
+
R23
k

R33
k

Sψk

)
, (9)

φk = atan

((
R13
k

R33
k

Sψk
− R23

k

R33
k

Cψk

)
Cθk

)
, (10)

where we have assumed θk ∈ (−π/2, π/2) and φk ∈
(−π/2, π/2). From these Euler angles, we can describe the
rotation matrix Rk at time step k in terms of forward shifts
of the output.

We can obtain similar expressions for R13
k+1, R

23
k+1, R

33
k+1

at time step k + 1 by computing tk+1 in (8). We determine
the pitch θk+1 and roll φk+1 at time step k + 1 by using
R13
k+1, R

23
k+1, R

33
k+1 and ψk+1 in (9) - (10).

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

We can obtain similar expressions for the pitch θk+2 and
roll φk+2 at time step k+2. The angular velocity of the vehicle
in the inertial frame ωk at time step k is (see [14] for details):

ωk =

Cψk
R12
k 0

Sψk
R22
k 0

0 R32
k 1

φ̇kθ̇k
ψ̇k

 = Rk

pkqk
rk

 .
Exploiting the Euler discretization, we obtain:pkqk

rk

 = R−1k

Cψk
R12
k 0

Sψk
R22
k 0

0 R32
k 1

φk+1−φk

dt
θk+1−θk

dt
ψk+1−ψk

dt

 . (11)

Using the relationship between forward shifts of the output
yk and the Euler angles θk, φk, ψk at time step k, see (9) -
(10), and θk+1, φk+1, ψk+1 at time step k + 1 in (11), we
can determine the angular velocities pk, qk, rk at time step
k in terms of forward shifts of the output. Similarly we
can obtain expressions for pk+1, qk+1, rk+1 by plugging in
the expressions for φk+1, θk+1, ψk+1 and φk+2, θk+2, ψk+2

in terms of the forward shifts of the output.
b) Input from Forward Shifts of Output: We can obtain

the commanded thrust at time step k in terms of forward
shifts of the output from (6) as Tk = m|tk|, where |tk| is
the magnitude of tk in (8). Using the Euler discretization of
the rotational dynamics (7), the torques at time step k are:τxkτyk

τzk

 =

Ixx pk+1−pk
dt + (Izz − Iyy) qkrk

Iyy
qk+1−qk

dt + (Ixx − Izz) pkrk
Izz

rk+1−rk
dt + (Iyy − Ixx) pkqk

 . (12)

Using the expressions for angular velocities pk, qk, rk at time
step k and pk+1, qk+1, rk+1 at k + 1 in terms of the forward
shifts of the output allows us to compute the torques in
(12) from 4 forward shifts of the output (i.e., we require
yk,yk+1,yk+2,yk+3,yk+4). From (5) in Definition 2, we call
this a window of r = 4.

B. Discrete Flatness of Multirotor Model in 2-D with First-
Order Pitch-Roll Dynamics

We consider a slightly simpler model in the simulations,
Sec. V, and experiments, Sec. VI, performed in this letter. The
multirotor performs only 2-D motion in the x−y plane and we
have an underlying attitude controller. The underlying attitude
controller generates a first-order pitch and roll response. This
is a common (and useful) assumption for many commercial
platforms (such as the DJI M600 in Fig. 1) where a black-box
attitude controller is implemented onboard [16].

1) Dynamics Model: We consider the following discrete-
time model (using Euler discretization approximation):

xk+1 = xk + δtẋk,

where the state at time step k, xk = [xk, ẋk, yk, ẏk, θk, φk]T

comprises of the 2-D position xk, yk, the 2-D velocity ẋk, ẏk,
and the pitch θk and roll φk angles. We consider the dynamics:

ẋk = [ẋk, g
R13
k

R33
k

, ẏk, g
R23
k

R33
k

,
k̃

τ
θcmdk − θk

τ
,
k̃

τ
φcmdk − φk

τ
]T ,

(13)

where R is the rotation matrix from the body to inertial frames,
Rαβk is the α row and β column of rotation matrix R at time
step k, τ is the first-order time constant and k̃ is the first-
order gain for the roll and pitch dynamics. The control input
uk = [θcmdk , φcmdk]T includes the commanded pitch and roll.
We assume the yaw is fixed, i.e., ψk = ψ?∀k.

2) Discrete-Time Flatness Derivation: We consider the
output comprising of the position at time step k:

yk = [xk, yk]T .

We show that both state xk and input uk can be determined
from forward shifts of the output yk.

a) State from Forward Shifts of Output: Similar to Sec.
IV-A, we can obtain the 2-D velocity at time step k and k+ 1
in terms of forward shifts of the output. Similarly, by using
the 2-D velocity at time step k and k+1 in (13), we obtain the
rotation at time step k in terms of forward-shifts of the output.
That is, R13

k

R33
k

= xk+2−2xk+1+xk

gδt2 and R23
k

R33
k

= yk+2−2yk+1+yk
gδt2 .

The pitch θk and roll φk at time step k in terms of forward
shifts of the output is obtain from (9) - (10) with ψk = ψ?.

b) Input from Forward Shifts of Output: Similar to
Sec. IV-A, the rotation at time step k + 1, i.e., R13

k+1

R33
k+1

=

xk+3−2xk+2+xk+1

gdt2 and R23
k+1

R33
k+1

= yk+3−2yk+2+yk+1

gdt2 , is used to
determine the pitch θk+1 and roll φk+1 at k + 1 in terms of
forward shifts of the output. From the first-order pitch and
roll dynamics in (13) we can determine the pitch and roll
commands θcmdk and φcmdk from the pitch and roll at time
steps k and k + 1. The pitch and roll at time steps k and
k + 1 can be determined from 3 forward shifts of the output.
Consequently, we have determined the input at time step k as
a function of 3 forward shifts of the output, i.e.,

uk = F (yk,yk+1,yk+2,yk+3) . (14)

We coin this function (14) the Output-To-Input Map with a
window r = 3 in (5). The Input-To-Output Map is described
by its inverse, i.e.,

yk+3 = F−1 (yk,yk+1,yk+2,uk) . (15)

C. Predictive Control Exploiting Discrete Flatness
We present a predictive control design in Fig. 2 that exploits

discrete-time flatness, from Definition 2, to use a window of
previous inputs and measured (flat) outputs to compute the
control input. To do this, we propose three core components:
(i) Output-to-Input Map – maps a window r of the future
optimized trajectory to the input using (16); (ii) Input-To-
Output Map – maps a window of past inputs and output
measurements to constraint the future trajectory using (17);
and (iii) Output Trajectory Optimization – optimizes the output
trajectory using (18).

1) Output-To-Input Map: At time step k we require
a window of future time steps of the output trajectory
yk,yk+1, ...yk+r to determine the input uk. We propose using
predictive control to predict the optimized output trajectory
window y∗k,y

∗
k+1, ...y

∗
k+r which can be used to determined

the input from (5) as:

uk = F
(
y∗k,y

∗
k+1, ...y

∗
k+r

)
. (16)

GREEFF et al.: FLY OUT THE WINDOW 5

Output Trajectory

Optimization
UAV

Dynamics

Visual

Perception

Output-To-Input Map

MEMORY

of past inputs and outputs

Input-To-Output Map

 imageF−1(·)

F (·)

Input-To-Output Map

ym
k

uky∗
k,y

∗
k+1,y

∗
k+2,y

∗
k+3

ym
k ,ym

k+1,y
m
k+2

yref,k:k+N

ym
k−2,y

m
k−1,uk−2,uk−1

Output Trajectory

Optimization

Prediction using:
yk+r = vk

Fig. 2. Overview of predictive control (horizon N) design using a window
r = 3 of input and (flat) output data by exploiting discrete-time flatness.

For example, we use the optimized output trajectory window
y∗k,y

∗
k+1, ...y

∗
k+3 in the Output-to-Input Map in (14) for our

2-D multirotor model (Sec. IV-B) with a window size r = 3.
2) Input-To-Output Map: At time step k we require

a window of past time step measurements of the out-
put trajectory ymk ,y

m
k−1,y

m
k−r+1 and previously sent inputs

uk−1, ...,uk−r+1 to determine the effect of past inputs on the
future output trajectory at ymk+1, ...y

m
k+r−1. More precisely, we

compute ymk+1, ...,y
m
k+r−1 as:

ymk+(j−1) = F−1
(
ymk−(r−j+1), ...,y

m
k+(j−2),uk−(r−j+1)

)
,

(17)
where j = 2, ..., r and r is the window size. For example,
the Input-to-Output Map in (15) for our 2-D multirotor model
(Sec. IV-B) determined a window size r = 3. In this case, we
compute the effect of uk−1 and uk−2 on ymk+1 and ymk+2 as:

ymk+1 = F−1
(
ymk−2,y

m
k−1,y

m
k ,uk−2

)
,

ymk+2 = F−1
(
ymk−1,y

m
k ,y

m
k+1,uk−1

)
.

This is used to constrain the output trajectory optimization to
account for the effects of previously sent inputs.

3) Output Trajectory Optimization: At each time step, we
solve the following optimization problem:

y∗k:k+N = argmin
yk:k+N

J (yk:k+N)

s.t. yk+j−1 = ymk+j−1,∀j = 1, .., r,
(18)

where N is the prediction horizon, J(·) is a selected trajectory
cost function (often selected as a quadratic with a tracking
error term and a regularization term regulating how quickly the
output changes). Additional constraints on the output trajectory
can also be enforced if necessary.

V. SIMULATIONS

We consider the dynamics in (13) from Sec. IV-B and
consider a 1-D motion in the x-direction with ψ∗ = 0, y = 0,
ẏ = 0 and φ = 0. The dynamics (13) are executed at 200 Hz.
The controllers are run at 50 Hz. We consider the proposed
predictive control in Discrete-Flatness exploiting discrete-time
flatness with the cost in (18):

J(·) =

N∑
k=0

(yk − yref,k)
T
Q (yk − yref,k) + v̄TkRv̄k

0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5 0.7
Output Noise (std σ in m)

0

2

4

6

8

10

12

Av
er
ag

e
O
ut
pu

t E
rr
or
 (m

)

Discrete-Flatness (Proposed)
Flatness MPC
PD Control

Fig. 3. Simulation comparison of the effect of position noise on the tracking
performance of PD Control in green, Flatness MPC (predictive control
using continuous-time flatness) in blue, and our discrete-time flatness or
Discrete-Flatness in red. Measurements of the x-position have zero-mean
Gaussian noise ym = y + [N (0, σ2), 0]T , where we vary the standard
deviation σ (Output Noise). For each σ, we compute the average position
or output tracking error over 10 trials. The proposed Discrete-Flatness (red)
is more robust to position noise compared to the traditional Flatness MPC
(blue), which relies on higher-order position derivative estimates for predictive
control.

-1.4 -1.3 -1.2 -1.0 -0.5 -0.2 0.0 0.2 0.5 1.0 1.2 1.3 1.4
Initial Pitch (rad)

0

2

4

6

8

10

12

A
ve

ra
ge

 O
ut

pu
t E

rr
or

 (m
)

Discrete-Flatness (Proposed)
NMPC + EKF (Standard)

Fig. 4. Simulation comparison of the effect of initial state uncertainty on
the performance of the proposed Discrete-Flatness in red and NMPC+EKF,
i.e., using a standard nonlinear MPC with an extended Kalman filter (EKF)
for state estimation, in grey. Our proposed Discrete-Flatness has robustness
to significant initial uncertainty in the pitch, because unlike the EKF we do
not linearize about the the current estimate and instead implicitly use the
relationship between the state at time-step k and the position (or output)
trajectory from k to k+ r as described by the discrete-time flatness property
in (4) to discard biased state estimates after r time steps. The shaded grey
region shows where the NMPC+EKF approach is unstable.

where v̄k = yk+3 − 3yk+2 + 3yk+1 − yk, N = 200 is the
prediction horizon, Q weights the error with the reference
point and R weights a regularisation term.

a) Robustness to noisy position and higher-order deriva-
tive estimates: We start from no motion at the origin, i.e.,
xk = 0, y = 0 at k = 0. We compare the effect of noise on
the performance of Flatness MPC, that uses continuous-time
differential flatness as in [16] and relies on position and first-
order finite-difference velocity and acceleration estimates in
the state feedback, PD Control, which relies on position and
finite-difference velocity estimates, and the proposed Discrete-
Flatness control. At each noise level or σ, we compute
the average position tracking error for the feasible reference
trajectory yref = Atsin(ωt) where A = 1.4, ω = 1.0 over
10 trials for each controller. In Fig. 3, we observe that at
low position noise (i.e. σ < 0.0005) all controllers are tuned
to have similar performance. However, as the position noise
increases the performance of Flatness MPC (blue in Fig.
3) significantly worsens as a result of heightened noise in
the higher-order derivatives used in the state estimate. PD

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

3 5 7 9
Speed (m/s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Pa
th
 E
rro

r (
m
)

Controller
Discrete-Flatness (Proposed)
Flatness MPC
PD Control

Fig. 5. Comparison of path error at increasing desired speeds for autonomous
vision-based flight of multirotor in Fig. 1 using PD Control (green), Flatness
MPC (blue) and our proposed Discrete-Flatness controller (red). The box
plots are computed over 3 trials (for each controller at each speed) repeating
the L-shaped path in Fig. 7. Our proposed approach Discrete-Flatness (red)
outperforms related controllers by performing prediction and not relying on
noisy and delayed state estimation. The vehicle under PD Control (green) goes
unstable at 9 m/s. The performance under Flatness MPC (blue) degrades as
the speed increases. Our proposed Discrete-Flatness (red) maintains low path
error for all desired speeds and achieves an average path error reduction of
20− 40% for low speeds ≤ 5m/s and 65− 80% for high speeds > 5m/s
over Flatness MPC.

Control outperforms Flatness MPC for higher position noise
(i.e. σ > 0.005) because we consider a feasible trajectory
and it does not rely on a state estimate to make future model
predictions. Our proposed approach is a predictive controller
that achieves better performance despite high position noise
(i.e. σ > 0.005) by avoiding higher-derivatives of the position
estimates.

b) Robustness to initial state uncertainty: In simulation,
we consider a multirotor with motion in 1-D in the x-direction
starting at an initial position and velocity of zero. The objective
is to move to a reference point 10 m away. We assume that
measurements are obtained at the same rate of 50 Hz as
the control input. In Fig. 4, we compare the average error
for our proposed Discrete-Flatness and NMPC+EKF, which
uses a standard extended Kalman filter (EKF) and nonlinear
model predictive controller (NMPC). Both controllers assume
the quadrotor starts at rest (i.e., the state is zero). The EKF
considers an initial state uncertainty with standard deviation
of 0.5 rad on the pitch angle. We compare the performance of
each of the approaches for different true initial pitch values.
We assume no measurement or process noise.

VI. EXPERIMENTS

A. Hardware Setup

As shown in Fig. 1, we use a DJI Matrice 600 Pro with
attached Ronin-MX gimbal. All processing, including visual
navigation, planning and control happens onboard the UAV on
the primary computer, NVIDIA Tegra TX2 module (6 ARM
cores + 256 core Pascal GPU). The primary computer uses a
serial Transistor-Transistor Logic (TTL) connection to connect
with the on-board M600 autopilot which provides vehicle data
(e.g., the gimbal state) and the interface for sending control
commands to the vehicle. There is a StereoLabs ZED stereo
camera mounted to the Ronin-MX gimbal to provide greyscale
imagery with resolution 672 x 376 at 15 Hz. The Tegra TX2
runs NVIDIA L4T v28.2 and an XBee 900 Mhz wireless link

Fig. 6. Comparison of the estimated noisy real-time position at 50 Hz (red),
the estimated position from VO and bundle adjustment (blue) and including
visual localization (green) for a path flown at 9 m/s.

is used to communicate with a ground station where we can
monitor any status changes and send high-level commands
(i.e., changing autonomy states).

B. Visual Teach and Repeat Navigation Overview

This section summarizes the visual teach and repeat
(VT&R) navigation system used in the experiments [2]. In
VT&R, we consider two phases. During the teach phase,
the UAV flies using autonomous GPS waypoint following.
The purpose of the teach path is to create a map of visual
landmarks along the path. This taught path is stored as a set
of vertices and edges which include the landmarks observed
at each vertex. During the repeat phase, GPS is disabled
and the vehicle needs to perform autonomous navigation (of
the teach path) while the VT&R algorithm performs visual
localization using a local segment from the taught path. In
these experiments, we consider the controller implemented
during repeat. During repeat visual odometry (VO) is per-
formed in the same manner as during teach with an additional
thread running visual localization, i.e., visual matching to
the map created during teach, see [2] for more details. The
high-rate real-time pose (or higher-dimensional state) used
by the controllers is determined by extrapolating the last VO
pose forward using Simultaneous Trajectory Estimation And
Mapping (STEAM). STEAM was first introduced in [21] and
details on the implementation used in this paper can be found
in [22]-[23]. STEAM uses low-rate position estimates from
vision to estimate a continuous-time state-trajectory, that can
be queried by the controller at the current time, but relies on
an accurate motion model or prior. Fig. 6 shows the position
estimate (red) queried by the controller from STEAM at each
control time step for a 9 m/s trajectory. Associated with each
of these position estimates is also a velocity and acceleration
estimate for example. As demonstrated in Fig. 6 for sharp
turns at higher speeds STEAM does not accurately estimate
the trajectory. Flatness MPC relies on position, velocity and
acceleration estimates from STEAM. PD Control relies on
position and velocity estimates from STEAM. Our proposed
Discrete-Flatness approach relies on only the position estimate
as feedback.

GREEFF et al.: FLY OUT THE WINDOW 7

−20 −10 0 10 20 30 40
x [m]

−30

−25

−20

−15

−10

−5

0

5

y
[m

] Un table

Teach Path Di crete-Flatne (Propo ed) Flatne MPC PD Control

−20 −10 0 10 20 30 40
x [m]

−30

−25

−20

−15

−10

−5

0

5
y
[m

]
Teach Path Discrete-Flatness Flatness-MPC PD-Control

3 m/s

−20 −10 0 10 20 30 40
x [m]

−30

−25

−20

−15

−10

−5

0

5

y
[m

]

Teach Path Discrete-Flatness Flatness-MPC PD-Control

5 m/s

−20 −10 0 10 20 30 40
x [m]

−30

−25

−20

−15

−10

−5

0

5

y
[m

]

Teach Path Discrete-Flatness Flatness-MPC PD-Control

7 m/s

−20 −10 0 10 20 30 40
x [m]

 30

 25

 20

 15

 10

 5

0

5

y
[m
] Unstable

Teach Path Discrete-Flatness Flatness-MPC PD-Control

9 m/s

Fig. 7. Visualization of path flown when repeating the teach path (black) under vision-based navigation using different controllers with a desired speed of
(a) 3 m/s (b) 5 m/s (c) 7 m/s and (d) 9 m/s. The L-path starts at the lower left corner (at approximately (−20,−30)) and ends at the origin. We show
one trial (out of three used in Fig. 5) for each controller. We compare the paths flown using PD Control (green), Flatness MPC (blue) and our proposed
Discrete-Flatness (red). Our proposed Discrete-Flatness (red) outperforms the alternative controllers that rely on noisy/delayed state estimates. Unlike the
alternative controllers our proposed approach achieves high performance (see Fig. 5) by turning before the corner even at high speeds.

C. Comparison with Related State-Feedback Controllers

We compare three controllers (PD Control [2], Flatness
MPC [16] [24], and our proposed Discrete-Flatness controller)
implemented at 50 Hz. We consider only flight in 2-D (fixed
yaw and no motion in the z-direction). All controllers are used
to determine roll and pitch commands as described in Sec.
IV-B.

a) Reference Generation: We use a simple reference
generation approach. The geometric teach path is created by
connecting keyframes from teach with straight lines segments.
The reference position and velocity at time step k for the non-
predictive controller (PD Control) is determined by finding
the closest point on the path, i.e., yref,k = yclosest, and
computing the reference velocity ẏref,k as the desired speed in
the direction of the next keyframe. PD Control [2] determines
the commands at time step k by weighting the position error
yk−yref,k with the velocity error ẏk−ẏref,k. In the predictive
controllers (Flatness MPC and Discrete-Flatness) we compute
the reference on the path with a fixed desired speed. At time
step k we compute the reference by finding the closest point
yclosest on the path, i.e., yref,k = yclosest. We compute the
reference at the next time step by moving in the direction of
the reference velocity (desired speed in the direction of the
next keyframe) ẏref,k as yref,k+1 = yref,k + δtẏref,k, for
the prediction horizon k + 1, k + 2, ...k + N . The reference
velocity ẏref,k changes as the output reference moves to the
next straight line segment of the path.

b) Parameters: We consider a lookahead of 2s for
Discrete-Flatness and 1.5s for Flatness MPC. These were the
maximum horizons for each controller that we could reliably
compute at a rate of 50 Hz (20 ms). The lookahead difference

is a result of Flatness MPC requiring a few additional matrix
multiplications at each time step. We tune the weights for all
controllers to maximize stable performance.

c) Results: We consider a simple L-shape teach path,
black in Fig. 7, at a fixed altitude of 10 m above ground.
In Fig. 5, we present a box plot of the path error for each
controller with desired speeds of 3 m/s, 5m/s, 7m/s and 9
m/s. These results are obtained from 3 repeated trials for
each controller at each speed. As expected, the PD Control
(green) has the worst performance as it is unable to predict
and react to the sharp turn in the path. At 9 m/s the PD
Control is not reliable and causes the vehicle to go unstable.
Flatness MPC (blue) has good performance for 3 m/s and 5
m/s, however, the performance dramatically degrades at 7 m/s
and 9 m/s. Similar to the simulation in Sec. V, Flatness MPC
(blue) relies on higher-order derivatives of position (velocity
and acceleration). STEAM filters some of the noise in these
estimates but introduces a delay. Consequently, inaccurate real-
time estimation of these quantities prevents the Flatness MPC
from making an accurate forward model prediction. As such
the vehicle does not turn before the corner (bottom right
of black teach path in Fig. 7) for 7 m/s and 9 m/s. Our
proposed Discrete-Flatness (red) approach maintains a low
tracking error at all speeds by turning before the corner as
highlighted in Fig. 7.

d) Demonstration of Discrete-Flatness up to 10 m/s:
We demonstrate the efficacy of our proposed Discrete-Flatness
controller for VT&R at speeds up to 10 m/s by flying three
paths (at fixed 20 m altitude above ground) - a D-shaped path
(at 10 m/s), an S-shaped path (at 3 m/s) and an L-shaped
path (at 8 m/s). The DSL flights are shown in Fig. 8 with

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

−50 0 50
x [m]

0

50

100

150

y
[m

]

D Teach Path
S Teach Path
L Teach Path

0

2

4

6

8

10

Speed [m
/s]

Fig. 8. Visualization of 3 additional paths flown using vision-based navigation
and the proposed Discrete-Flatness control achieving speeds up to 10 m/s. We
fly three paths: 1) a D-shaped path (at 10 m/s), 2) an S-shaped path (at 3 m/s)
and 3) an L-shaped path (at 8 m/s). This spells out the abbreviation of our
lab “Dynamic System Lab” or DSL.

x [m]

0
30

60
y [m]0

20
40

z [
m
]

0
5
10

Teach Discrete Flatness

0 2 4 6 8 10

Sp
ee

d
[m

/s
]

x [m]

0
30

60
y [m]0
20

40

z [
m
]

0
5
10

Teach Discrete Flatness

0 2 4 6 8 10

Sp
ee

d
[m

/s
]

x [m
]

−10
0

10y [m] 0−10−20

z [m
]

0

5

10

Teach Discrete Flatness

0 2 4 6 8 10

Sp
ee

d
[m

/s
] x [m

]
0

10
20y [m] 0−10−20

z [m
]

0

5

10

Teach Discrete Flatness

0 2 4 6 8 10

Sp
ee

d
[m

/s
]

Fig. 9. Visualization of various 3D paths flown using vision-based navigation
and the proposed Discrete-Flatness control.

the speed profile overlay. The wobbles in the D-shaped path
are a result of the heightened real-time position noise when
turning as illustrated in Fig. 6. We have extended the proposed
Discrete-Flatness control to 3D and show outdoor trajectories
at various speeds using vision-in-the-loop in Fig. 9.

VII. CONCLUSION AND FUTURE WORK

Exploiting discrete-time flatness for outdoor high-speed
vision-based navigation, with potentially noisy high-rate real-
time output (position) measurements, is a promising approach
as it allows closed-loop visual autonomy without state es-
timation. This is particularly relevant to future work on
learning-based control that could improve performance by
simultaneously learning F (·) in (14) and F−1(·) in (15) using
only input and output data. Future work will also investigate
the effect of window size r on learning performance and
extend our approach to different input and output rates. Video:
https://tinyurl.com/flyoutthewindow

REFERENCES
[1] D. Thakur, G. Loianno, L. Jarin-Lipschitz, A. Zhou, V. Kumar, “Au-

tonomous inspection of a containment vessel using a micro aerial

vehicle”, in Proc. Int. Symp. on Safety, Security, and Rescue Robotics
(SSRR), pp. 1-7, 2019.

[2] M. Warren, M. Greeff, B. Patel, J. Collier, A. P. Schoellig and T.
D. Barfoot, “There’s no place like home: visual teach and repeat
for emergency return of multirotor UAVs during GPS failure,” IEEE
Robotics and Automation Letters, vol. 4, no. 1, pp. 161-168, 2019.

[3] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig, M.
Muglikar, and D. Scaramuzza, “AlphaPilot: autonomous drone racing,”
in Proc. of Robotics: Science and Systems (RSS), 2020.

[4] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen. “Teach-repeat-
replan: a complete and robust system for aggressive flight in complex
environments,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1526-
1545, 2020.

[5] Y. Song, M. Steinweg, E. Kaufmann and D. Scaramuzza, “Autonomous
drone racing with deep reinforcement learning,” in Proc. Int. Conf. on
Intelligent Robots and Systems (IROS), 2021, Accepted.

[6] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V.
Koltun, and D. Scaramuzza, “Beauty and the beast: optimal methods
meet learning for drone racing,” in Proc. Int. Conf. on Robotics and
Automation (ICRA), pp. 690-696, 2019.

[7] T. Nguyen, A. H. Zaini, C. Wang, K. Guo and L. Xie, “Robust target-
relative localization with ultra-wideband ranging and communication,”
in Proc. Int. Conf. on Robotics and Automation (ICRA), pp. 2312-2319,
2018.

[8] S. Dean, N. Matni, B. Recht and V. Ye, “Robust guarantees for
perception-based control,” in Proc. Conference on Learning for Dynam-
ics and Control (L4DC), vol. 120, pp. 350-360, 2020.

[9] L. Jarin-Lipschitz, R. Li, T. Nguyen, V. Kumar and N. Matni, “Ro-
bust, perception-based control with quadrotors,” in Proc. Int. Conf. on
Intelligent Robots and Systems (IROS), pp 7737-7743, 2020.

[10] L. Brunke, S. Zhou, and A. P. Schoellig, “RLO-MPC: robust learning-
based output feedback MPC for improving the performance of uncertain
systems in iterative tasks,” in Proc. Int. Conf. on Decision and Control
(CDC), 2021, Accepted.

[11] J Lorenzetti and M. Pavone, “A simple and efficient tube-based robust
output feedback model preditive control scheme,” in Proc. European
Control Conference (ECC), pp. 1775-1782, 2020.

[12] M. Kogel and R. Findeisen, “Robust output feedback mpc for uncer-
tain linear systems with reduced conservatism,” in Proc. IFAC World
Congress, vol. 50, no. 1, pp. 10685-10690, 2017.

[13] D. A. Copp and J. P. Hespanha, “Simultaneous nonlinear model pre-
dictive control and state estimation,” Automatica, vol. 77, pp. 143-154,
2017.

[14] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: introductory theory and examples,” Int. Journal of
Control, vol. 61, no. 6, pp. 1327-1361, 1995.

[15] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. Int. Conf. on Robotics and Automation
(ICRA), pp. 2520-2525, 2011.

[16] M. Greeff and A. P. Schoellig, “Flatness-based model predictive control
for quadrotor trajectory tracking,” in Proc. Int. Conf. on Intelligent
Robots and Systems (IROS), pp. 6740-6745, 2018.

[17] P. Guillot and G. Millerioux, “Flatness and submersivity of discrete-
time dynamical systems,” IEEE Control Systems Letters, vol. 4, no. 2,
pp. 337-342, 2020.

[18] B. Kolar, J. Diwold and M. M. Schöberl, “Necessary and sufficient
conditions for difference flatness,” arXiv:1909.02868, 2019.

[19] J. Diwold, B. Kolar and M. Schöberl, “A trajectory-based approach to
discrete-time flatness,” Control Systems Letters, vol. 6, pp. 289-294,
2020.

[20] M. Alsalti, J. Berberich, V. G. Lopez, F. Allgower, M. A. Müller,
“Data-based system analysis and control of flat nonlinear systems,”
arXiv:2103.02892, 2021.

[21] S. Anderson and T. D. Barfoot, “Full STEAM ahead: exactly sparse
Gaussian process regression for batch continuous-time trajectory esti-
mation on SE(3),” in Proc. Int. Conf. on Intelligent Robots and Systems
(IROS), pp. 157-164, 2015.

[22] J. N. Wong, D. J. Yoon, A. P. Schoellig and T. D. Barfoot, “Varia-
tional inference with parameter learning applied to vehicle trajectory
estimation,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp.
5291-5298, 2020.

[23] J. N. Wong, D. J. Yoon, A. P. Schoellig and T. D. Barfoot, “A data-driven
motion prior for continuous-time trajectory estimation on SE(3),” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1429-1436, 2020.

[24] M. Greeff, T. D. Barfoot and A. P. Schoellig, “A perception-aware
flatness-based model predictive control for fast vision-based multirotor
flight,” in Proc. IFAC World Congress, vol. 53, no. 2, 9412-9419, 2020.

https://tinyurl.com/flyoutthewindow

	Introduction
	Related Work and Contributions
	Improve state estimation
	Design robust control for worst-case state estimation
	Couple control and state estimation

	Background
	Differential Flatness
	Discrete-Time Flatness

	Methodology
	Discrete Flatness of Euler-Discretized Multirotor Dynamics Model
	Dynamics Model
	Discrete-Time Flatness Derivation

	Discrete Flatness of Multirotor Model in 2-D with First-Order Pitch-Roll Dynamics
	Dynamics Model
	Discrete-Time Flatness Derivation

	Predictive Control Exploiting Discrete Flatness
	Output-To-Input Map
	Input-To-Output Map
	Output Trajectory Optimization

	Simulations
	Experiments
	Hardware Setup
	Visual Teach and Repeat Navigation Overview
	Comparison with Related State-Feedback Controllers

	Conclusion and Future Work
	References

