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Abstract— Learning-based control has shown to outperform
conventional model-based techniques in the presence of model
uncertainties and systematic disturbances. However, most state-
of-the-art learning-based nonlinear trajectory tracking con-
trollers still lack any formal guarantees. In this paper, we
exploit the property of differential flatness to design an online,
robust learning-based controller to achieve both high tracking
performance and probabilistically guarantee a uniform ultimate
bound on the tracking error. A common control approach for
differentially flat systems is to try to linearize the system by
using a feedback (FB) linearization controller designed based on
a nominal system model. Performance and safety are limited
by the mismatch between the nominal model and the actual
system. Our proposed approach uses a nonparametric Gaussian
Process (GP) to both improve FB linearization and quantify,
probabilistically, the uncertainty in our FB linearization. We use
this probabilistic bound in a robust linear quadratic regulator
(LQR) framework. Through simulation, we highlight that
our proposed approach significantly outperforms alternative
learning-based strategies that use differential flatness.

I. INTRODUCTION

The heightened interest in using learning-based control
to achieve high-accuracy tracking has, in part, been driven
by advanced robotic applications where accurate models are
required but difficult to derive. In practice, many current
learning-based control techniques achieve good tracking per-
formance by learning a fairly accurate nonlinear dynamics
model. However, the adoption of these techniques has been
limited to applications that are not safety-critical as these
techniques fail to provide any rigorous analysis of safety
such as constraint satisfaction or stability and convergence.
The need to provide guarantees while using a data-driven
learned model is still a key challenge for robotics.

The limitation of many learning-based approaches, for
example, standard Neural Networks (NNs), is that they are
ill-suited to quantify any mismatch between the learned
model and the real dynamics. For this reason, nonparametric
approaches, such as Gaussian Processes (GPs), have gained
popularity within the control community as they can pro-
vide uncertainty estimates for their predictions [1], [2]. The
question then is: how can we efficiently use this uncertainty
measure in the control loop? This depends on the assumed
dynamic structure of the actual system and the selected part
of the dynamics to be learned.
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Fig. 1. Our proposed architecture exploiting differential flatness for robust
learning-based tracking control has three key components: 1) Updating the
Inverse Nonlinear Mismatch: a GP learns the model error resulting from
using a nominal feedback (FB) linearization; 2) Bound Computation: the
properties of GPs are exploited to estimate a probabilistic bound on how
well we linearize the system; 3) Robust LQR: this bound is combined with
a nominal LQR to guarantee (probabilistically) an ultimate bound on the
tracking error.

GPs can be used to learn the forward nonlinear system
dynamics. For example, one common approach is to use this
learned GP model in a nonlinear model predictive control
framework where the uncertainty estimate from the GP is
used to tighten constraints [3]. However, this approach pro-
vides no stability analysis of the controlled system. Another
approach linearizes the learned nonlinear model about an op-
erating point, which, combined with the uncertainty estimate
from the GP is used in a linear robust control framework [4].
However, this robust learning-based controller is limited to
stabilization tasks.

In this paper, we impose two structural properties on the
system dynamics. Firstly, we assume the system is control-
affine. Secondly, we assume the system dynamics exhibit
a property known as differential flatness [5]. Many first-
principle models of physical systems, for example, quadro-
tors, cranes and cars with trailers, exhibit this property
[6]. Intuitively, differential flatness allows us to separate
the nonlinear model into a linear dynamics component and
a nonlinear term, see Fig. 1. This property is commonly
used in feedback (FB) linearization controllers which attempt
to cancel the nonlinear term such that outer-loop linear
controllers, for example, linear quadratic regulators (LQR),
can be designed based on the linear dynamics [7].

Related work on FB linearization has used learning-based
strategies in one of two ways:

Strategy 1: The first strategy is to simply update a nominal
FB linearization controller with a data-driven learned model.
In [8], reinforcement learning was used for FB linearization
by learning the inverse model of the nonlinear term of the
differentially flat system. In [9], a GP was used to learn



the forward model of the nonlinear term, such that, by
transferring knowledge of the control-affine structure into the
kernel function, it could be used to update a FB linearization
controller. Approaches in this category have not provided
guarantees of stability or tracking convergence as they do
not quantify how well the learned FB linearization controller
cancels the nonlinear term and, consequently, how well it
linearizes the system.

Strategy 2: The second strategy is to use a data-driven
model to quantify how well a nominal FB linearization con-
troller linearizes the system. We call the model error between
the nominal FB linearization controller and nonlinear term
the Nonlinear Mismatch. In [10], a GP is used to learn a
forward model of the Nonlinear Mismatch for Lagrangian
systems. The learned prediction and uncertainty model is
used to generate a bound on how well the nominal FB
linearization controller linearizes the system. The bound is
then used in a linear, robust outer-loop controller. While this
strategy provides tracking guarantees, it is conservative as it
does not update or improve the FB linearization.

Our proposed approach combines ideas from both strate-
gies. We use a GP to learn an inverse model of the Nonlinear
Mismatch. As demonstrated in Fig. 1, we use our learned
model to update the Inverse Nonlinear Mismatch which
attempts to cancel the Nonlinear Mismatch. Considering the
key idea from Strategy 2, we quantify how well we linearize
the system. To do this we generate a probabilistic upper
bound on the difference between the designed desired input
and the actual input seen by the linear system dynamics.
Finding this bound requires exploiting the control-affine
flatness structure and several key properties of GPs. We use
this bound in an additional robust term which, coupled with a
nominal LQR, probabilistically guarantees stability, or more
specifically, an ultimate bound on the tracking error. This
paper has three key contributions:
• We present a novel approach that uses a GP to both

improve the FB linearization and quantify how well we
are able to linearize the system.

• We demonstrate how our quantified uncertainty can be
combined with a standard robust LQR to probabilisti-
cally guarantee an ultimate bound on the tracking error.

• We show through simulations how our proposed ap-
proach results in improved tracking performance over
both Strategy 1 (only improving the FB linearization)
and Strategy 2 (only quantifying how well a nominal
controller linearizes the system).

To the best of our knowledge, this is the first approach that
achieves robust, online learning-based control with formal
guarantees on the tracking error for generic control-affine
differentially flat systems.

II. PROBLEM STATEMENT

Consider a single-input single-output (SISO), control-
affine system, with state x ∈ Rn, and input u ∈ R:

ẋ = f(x) + g(x)u, (1)

where f(x) and g(x) are unknown functions.

Assumption 1: The system (1) is differentially flat in the
known output y = h(x) ∈ R.

Assumption 2: We have a SISO, control-affine nominal
system model:

ẋ = f̂(x) + ĝ(x)u (2)

that is also differentially flat in the output y = h(x) ∈ R.
Under Assumptions 1-2, our goal is to design a control law
u such that:
• we achieve high-accuracy output tracking;
• we guarantee that the overall, closed-loop system satis-

fies robust stability (in the sense that the tracking error
is bounded despite model uncertainties).

To address this problem, we propose a learning-based control
law that, by exploiting the differential flatness structure, both
updates an inner-loop feedback (FB) linearization controller
(red box with Inverse Nonlinear Mismatch in Fig. 1) and a
robust linear controller. Our approach uses a GP as it allows
us to quantify uncertainty. We present the proposed approach
for the above SISO problem, however, a similar methodology
could be applied to the multi-input, multi-output (MIMO)
problem.

III. BACKGROUND

A. Uniform Ultimate Boundedness

We use Lyapunov theory to prove that using our proposed
controller can probabilistically guarantee an ultimate bound
on the tracking error. To do this, we make use of the
following definition and theorem from [11].

Definition 1 (Uniform Ultimate Boundedness): A
solution e(t) : [t0,∞) → Rn to ė = ζ(e) with initial
condition e(t0) = e0 is uniformly ultimately bounded
(u.u.b.) with respect to a set S if there is a non-negative
constant T (e0, S) such that e(t) ∈ S ∀t > t0 + T (e0, S).

Theorem 1: Let V (e(t)) be a Lyapunov function and let
S be any level set of V (e(t)). Then e(t) is u.u.b. with respect
to S if V̇ < 0 for e(t) outside of S.

B. Differential Flatness

In the following Lemma 1, we highlight how differential
flatness leads to both our system (1) and nominal model (2)
having an identical linear dynamics component. However,
their nonlinear terms, see Fig. 1, will differ. In Section IV,
we exploit this structure in the learning controller design.

Definition 2 (Differential Flatness [5]): A SISO nonlin-
ear system (1) is differentially flat in output y if there
exist smooth, invertible functions such that: x = Φ(z),
u = Ψ−1(z, v), where z = [y, ẏ, ..., y(n−1)]T , v = y(n).
Furthermore, if (1) is control-affine then Ψ−1(z, v) is also
control-affine, i.e., we can write Ψ−1(z, v) = α(z) + β(z)v.

Lemma 1: If our system (1) is differentially flat in output
y, then it is equivalent to:

v =
u− α(z)

β(z)
, (3)

ż = Az + Bv, (4)
where our linear dynamics (4) are an integrator chain of
degree n and the nonlinear term is given by (3) [5], [7].



Note that since functions f(x) and g(x) are unknown for
our system (1), the functions α(z) and β(z) in our nonlinear
term (3) are also unknown. Lemma 1 can also be applied to
our nominal system model (2).

C. Gaussian Processes (GPs)

In this section, we highlight two key properties of GPs
that are leveraged in our proposed approach in Section IV.
GP regression is a nonparametric approach that is used to
approximate a nonlinear map, ve(a) : Rdim(a) → R, from the
input a to the function value ve(a). Note that the function
is named ve(·) to be consistent with notation in Section
IV. It does this by assuming that the function values ve(a),
associated with different inputs a, are random variables and
that any finite number of these random variables have a joint
Gaussian distribution. This nonparametric approach still re-
quires us to define two priors: a prior mean function of ve(a),
generally set to zero, and a covariance or kernel function
k(·, ·) which encodes a form of similarity between two input
points and their associated function values. For example,
a common kernel function is the squared-exponential (SE)
function:

k(ai,aj) = σ2
fexp

(
−1

2
(ai − aj)

TL−2(ai − aj)

)
+ δijσ

2
η,

which is characterized by three types of hyperparameters: the
prior variance σ2

f , measurement noise σ2
η , where δij = 1 if

i = j and 0 otherwise, and the length scales, or the diagonal
elements of the diagonal matrix L, which encode a measure
of how quickly the function ve(a) changes with respect to
a. These hyperparameters can be optimized by solving a
maximum log-likelihood problem [12].

Prediction: This GP framework can be used to predict
the function value at any query point a∗ based on N noisy
observations, D = {ai, v̂e(ai)}Ni=1. It does this by using the
key underlying principle that the observed data, or function
values, and the function value at a query point ve(a∗) are all
jointly normal:[

v̂e

ve(a
∗)

]
∼ N

(
0,

[
K kT (a∗)

k(a∗) k(a∗,a∗)

])
,

where v̂e = [v̂e(a1), ..., v̂e(aN )]T is the vector of ob-
served function values, the covariance matrix has entries
K(i,j) = k(ai,aj), i, j ∈ 1, ..., N , and k(a∗) =
[k(a∗,a1), ..., k(a∗,aN )] is the vector of the covariances
between the query point a∗ and the observed data points in
D. By the conditioning property of Gaussian distributions,
the mean and variance at our query point a∗ conditioned on
the observed data D are given by:

µ(a∗) = k(a∗)K−1v̂e, (5)

σ2(a∗) = k(a∗,a∗)− k(a∗)K−1kT (a∗). (6)
Derivatives: By using the fact that the derivative is a linear

operator, it can be shown that the derivative of a GP with
respect to v, where v (variable name chosen to match future
use case in Section IV) represents an element of input a, is
a GP as well [12]. Consequently, the observed data and the
function derivative with respect to input v at the query point

a∗ are also jointly Gaussian: v̂e

∂ve(a)
∂v

∣∣∣∣
a∗

 ∼ N
0,

 K ∂kT (a)
∂v

∣∣∣∣
a∗

∂k(a)
∂v

∣∣∣∣
a∗

∂2k(a,a)
∂v∂v

∣∣∣∣
a∗


 .

Similarly, by the conditioning property of joint Gaussian
distributions, the mean and variance of the derivative at our
query point a∗ with respect to input v conditioned on the
data D is given by:

µ′(a∗) =
∂k(a)

∂v

∣∣∣∣
a∗
K−1v̂e, (7)

σ′2(a∗) =
∂2k(a,a)

∂v∂v

∣∣∣∣
a∗
− ∂k(a)

∂v

∣∣∣∣
a∗
K−1

(
∂k(a)

∂v

∣∣∣∣
a∗

)T
.

(8)
We can also use this property of a derivative of a GP to
infer the coefficient of correlation ρ(a∗) between the function
value at a query point, ve(a∗), and its derivative with respect
to input v at a query point, ∂ve(a)

∂v

∣∣
a∗ . Using the kernel

function, we first find the covariance COV(·, ·) between
the function value ve(a∗) and its derivative ∂ve(a)

∂v

∣∣
a∗ using

COV
(
ve(a

∗), ∂ve(a)∂v

∣∣∣∣
a∗

)
= ∂k(a∗,a)

∂v

∣∣∣∣
a∗

[12]. Then by the

definition of the coefficient of correlation:

ρ(a∗) =

COV
(
ve(a

∗), ∂ve(a)∂v

∣∣∣∣
a∗

)
σ(a∗)σ′(a∗)

, (9)

where σ(a∗) is found from (6) and σ′(a∗) is found from (8).

IV. METHODOLOGY

We exploit the differential flatness of both our system (1)
and our nominal system model (2), and apply Lemma 1 from
Section III-B. Following (3)-(4), our nominal system model
is equivalent to (see Fig. 1):

vcmd =
u− α̂(z)

β̂(z)
, (10)

ż = Az + Bvcmd. (11)
We exploit this structure of our nominal system model to
design a nominal FB linearization controller:

u = α̂(z) + β̂(z)vcmd, (12)
where the commanded input vcmd can be designed based on
the linear model (11).

As seen in Fig. 1, we term the mapping from commanded
input vcmd to the actual input v (seen by the linear system)
the Nonlinear Mismatch. If our nominal model was identical
to our system, i.e. α(·) = α̂(·) and β(·) = β̂(·), this would
be a unity mapping. However, given the mismatch between
the nominal model and the actual system, this will not be
the case. In our proposed scheme we attempt to correct for
this Nonlinear Mismatch in two phases:

Learning Phase: We propose learning the Inverse Non-
linear Mismatch, that is, the mapping from actual input v to
commanded input vcmd.

Running Phase: We use the learned Inverse Nonlinear
Mismatch to correct the nominal FB linearization controller
as shown in Fig. 1. The learned Inverse Nonlinear Mismatch



takes in a desired input vd and outputs a commanded
input vcmd. In a similar vein to FB linearization, if our
Inverse Nonlinear Mismatch exactly cancels our Nonlinear
Mismatch, then v = vd. Of course, in practice our Inverse
Nonlinear Mismatch will not exactly correct for our Non-
linear Mismatch, however, in Section IV-B we use the GP
uncertainty to estimate a probabilistic bound on the quality
of this correction. In Section IV-C, we show how this bound
can be used in a robust LQR controller to guarantee (proba-
bilistically) an ultimate bound on the trajectory tracking error
(see Section V).

A. Update to Inverse Nonlinear Mismatch

Learning Phase: To find the Inverse Nonlinear Mismatch
we write the commanded input vcmd in terms of state z and
input v by plugging (12) into (3), vcmd = α(z)−α̂(z)

β̂(z)
+ β(z)

β̂(z)
v,

or equivalently vcmd = v + ve(z, v) where the difference
vcmd − v is given by the function:

ve(z, v) =
α(z)− α̂(z)

β̂(z)
+
β(z)− β̂(z)

β̂(z)
v. (13)

If our model is identical to the system, then the Inverse
Nonlinear Mismatch is unity, i.e. vcmd = v. We propose
using a GP framework to approximate (13) by considering
a set of N past observations, D = {ai, v̂e(ai)}Ni=1 where
inputs to the model are given by ai = {zi, vi}, and we
assume we have noisy measurements of the true function
v̂e(ai) = (vcmd − v) + η with η = N (0, σ2

η).
Running Phase: During the run phase, we consider

a query input a∗ = {z, vd} where vd is some de-
sired input computed by an outer-loop linear controller.
By using the properties of joint Gaussian distributions
we predict ve(a

∗) conditioned on the data set D by:
ve(a

∗)|D = N (µ(a∗), σ2(a∗)) where µ(a∗) and σ2(a∗) are
obtained using (5) and (6), respectively.

We update the Inverse Nonlinear Mismatch using the mean
from our prediction, i.e.,

vcmd = vd + µ(a∗)+vrob, (14)
where vrob is an additional robustness input as described
in Section IV-C. To find the input u, we feed (14)
through the nominal FB linearization controller (12). As
seen in Fig. 1, ideally we learn an updated vcmd (14)
to achieve a unity mapping, i.e., v = vd. However, in
practice there is a model uncertainty in this ideally unity
mapping that we need to quantify in order to provide
tracking guarantees. To do this, we can find the actual
input v (sent to the system), from (3), (12), (14): v =

vd +
(
α̂(z)−α(z)

β(z) + β̂(z)−β(z)
β(z) vd

)
+ β̂(z)

β(z) (µ (a∗) +vrob). By

noticing that α̂(z)−α(z)
β(z) + β̂(z)−β(z)

β(z) vd = − β̂(z)β(z)ve(a
∗), this

reduces to:

v = vd +
β̂(z)

β(z)
(µ(a∗)− ve(a∗)) +

β̂(z)

β(z)
vrob. (15)

It is clear that if our mean µ(a∗) perfectly characterizes
ve(a

∗), we have exactly learned the Inverse Nonlinear Mis-
match and v = vd without a robustness term vrob. However,
in practice this is not the case. We, therefore, require an
estimate of a bound on β̂(z)

β(z) (µ(a∗) − ve(a∗)) such that we

can use it in a robust control framework to design vrob such
that we can probabilistically guarantee a robust stability by
establishing an ultimate bound on the tracking error.

B. Bound Computation
We propose finding a probabilistic bound c such that:

Pr

{∣∣∣∣ β̂(z)

β(z)
(µ(a∗)− ve(a∗))

∣∣∣∣ < β̂(z)

β(z)
c

}
≥ 1− δ, (16)

where δ ∈ (0, 1) is some user-selected small value. We can
rewrite (16), arbitrarily dividing the probability 1 − δ, by
introducing an intermediate bound ĉ such that:

Pr

{∣∣∣∣ β̂(z)

β(z)
(µ(a∗)− ve(a∗))

∣∣∣∣ < ĉ

}
≥
√

1− δ, (17)

and
Pr

{
ĉ <

β̂(z)

β(z)
c

}
≥
√

1− δ. (18)

Consequently, to compute bound c we first find the in-
termediate bound ĉ in (17). To compute such a bound, we
exploit the derivative properties of GPs. From (10), we see
that β̂(z) = ∂u

∂vcmd
, and from (3), β(z) = ∂u

∂v . Consequently,

the ratio is given by the partial derivative relationship β̂(z)
β(z) =

∂v
∂vcmd

. Using vcmd = v + ve(z, v), this ratio becomes:
β̂(z)

β(z)
=

1

1 + ∂ve(z,v)
∂v

.

We utilize a key characteristic of the GP framework,
from Section III-C, which is that the derivative of a GP
is a GP as well. In other words, given that we have
learned the function ve(z, v) as a GP, the partial derivative
∂ve(z,v)
∂v is also a GP and we can predict its value at a

query point a∗ = {z, vd} conditioned on the data D as
∂ve(a

∗)
∂v |D = N (µ′(a∗), σ′2(a∗)) where µ′(a∗) and σ′2(a∗)

can be found from (7) and (8), respectively.
Our analysis requires sufficient training data D and a GP

kernel that can model our model mismatch to make the
following two simplifying assumptions (cf. [4]):

Assumption 3: The actual error µ(a∗) − ve(a
∗) is nor-

mally distributed and described by the random variable:
Y := µ(a∗)− ve(a∗) ∼ N (0, σ2(a∗)).

Assumption 4: The partial derivative ∂ve(a
∗)

∂v is also nor-
mally distributed such that we can define the random vari-
able: X := 1 + ∂ve(a

∗)
∂v ∼ N (1 + µ′(a∗), σ′2(a∗)).

Furthermore, X and Y are jointly correlated with some
coefficient of correlation ρ(a∗) given by (9). We write
this as a bivariate correlated normal random variable:
(Y,X) ∼ N (0, 1 + µ′(a∗), σ2(a∗), σ′2(a∗), ρ(a∗)) =
N (µY , µX , σ

2
Y , σ

2
X , ρ).

We rewrite our probability bound (17) as: Pr{| YX | < ĉ} ≥
1−δ, where the left-hand side or cumulative density function
is found from Pr{| YX | < ĉ} = F (ĉ)− F (−ĉ) where F (ĉ) =
Pr{ YX < ĉ} has an analytical form [13]:

F (ĉ) = L

(
ta − tbtĉ√

1 + t2ĉ
,−tb,

tĉ√
1 + t2ĉ

)
+

L

(
tbtĉ − ta√

1 + t2ĉ
, tb,

tĉ√
1 + t2ĉ

)
,



where L(·, ·, ·) is the bivariate normal integral and ta =√
1

1−ρ2 (µY

σY
− ρµX

σX
), tb = µX

σX
, tĉ =

√
1

1−ρ2 (σX

σY
ĉ− ρ).

Therefore, to find the intermediate probabilistic bound ĉ,
at each query point a∗, we solve the nonlinear optimization
problem: min ĉ

s.t. ĉ ≥ 0

F (ĉ)− F (−ĉ) ≥
√

1− δ.
(19)

To find bound c in (16) we use the intermediate
bound ĉ found from (19). To do this, we rewrite (18) as
Pr
{
β̂(z)
β(z)c < ĉ

}
≤
√

1− δ. By introducing random variables
W ∼ N (c, 0) and X ∼ N (1 + µ′(a∗), σ′2(a∗)), by
Assumption 4 above, we can rewrite the inequality as a
special case of the ratio of uncorrelated normal random
variables Pr

{
W
X < ĉ

}
= F (ĉ) where (W,X) ∼ N (c, 1 +

µ′(a∗), 0, σ′2(a∗), 0). In this case, we can then find bound c
(mean of the numerator) such that F (ĉ) =

√
1− δ.

C. Robust Linear Quadratic Regulator

Our aim is to track a reference trajectory with reference
state zref = [yref , ẏref , ..., y

(n−1)
ref ]T and reference input

vref = y
(n)
ref where yref is the reference output. We design

the desired input vd in (14) using a nominal LQR:
vd = −K̃(z− zref ) + vref . (20)

The gain K̃ = R−1BTP is found by solving the algebraic
Riccati equation ATP + PA − PBR−1BTP + Q = 0,
Q,R > 0 where matrices A and B are obtained from the
linear dynamics (11). The robustness term in (14) is designed
as:

vrob =

{
−c BTPe
||BTPe|| , if ||BTPe|| > ε

−cBTPe
ε , otherwise

(21)

where e = z−zref is the tracking error, c is the probabilistic
bound found from (16) and ε > 0 is some small user-selected
parameter and || · || denotes the Euclidean norm (cf. [10]).

V. THEORETICAL GUARANTEES

In this section, we show that under our proposed learning-
based controller, the trajectory tracking error is uniformly
ultimately bounded.

Theorem 2: Consider the differentially flat system (3)-
(4) and a smooth bounded reference state zref (t) and in-
put vref (t) trajectory. Suppose that Assumptions 1-4 hold
and that bound c satisfies (16). Then the tracking er-
ror e(t) = z(t)− zref (t) is uniformly ultimately bounded
(u.u.b.) with probability greater than 1−δ using the proposed
robust learning-based control governed by (12), (14), (20)
and (21).

Proof: Under the proposed robust learning-based con-
trol, the closed-loop dynamics are given by (4) and (15),
where vd = −K̃(z−zref )+vref . By exploiting the integrator
chain structure of matrices A and B, we write the closed-
loop error dynamics as:

ė = (A−BK̃)e + B(
β̂(z)

β(z)
vrob +

β̂(z)

β(z)
(µ(a∗)− ve(a∗))).

We propose the following Lyapunov function
V = eTPe where P is the positive definite matrix

that solves the algebraic Riccati equation, i.e.,
ATP + PA − PBR−1BTP + Q = 0, Q,R > 0,
or equivalently, (A−BK̃)TP + P(A−BK̃) + S̃ = 0,
where S̃ = Q + K̃TRK̃ > 0 since Q,R > 0. The time
derivative of our Lyapunov function is V̇ = 2eTP(A −
BK̃)e + 2eTPB( β̂(z)β(z)vrob + β̂(z)

β(z) (µ(a∗)− ve(a∗))), or
equivalently, by using the algebraic Ricatti relationship and
defining w := BTPe,

V̇ = −eTS̃e + 2wT (
β̂(z)

β(z)
vrob +

β̂(z)

β(z)
(µ(a∗)− ve(a∗))).

Since the first term V1 := −eTS̃e < 0 is
strictly negative, we consider only the second term
V2 := 2wT ( β̂(z)β(z)vrob + β̂(z)

β(z) (µ(a∗)− ve(a∗))). There
are two cases. Case 1: In this case, ||w|| > ε and
vrob = −c w

||w|| in (21). The second term of V̇ becomes

V2 = 2
(
− β̂(z)β(z)c||w||+ wT

(
β̂(z)
β(z) (µ(a∗)− ve(a∗))

))
.

We can use the Cauchy-Schwartz inequality to show

V2 ≤ 2

(
− β̂(z)β(z)c||w||+ ||w||

∣∣∣∣ β̂(z)β(z) (µ(a∗)− ve(a∗))
∣∣∣∣).

Since c is an upper bound that satisfies (16), V2
is less than zero with probability greater than
1 − δ. Case 2: In this case ||w|| ≤ ε and
vrob = −cwε in (21). The second term of V̇ becomes
V2 ≤ 2wT

(
β̂(z)
β(z)vrob + ĉ w

||w||

)
= 2wT

(
− β̂(z)β(z)c

w
ε + ĉ w

||w||

)
.

Since max
(

2wT
(
−ĉwε + ĉ w

||w||

))
= ĉε

2 , and

using (18), the second term V2 ≤ ĉε
2 . Then

V̇ = V1 + V2 ≤ −eTS̃e + ĉε
2 < 0 provided that:

||e|| >
√

ĉε

2λmin(S̃)
:= BS̃.

Let S be a level set of V such that it contains BS̃. Since
V̇ < 0 for e(t) outside of S, by Theorem 1, e(t) is u.u.b.
with respect to S. Note that ε can be chosen to be very small
and therefore the ball BS̃ can be made arbitrarily small.

VI. SIMULATION RESULTS
The proposed approach is verified via simulations on A) a

SISO 1-D quadrotor moving in the horizontal direction and
B) the pole dynamics of an inverted pendulum on a cart (cf.
[14]). For both simulations, δ = 0.01 and ε = 0.1.

A. 1-D Quadrotor

Our simulation uses the following dynamics ẍ =
T sin(θ) − γẋ, θ̇ = 1

τ (u − θ), where x is the horizontal
position, θ is the pitch angle and input u is the commanded
pitch angle. The system dynamics (1) have a time constant
τ = 0.2, thrust T = 10 and drag γ = 3. Our nominal
model (2) has a time constant τ = 0.15, thrust T = 10 and
γ = 0. Both our system and model are differentially flat in
the output y = x. We use a GP to learn ve(·) in (13). The
GP uses a SE kernel parametrized with σ2

f = 225, σ2
η =

0.1,L = diag{57, 2, 2, 66}, where these hyperparameters
maximize the log-likehood of the data collected during the
Offline Case. We consider two cases. Offline Learned Model:
We consider 500 data points collected from 10s of tracking
yref = 2 sin(t) under nominal control (i.e., no learning).



(a) 1-D Quadrotor: Offline Learned Model (b) 1-D Quadrotor: Online Learned Model (c) Pendulum: Online Learned Model

Fig. 2. Average output tracking error under Nominal control (no learning), FB Correction Only (a learning-based control that only improves the FB
linearization), Robust Only (a learning-based control that only uses a bound to design a robust LQR) and our Proposed learning-based control (as in Fig.
1). This is shown on a A) 1-D quadrotor simulation when using an (a) Offline Learned Model and an (b) Online Learned Model, and B) an inverted
pendulum using an (c) Online Learned Model.

This GP model is fixed as we use it to follow different
trajectories. Online Learned Model: We update our GP model
online based on the last 100 data points collected during the
current trajectory tracking. The previously-tuned hyperpa-
rameters stay fixed. In both cases, we compare our proposed
approach with three other approaches. All controllers use
LQR parameters Q = diag(100.0, 0.1, 0.1), R = 0.1. We
use a simulation time of 10s for each trajectory. We consider
the following reference trajectory to track yref = At sin(ωt).
We fix A = 0.4 and vary ω between 1 and 1.4 to obtain
progressively more aggressive trajectories. We compare av-
erage output tracking error in Fig. 2(a)-(b). In the Offline
Learned Model simulation, we demonstrate that for some
trajectories (ω ≥ 1.3) the FB Linearization Only case can
cause instability. In this case, our Proposed approach still
outperforms the Robust Only approach with an average
tracking error reduction of 40-75%. Relying on an Online
Learned Model improves the performance of all learning-
based controllers, however, our Proposed approach achieves
an average tracking error reduction of 50-65% over Robust
Only and 27-37% over FB Linearization Only.

B. Inverted Pendulum
Our simulation uses the dynamics given in Chapter 3 (p.

112) in [14]. Our nominal model considers the mass of cart
M , the mass of pendulum m, and the length of pendulum
pole l to be 1.5 kg, 0.05 kg and 0.8 m, respectively, while
the actual systems parameters are 1.0 kg, 0.1 kg, and 0.5 m.
All controllers use LQR parameters Q = diag(10.0, 10.0),
R = 0.1. We use a simulation time of 4.5s for each
trajectory. We consider the following reference trajectory to
track yref = At sin(ωt). We fix A = 0.3 and vary ω between
2 and 10. We compare average output tracking error in Fig.
2(c). In Fig. 3, we highlight the computed tracking error
bound (based on Theorem 2).

VII. CONCLUSION
We exploit both a structural property of many dynamical

systems, differential flatness, and the ability of GPs to predict
derivatives and quantify uncertainty. We develop a learning-
based controller that achieves high-accuracy tracking by im-
proving FB linearization. Furthermore, we probabilistically
guarantee safety by using a bound on how well we linearize
the system to design a robust linear controller.

Fig. 3. Comparison of computed tracking error bound (Theorem 2) and
actual tracking error for the inverted pendulum when tracking yref =
0.3t sin(ωt), ω = 4.0, for Proposed and Robust Only approaches.
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