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Abstract— Many physical system models exhibit a structural
property known as differential flatness. Intuitively, differential
flatness allows us to separate the system’s nonlinear dynamics
into a linear dynamics component and a nonlinear term. In
this work, we exploit this structure and propose using a
nonparametric Gaussian Process (GP) to learn the unknown
nonlinear term. We use this GP in an optimization problem to
optimize for an input that is most likely to feedback linearize
the system (i.e., cancel this nonlinear term). This optimization
is subject to input constraints and a stability filter, described by
an uncertain Control Lyapunov Function (CLF), which prob-
abilistically guarantees exponential trajectory tracking when
possible. Furthermore, for systems that are control-affine, we
choose to express this structure in the selection of the kernel
for the GP. By exploiting this selection, we show that the
optimization problem is not only convex but can be efficiently
solved as a second-order cone program. We compare our
approach to related works in simulation and show that we
can achieve similar performance at much lower computational
cost.

I. INTRODUCTION

There is a growing interest in increased autonomy of
safety-critical but uncertain and nonlinear systems, such as
self-driving vehicles, unmanned aerial vehicles (UAVs), and
mobile manipulators. This has motivated bridging formal
safety analysis with the flexibility of machine learning to
cope with large prior uncertainties.

Gaussian Processes (GPs) have gained popularity within
the control community as a nonparametric machine learning
approach that quantifies the uncertainty in its prediction.
This uncertainty can be used to generate a probabilistic
upper bound for the difference between the true and learned
function value based on distance to the training data [1].

GPs are often used to learn the dynamics model which is
then included in a model predictive control (MPC) frame-
work. The GP uncertainty quantification can be used to
tighten state and input constraints [2], [3]. A major limitation
is that the resulting optimization problem is generally non-
convex, and slow and expensive to solve. Furthermore, this
approach provides no stability guarantees for the controlled
system.

Stability guarantees, for example, asymptotic stability or
tracking, have been combined with GPs by exploiting two
structural assumptions about the dynamics: 1) the system is
control-affine and 2) the system is either fully actuated [4] or
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Fig. 1. Overview of the proposed learning-based control architecture. Our
proposed approach learns the nonlinear term as a Gaussian Process (GP). We
combine feedback linearization with a stability filter by using the learned
GP model to 1) optimize for an input w that is most likely to feedback
linearize the system (i.e., cancel the nonlinear term) 2) guarantee stability
with high probability through a stability filter. For systems that are control-
affine, we show that the resulting optimization is a convex second-order
cone program (SOCP).

differentially flat [5]. Intuitively, differential flatness allows
us to separate the nonlinear model into a linear dynamics
component and a nonlinear term, see Fig. 1 [6]. Given that
these assumptions (control-affine and differential flatness) are
true for many first-principle models of physical systems, for
example, quadrotors [8], cranes, and manipulators, they are
not limiting in practice.

However, previous work typically includes one of two
additional limiting assumptions: 1) the actuation function is
fully known [4], [9] (i.e., the unknown disturbance is only
a function of the state) or 2) there are no actuation or input
constraints [5], [7]. Practically, there is often uncertainty in
the actuation function as a result of delays, error in the
system parameters (e.g., mass or inertia), or unaccounted
dynamics of low-level controllers. Input constraints can rep-
resent physical limitations or may be added for user safety.

Differential flatness is commonly used in feedback (FB)
linearization controllers, which attempt to cancel the non-
linear term such that outer-loop linear controllers can be
designed based on the linear dynamics alone. In [5] and [7],
the nonlinear term (or inverse nonlinear term) is learnt as a
GP. The predicted GP mean is used to update the inverse
nonlinear term (or FB linearization) while the uncertainty
is used in a robust outer-loop linear controller. In [5],
the control-affine structure is leveraged when taking the
derivative of the learnt GP. In [7], similar to the approach
we propose here, the control-affine structure is exploited in
the selection of the GP kernel structure. Both approaches can
guarantee asymptotic trajectory tracking. However, because
the robustness is accounted for in the outer-loop controller, it
is difficult to account for actuation or input constraints and,
therefore, they are often neglected.



Using the strong assumption that the actuation function
is known, in [4], a Lyapunov function is proposed that
maximizes the probability of asymptotic stability of a known
equilibrium accounting for input constraints. The approach
is limited to fully actuated systems and can only be applied
to stabilizing a known equilibrium. Another approach that
makes this assumption, [7], combines a known Control
Lyapunov Function (CLF), to encourage stability, with input
constraints in an optimization framework that can be solved
as a quadratic program (QP). Control Lyapunov Functions
(CLFs) have traditionally been used in minimum input-norm
controllers to stabilize an equilibrium [10].

Motivated by the work in [11], our proposed approach
uses the idea that, for systems that are FB linearizable, we
can exploit their linear tracking error dynamics to construct
a Lyapunov function to ensure exponential tracking conver-
gence. Similar to [11], we propose using such a Lyapunov
function as a CLF. However, unlike [11], we do not need
to learn in an episodic fashion. Instead, we propose using
a GP, with carefully selected kernel structure, to learn the
nonlinear term and then leverage its quantified uncertainty
in our controller.

In this paper, we develop a method to efficiently handle ro-
bust tracking guarantees and input constraints in the presence
of model uncertainty. As illustrated in Fig. 1, our proposed
approach uses the GP to learn the uncertain nonlinear term
and combines feedback linearization, commonly applied to
differentially flat systems, with a stability filter, described
by a CLF, in an optimization framework. The three key
contributions of this work are:

o We provide a novel approach that uses a GP to learn
the uncertain nonlinear term and then use the GP in
an optimization problem to optimize for a control input
u that is 1) most likely to cancel the nonlinear term
while 2) guaranteeing a stability filter condition with
high probability and 3) adhering to input constraints.

o We show that for control-affine systems, by exploiting
this structure in the GP kernel selection, the resulting
optimization is not only convex but can be solved
efficiently as a second-order cone program (SOCP).

« We demonstrate, in simulation, a significant reduction in
average computation over previous robustness methods
using GPs, while still achieving high tracking perfor-
mance. This makes our proposed approach suitable
for online and onboard implementation in high-rate
feedback loops, for example, on autonomous UAVs.

II. PROBLEM STATEMENT

Consider a single-input, single-output (SISO), control-
affine system with state x € R™ and input u € R:

x = f(x,u), (D

where f(x,u) is an unknown function and the dimension
of the state n is known. The input is subject to bound
constraints, that is, Upin < U < Upmae Where u,,;, and
Umaz are known minimum and maximum input constraints.

Assumption 1: The system (1) is differentially flat in the
known output y = h(x) € R.

Under Assumption 1, our goal is to design a control law
u that:
O1 Achieves high trajectory tracking performance;
02 Can be efficiently computed online;
03 Guarantees that the closed-loop system satisfies robust
stability (in the sense that tracking errors are bounded);
04 Accounts for actuation/input constraints.

III. BACKGROUND
A. Differential Flatness

Definition 1 (Differential Flatness [6]): A SISO nonlin-
ear system (1) is differentially flat in output y if there
exist smooth, invertible functions such that: x = ¢(z),
u =1~ (z,v), where z = [y, 7, ...,y DT, v = y(™,

Lemma 1: If system (1) is differentially flat in output y,
then it is equivalent to:

v =1Y(z,u), )

z = Az + Bo, 3)
where the linear dynamics (3) are an integrator chain of
degree n and the nonlinear term is given by (2) [5], [7].
Moreover, if (1) is control-affine, the nonlinear term (2) is
also control-affine, that is, (2) can be written as:

v = a(z) + f(z)u. )

Note that since our dynamics f(x,u) is unknown, the

linear dynamics (3) can be recovered using Assumption 1
but the nonlinear term (2) is still unknown.

B. Control Lyapunov Functions

When the nonlinear term (2) is known, we can exploit the
structure of differentially flat systems (2)-(3) to construct a
Control Lyapunov Function (CLF). We will use this CLF as
a stability filter when the nonlinear term is uncertain.

Using standard feedback linearization, we can design the
controller u to cancel the nonlinear term (2) and then select
the input to the linear dynamics v such that the resulting
linear error dynamics are Hurwitz. Consider a smooth refer-
ence state z,.s(t) and reference input v,..s(t), we can write
the tracking error dynamics of (2)-(3) as:

é=Az+ByY(z,u) — z,f, (5

where the tracking error is e =
. -1
[yref7 ey yfnrelf )7 Uref]T~
Consider a standard feedback linearization controller u =
Y™z, Vnom) Where

Unom = *Ke + Uref (6)

Z — Zpey and Zpop =

is designed such that the closed-loop error dynamics are
stable. Under this control law, it follows that the error
dynamics in (5) simplifies to:

é= (A —-BK)e,

where K is selected such that (A — BK) is Hurwitz.
Given the Hurwitz stability of the closed-loop system
it follows from converse stability theorems that we can



construct a Lyapunov function that guarantees exponential
tracking convergence [11]. Specifically, we can select the
Lyapunov function V (e) = e’ Pe where P > 0 is a positive
definite matrix that satisfies the algebraic Riccati equation:

AP +PA -PBR'B’P+Q=0,

for selected positive definite matrices Q > 0, R > 0.
Definition 2: A function V' : R® — R, is a Control
Lyapunov Function (CLF) for (5) certifying exponential
stability if there exists positive constants ¢y, cg, c3 > 0 such
that:
cillel* < V(e) < eallel|,
V(e) < —c3V(e).

We can use the previously constructed Lyapunov function
V(e) = e’Pe as a CLF with positive constants ¢; =
Amin(P),c2 = Anaz(P) and ¢35 = imiTEISD)) where S =
Q-+ KTRK. In the absence of a chosen controller u, the
decreasing time derivative condition V(e) < —c3V (e) in
Definition 2 becomes:

e’ P(Az + By(z,u) — zycf) < —cze’ Pe. (7

C. Gaussian Processes (GPs)

GP regression is a nonparametric approach that is used to
approximate a nonlinear map, ¢ (a) : R4™(®) — R, from the
input a to the function value (a). It does this by assuming
that the function values )(a), associated with different inputs
a, are random variables and that any finite number of these
random variables have a joint Gaussian distribution. This
nonparametric approach still requires us to define two priors:
a prior mean function of v (a), generally set to zero, and
a covariance or kernel function k(-,-) which encodes, for
two input points, how similar their respective function values
are. For example, a common kernel function is the squared-
exponential (SE) function:

1
k(a;,a;) = a?exp (—2(ai —a;) L %(a; — aj)) + 51‘;‘072,,

which is characterized by three types of hyperparameters:
the prior variance cr]%, observation noise 072], where 6ij =1if
1 = j and 0 otherwise, and the length scales, or the diagonal
elements of the diagonal matrix L, which encode a measure
of how quickly the function v (a) changes with respect to
a. These hyperparameters can be optimized by solving a
maximum log-likelihood problem [12].

This GP framework can be used to predict the function
value at any query point a based on N noisy observations,
D = {a;, ¢ (a;)}¥,. The predicted mean and variance at the
query point a conditioned on the observed data D are [12]:

n(a) = k(a)K~ ¥, ®)
o (a) = K(a,a) — k(2)K 'K (a), ©)
where ¥ = [i(ay),...,¢)(an)]” is the vector of ob-

served function values, the covariance matrix has en-
tries K ;) = k(as,a;), 4,5 € 1,..,N, and k(a) =

[k(a,a1),...,k(a,ay)] is the vector of the covariances be-
tween the query point a and the observed data points in D.

Kernel selection for control-affine systems: For control-
affine systems, the nonlinear map 1(a) = v (z, u) is affine in
the control input, i.e., we can write ¥ (z, u) = a(z) + 5(z)u.
We can encode this structure in the selection of the kernel
of the GP as:

k;(ai,aj) = k’a(Zi,ZJ‘) + uik@(zi,zj)uj + (51'.7‘0'727, (10)

where o7 is the observation noise and kq(-,-) and kg(-, )

are often selected to be common kernel functions (e.g., SE
functions).

Assumption 2: k, and kg are positive definite kernels.

Assumption 3: k. and kg are bounded kernels.

Lemma 2: Given Assumption 2, then the kernel (10) is
also positive definite. Moreover, if Assumption 3 holds, then
the kernel (10) is also a bounded kernel.

Proof: 1t follows from [13] that the affine dot product
compound kernel, i.e., u;kg(z;,2z;)u;, is positive definite
and bounded provided that kg(z;,z;) is positive definite
and bounded. Consequently, the kernel (10) is also positive
definite and bounded as it is the addition of two positive
definite and bounded kernels. ]
Using this kernel structure (10), the predicted mean p(a) and
variance o2(a) at any query point a = (z,u), conditioned
on N noisy observations D = {a;, 1(a;)}¥,, are linear and
quadratic in u, respectively, or more explicitly:

(@) = 71(2) + 72(2)u, (1D
o*(a) = 73(2) + 7a(2)u + 75 (2)u, (12)
where: R R
N(2) = K (K1, 75(2) = ky(2) K,
v3(z) = (ka(z,z) — ka(z)K_lkg(z)) ,
1a(2) = — (ks(2)K ™'k (2) + ka(2)K 'k (2))
75(2) = (ks(2,2) — ks(2)K 'kj(2)) .
The vectors ko (2) = [ka(2,21), ..., ka(2,2N)] and kg(z) =
[ks(z,2z1)us, ..., k(2,28 )un].

IV. METHODOLOGY

In the proposed approach, we exploit the differential
flatness structure and learn (2) using a GP as described in
Section III-C. We combine feedback linearization with a
stability filter by using the learned GP model to 1) optimize
for an input u that most likely feedback linearizes the
system (2)-(3) while 2) guaranteeing that the stability filter,
described by the CLF (7) is decreasing with high probability.
We combine feedback linearization with a stability filter
in an optimization framework, which can also account for
input constraints. Further, we show that for control-affine
systems, by carefully selecting the kernel (10), the resulting
optimization can be described by a second-order cone
program that can be solved in polynomial time by standard
interior point methods. Our proposed approach has three
key components:



Probabilistic Feedback Linearization - see Section IV-
A: Based on our learned GP model for (2), we optimize for
an input u such that the predicted output of the GP is likely
to match the designed input to the linear dynamics v4es,
typically computed by a linear optimal controller based on
the linear dynamics (3).

Probabilistic Stability Filter - see Section IV-B: Using
the learned GP model for (2), we include a stability filter
that guarantees that (7) is decreasing with high probability.

Linearization & Stability Filter Optimization - see
Section IV-C: We combine the probabilistic feedback
linearization with the probabilistic stability filter. At each
time step, we propose to solve an optimization problem that
finds the input w that is mostly likely to result in a unity
mapping between vgz.s and the input seen by the linear
dynamics (3) while ensuring robust tracking stability and
input constraint satisfaction. For control-affine systems, we
exploit the encoded structure and show that the resulting
optimization is a second-order cone program.

A. Probabilistic Feedback Linearization

The objective of feedback linearization is to create a
unity mapping between the desired input vg.s, determined by
some outer-loop linear controller, and the input v = 1(z, u)
seen by the linear dynamics. While ) (z, u) is unknown, we
have approximated this mapping from data using a GP. We
propose finding an input « that is most likely to result in
such a feedback linearization. More precisely, we compute
an input u that minimizes the expected squared distance
between ) (z,u) and vges:

IIE.HE(‘ W(Zy u) — UdESHQ)-

Given that we have learnt the function ¢(z,u) using a GP,
we can infer its value at any given query point a* = (z, u)
conditioned on the data D as a Gaussian, i.e., ¥(a*)|D =
N (u(a*),0%(a*)) where the mean and covariance are given
by (8) and (9). Using this, we can rewrite the optimization
problem as:

min(p(z, u) — vges)* + 0 (z, u). (13)

u

Probabilistic feedback linearization for control-affine
systems: For control-affine systems, we can exploit the
kernel structure in (10). This allows us to rewrite the mean
w(z,u) as a linear function of input w, using (11), and the
covariance 0%(z,u) as a quadratic function of input u, using
(12). Plugging in (11) and (12) into (13), we rewrite the
optimization problem, neglecting constant terms with respect
to the optimization variable u, as a convex quadratic program
in u:

Hhin(’)’g(z) +75(2))u® + (271 (2)72(2) — 272(2) Vdes + 7a)u-

(14)

Remark: The optimization (14) is convex because 73 (z) +

v5(z) > 0 since the function 75(z) > 0 is the predicted
covariance of 3(z) in (4) conditioned on the data D.

Theorem 1: The functions ~;(z) are real-valued and Lip-

schitz continuous on the compact set z € Z. The functions

v2(z) and 75(z) are never both zero. The desired input
Vges(2) is also real-valued and Lipschitz continuous on the
compact set z € Z. Under these assumptions, the input
u(z) computed using (14) is also Lipschitz continuous on
the compact set z € Z.

Proof: The solution of (14) has a closed-form solution:

w— —71(2)72(2) + 72(2)Vdes(z) — %74(Z)

73(2) +75(2) '
The numerator is Lipschitz continuous on Z since it is a
linear combination of the products of Lipschitz continuous
functions that are bounded on Z. Similarly, the denominator
is also Lipschitz continuous on Z. Since, v3(z) + v5(z) >
0, it follows that the resulting quotient is also Lipschitz
continuous on Z. [ ]
While the resulting control law (14) is Lipschitz continuous,
it cannot guarantee robust stability and tracking convergence.
We propose extending the probabilistic feedback lineariza-
tion formulation (14) by also including a stability filter that
guarantees tracking convergence with high probability.

B. Probabilistic Stability Filter

We probabilistically bound the error between the true
nonlinear function value (2) and the learnt mean value (8).

Assumption 4: The function ¢)(a) has a bounded reproduc-
ing kernel Hilbert space (RKHS) norm ||¢(a)||x with respect
to the kernel k(a;,a;) of the GP, and the observation noise
7 is uniformly bounded by o,.

Theorem 2: [1] Given Assumption 4. Let § € (0, 1), then:

Pr{Va € A |u(a) - ¥(a)| < 6'*o(a)} > 1 -4,

where Pr{-} is the probability, A is compact, p(a) is the GP
mean, o%(a) is the GP covariance and

B = 2[|¢(a)||x + 300y In*((N +1)/5),

where v € R is the maximum information gain.

We now exploit Theorem 2 to rewrite the decreasing CLF
condition in (7) using the learnt GP mean (8) and variance
(9) such that this condition holds with high probability.

We can rewrite the decreasing CLF condition in (7) using
eTP(Az—i—Bw(z, u)+B/Unom_B’Unom_iref) S _CSeTPe9
where vy, comes from (6). Using the algebraic Riccati
equation, this simplifies to —e”Se + 2e"PB(v(z,u) —
Unom) < _CSeTPe-

We have learnt 9(z, u) as a GP. Defining w := e PB and
recalling that the query a comprises of the state and input,
i.e., {z,u}, we use Theorem 2 to obtain:

Pr {w W(Za u) - Unom)
< w (2, 1) = Vnom) + \WIﬂl/QU(Z,U)} >1-4.
We use this probabilistic condition to rewrite (7):
—eT'Se+2w(1u(z, u)—vnom)+2|w| Y %0 (z,u) < —cse’ Pe,
(15)
Amin(S)

where c3 = $ P While the constraint (15) is not
necessarily convex, for systems that are control-affine, we



propose exploiting this structure in the kernel selection of
the GP (10).

Probabilistic stability filter for control-affine systems:
For control-affine systems, we choose to exploit the kernel
structure in (10). By Lemma 2, the kernel (10) is bounded
and positive definite and, therefore, we can construct a
corresponding RKHS. We make a similar assumption to
Assumption 4 for control-affine systems and kernel (10) such
that we can similarly apply Theorem 2.

Assumption 5: The control-affine nonlinear function (4)
has a bounded RKHS norm with respect to kernel (10) used
in the GP, and the observation noise 7 is uniformly bounded
by o;,.

Under Assumption 5, we apply Theorem 2 and can rewrite
the probabilistic decreasing CLF condition (15) using the
mean (11), which is linear in control input u, and covariance
(12), which is quadratic in control input u. Plugging (11) and
(12) into (15), the filter condition becomes:

2’[1)(’}/1 (Z) + Y2 (Z)u - Unom)
+ 2{w| B2/ y3(2) + a(2)u + 75 (2)u?
< —C3eTPe +e’Se.

(16)

C. Linearization and Stability Filter Optimization

We combine feedback linearization with the safety filter
by optimizing (13) subject to the probabilistically robust
decreasing CLF condition (15). We can write this as an
optimization problem including input constraints:

mic? (11(2, 1) — Vges)? + 0%(z, u) + pd?
st 2w (1u(2, 1) — Vnom) + 2|w| B30 (2, 1)
<el(—csP +S)e +d,

Umin S u S Umax

a7

where d is a slack variable added to ensure feasibility of the
above optimization problem and p is a large weight. This
optimization problem is not necessarily convex.

Optimization for control-affine systems: For control-
affine systems (4), we use the simplications made in Sec-
tions IVA-B such that we can rewrite the optimization (17)
as a second-order cone program (SOCP) as stated below in
Theorem 3.

Theorem 3: Given Assumptions 1, 2, 3 and 5, the opti-
mization problem (17) can be written as a convex optimiza-
tion problem. Moreover, it is a SOCP.

Proof: We can rewrite both the CLF constraint (16),
including the slack variable d, and the convex quadratic
optimization problem (14) as second-order cone (SOC) con-
straints.

In (16), we can rewrite:

~v4(2z)
Vs(2)u+ 5=

V3(2) + (@) + 5 (2)u? = ‘ ‘

2 z
V3(z) — Zi;(z)) 9
where || - ||2 denotes the Lo-norm. This is possible because

v3(z) — g‘s((zz)) > 0 since the covariance in (12) is positive.

We can, therefore, rewrite the first SOC constraint in the
standard form:

||A1T + by||2 < €0 +dy, (18)

where the optimization variables @i = [u, d, f]T include the
input u, the slack variable d and a dummy variable f. The
matrix A; = diag(|w|\/75(2),0,0) and the vector by =

2(g ..
[|w|2\7/4%, lw|y/v3(z) — 2;‘5((2)),0]? By rewriting (16), the
vectors ¢1 = [%ﬁ(z), 26%/2,0], and d; = 5110/2 (Vnom —

7 (z)) + 2,@%/2‘;(8 —c3P)e.

We rewrite the optimization (14) including a dummy
variable f > (v2(z) + 7v5(z))u? + pd? where p is a large
weight and d is the slack variable. It follows that 0 >
4((v2(z) + v5(z))u® + pd?) — 4f which can be rewritten
as (1+ f)? > 4((v3(z) +75(2z))u? + pd?) + (1 — f)2. Since
both sides of the inequality are positive, we can rewrite this
condition as;

2y/7%(2) +75(2)u

2p1/2d
1—f )
which allows us to write the second SOC constraint in the

standard form as:
||A21_1 + b2H2 < csu + (2127

Sl_fa

19)

where Ay = diag(2\/72(z) +15(2),2p"/2, 1), by =
[0,0,1]7, €2 = [0,0,1]7 and d2 = 1. We rewrite the

optimization problem in standard SOCP form:
ml_}n [271(2)72(2) — 272(2)vges +72 0 1] @
s.t. SOC constraints (18) & (19),

Umin S Uu S Umaz,

(20)

where we recall that @ = [u, d, f]T includes the input u, the
slack variable d and the dummy variable f. [ ]

Remark: SOCPs can be solved in polynomial time by
interior point methods [14].

At each time step, we solve the SOCP (20), which
efficiently solves for an input w that balances feedback
linearization objectives with robust stability requirements and
input constraints.

V. SIMULATION RESULTS

We compare our proposed SOCP (20) method, with similar
GP learning-based methods on a SISO 1-D quadcoptor
moving in the horizontal direction. The dynamics follow [5],
with & = T'sin(f) — v# and § = L(u — ), where = is the
horizontal position, 6 is the pitch angle, and the input u is
the commanded pitch angle.

To compare the algorithms in the unconstrained case, input
constraints are neglected, and our proposed SOCP method is
compared against the closed-form solution of (14), a nominal
LOR that uses an inaccurate prior model, and a learned
robust LOR from [5]. To compare the algorithms in the input-
constrained case, input constraints are included, our proposed
SOCP method is compared against a constrained QP that
optimizes (14) subject to input constraints, nominal LOR that
uses an inaccurate prior model and saturates the inputs at the
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constraints, and a learned robust LOR [5] from prior work
with saturated inputs.

For all simulations, we use /2 = 2 and p = 625.
The true dynamics have a time constant 7 = 0.2, thrust
T = 10, and drag v = 0.3. The nominal model has estimated
parameters 7 = (.15, T = 7, and 4 = 0. Both these
models are differentially flat in the output y = . A GP,
using the kernel function (10), is used to learn the unknown
nonlinear term (z,u). All GP parameters are optimized
to minimize the GP’s log-likelihood over the training data.
The training trajectory is generated using the nominal LOR,
with gains Q = diag(20, 15,5) and R = 0.1, and feedback
linearization, based on the nominal model, to track y,.; =
Atsin(wt) with A =1, w =1 for 5 seconds.

To compare closed-loop performance, each controller’s
tracking performance is assessed along 4 different trajecto-
ries with w = 0.3, 0.5, 0.7, 0.9 and A = 0.2. The average
output tracking error and computation times are compared
in Figure 2.

In the unconstrained case, our proposed SOCP method
provides up to an 90% decrease in average tracking error
as compared with robust LOR, with larger decreases in
error occurring when the trajectory is further away from the
training data. In the constrained case, using input constraints
—15 < u < 15, the average tracking error of our proposed
SOCP approach is nearly as good as the robust LOR, and up
to 85% less for trajectories further away from the training tra-
jectory. We note that the tracking errors of all the compared
approaches increase significantly and are comparable in the
constrained cases when w = 0.7 and w = 0.9. This is due to
the input constraints being reached for a significant portion
of the trajectory, dominating the tracking error. Additionally,
our SOCP approach has an average computational time
nearly two orders of magnitude smaller than the robust
LOR case and is comparable to a standard QP, significantly
reducing the required computational power.

VI. CONCLUSION

Our proposed approach (SOCP) has significantly better
performance than the constrained QP approach at a similar
computational cost. While a Robust LQR can outperfom us
in rare cases (i.e., when the trajectory is infeasible for the
given input constraints) it comes at a significantly higher

computational cost. Our proposed approach efficiently han-
dles robust tracking stability and input-based constraints in
the presence of model uncertainty by exploiting the structure
of control-affine differentially flat systems. As future work,
we will investigate a data-driven CLF selection and extend
our approach to include Control Barrier Functions [15].
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