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Optimal Initialization Strategies for Range-Only Trajectory
Estimation

Abhishek Goudar1, Frederike Dümbgen1, Timothy D. Barfoot1, and Angela P. Schoellig1,2

Abstract—Range-only (RO) pose estimation involves determin-
ing a robot’s pose over time by measuring the distance between
multiple devices on the robot, known as tags, and devices installed
in the environment, known as anchors. The non-convex nature
of the range measurement model results in a cost function with
possible local minima. In the absence of a good initial guess,
commonly used iterative solvers can get stuck in these local
minima resulting in poor trajectory estimation accuracy. In this
work, we propose convex relaxations to the original non-convex
problem based on semidefinite programs (SDPs). Specifically, we
formulate computationally tractable SDP relaxations to obtain
accurate initial pose and trajectory estimates for RO trajectory
estimation under static and dynamic (i.e., constant-velocity mo-
tion) conditions. Through simulation and hardware experiments,
we demonstrate that our proposed approaches estimate the initial
pose and initial trajectories accurately compared to iterative local
solvers. Additionally, the proposed relaxations recover global
minima under moderate range measurement noise levels.

Index Terms—Localization, optimization and optimal control,
range-only localization, semidefinite relaxation.

I. INTRODUCTION

RANGE-only (RO) localization involves determining the
position of a mobile system, such as a robot, by measur-

ing the distance between a range sensor on the robot, referred
to as a tag, and known landmarks in the environment, referred
to as anchors. Common examples of RO localization include
radio frequency (RF)-based positioning such as the Global
Positioning System (GPS) [1] for outdoor environments, WiFi
or ultrawideband (UWB)-based positioning for indoor envi-
ronments [2], and acoustic positioning for underwater environ-
ments [3]. Since a single range measurement is not sufficient
to estimate a robot’s position and orientation, range sensors
are typically combined with other sensing modalities such as
wheel odometry [4], inertial measurement units (IMUs) [5],
and cameras [6] to estimate the full pose. However, a common
limitation of these sensor-fusion schemes is that sufficient
motion is needed before the pose becomes observable [7], [8].
An alternative is to use multiple tags to estimate the full pose
[9], referred to as RO pose estimation. The advantage of such
an approach is that motion is not necessary for pose estimation,
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Fig. 1: Range-only trajectory estimation results from a hardware experiment.
A quadrotor in motion, equipped with 2 range sensors, measures its distance
to multiple anchors to estimate its 3D position, velocity, and yaw angle over a
short time horizon (pitch and roll come from an IMU). We refer to this as 2.5D
dynamic initialization. The trajectory is parameterized by a sequence of poses,
represented here by orthogonal axes. In the absence of a good initialization, the
iterative local solver gets stuck in a local minimum resulting in poor accuracy
compared to the ground-truth trajectory. Our proposed approach leverages a
semidefinite relaxation of the original problem to recover accurate trajectories
as shown in the magnified image on the right. For each method, the robot
pose at t = 0 is indicated by a red dot at the origin of the orthogonal axes.

but may still be beneficial. We use the term RO trajectory
estimation to refer to both the estimation of the robot pose (i)
at a single time step and (ii) across multiple time steps while
in motion, using only range measurements from multiple tags.

From a computational perspective, a common approach to
RO localization is to formulate it as a maximum a posteriori
(MAP) estimation problem, which results in the optimization
of a particular objective function. In RO trajectory estimation,
the non-convex nature of the range measurement model, along
with an additive Gaussian measurement noise assumption,
results in a non-convex nonlinear least-squares objective func-
tion that is typically optimized using local solvers such as
the Gauss-Newton algorithm. A well-known limitation of such
local solvers is the need for a good initialization point [10],
[11], without which the local solver can return suboptimal
solutions, as shown in Figure 1.

The last decade has seen the development of algorithms
that leverage Lagrangian duality theory [12] to obtain convex
relaxations for non-convex problems found in many robotics
applications. These convex relaxations typically take the form
of semidefinite programs (SDPs) and can be used to obtain
or certify globally optimal solutions. A tutorial on Lagrangian
duality theory with a focus on robotics is provided in [13].

In this work, we propose strategies to obtain accurate state
estimates (including pose and velocities) for RO trajectory
estimation based on semidefinite programming. Given the
poor scalability of SDP solvers, we focus on computationally
tractable SDP relaxations to obtain optimal initial poses and
trajectories over a short time horizon. These initial estimates
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can be used to bootstrap local solvers that, given a good initial
starting point, are generally accurate and more efficient over
longer estimation horizons [14].

In contrast to previous work [15], which focuses on position
only and provides an optimality certificate for solutions from a
local solver, our focus is to formulate tractable SDPs for pose
estimation that can be solved quickly for online applications.
Additionally, unlike previous methods [3], [16], our method
does not require additional odometry sensors; it can be used to
generate initial poses without any motion, which we refer to as
static initialization. We also propose an initialization method
for the case where a robot undergoes constant-velocity motion
over a short time horizon; this is a challenging scenario for
other methods that involve the fusion of a single range sensor
and an odometry sensor as such motions lack the diversity
that is required for observability [7]. We refer to initialization
under such conditions as dynamic initialization. To summarize,
the following are the contributions of our work:

• We present initialization strategies for range-only pose
estimation under static conditions and range-only tra-
jectory estimation under dynamic conditions involving
constant-velocity trajectories. Our proposed initialization
approaches recover optimal initial pose and trajectory
estimates under moderate sensor-noise regimes.

• We validate the proposed methods in simulation and in
multiple real experiments involving a ground robot and
an aerial robot (see Figure 7).

Qualitative experimental results of our proposed method,
including its application as a mode of initialization for a fixed-
lag smoother can be found in the accompanying video1.

II. RELATED WORK

The use of range measurements for positioning is a well-
studied problem due to its widespread application in pop-
ular technologies such as GPS [1]. Other commonly used
technologies for RO localization include sonar, lidar, WiFi,
and UWB [2]. As mentioned previously, range sensors are
typically combined with other sensing modalities such as
wheel odometry [4], IMU [5], [8], or visual odometry [6]. A
limitation of such sensor-fusion methods is the need for diverse
motion for full-state observability [7], [8]. More recently,
approaches based on Gaussian-process regression [17] have
been applied to continuous-time RO position [15] and pose [9]
estimation. The benefit of these approaches is that no other
sensing modalities are needed as the pose is observable (with
multiple tags) under static conditions and with trajectories that
lack diverse motion.

For maximum-likelihood estimation, the non-convex nature
of the range measurement model could result in a cost function
with local minima. To recover the global minimum, a weighted
least-squares (WLS) approach to planar pose estimation using
range sensors aided by odometry is presented in [10]. A
RO approach to planar pose estimation that converges to
the maximum-likelihood estimate with minimum variance is
presented in [18]. A trilateration-based approach to RO relative
pose estimation using multiple range sensors is shown in [19].

1http://tiny.cc/opt ro init video

Over the last decade, Lagrangian duality theory has been
shown to be a powerful tool to generate optimal solutions and
to certify the optimality of candidate solutions. It has been ap-
plied to various problems in robotics such as pose-graph opti-
mization [20], simultaneous localization and mapping (SLAM)
[21], synchronization over the special Euclidean group [22],
extrinsic calibration between two egomotion sensors [23], and
outlier-robust estimation [24]. A common feature of these
methods is that they reformulate the MAP estimation problem
as a quadratically constrained quadratic program (QCQP), for
which SDP relaxations exist.

The application of duality theory to generate a certificate of
optimality for RO localization was recently described in [15].
Subsequently, an approach to certifiably correct range-aided
SLAM with pose variables was demonstrated in [16]. Unlike
previous works, which focus on certifying batch solutions [15]
or requiring additional sensing modalities [3], [10], [16], we
focus on computationally tractable SDP relaxations to obtain
optimal initial pose and trajectories over a short time horizon
using multiple tags on the robot.

Other works have studied the SDP relaxation of RO pose
estimation [25]–[27]. An important limitation of these ap-
proaches is that the SDP relaxations are not typically tight; the
solutions are not rank 1 and require a subsequent refinement
procedure. In this work, we empirically show that the lack
of tightness stems from insufficient redundant constraints. We
leverage the approach of [28] to find the necessary redundant
constraints to generate rank-1 solutions to RO trajectory esti-
mation under static and dynamic conditions.

III. PROBLEM STATEMENT

The objective of our work is to estimate an accurate
initial pose and trajectory, for static and dynamic conditions,
respectively, using range measurements only. We assume that
the robot is equipped with multiple tags (≥ 2 for 2D and ≥ 3
for 3D) and that the position of the tags is known with respect
to the robot body frame, Fb.

We make the following additional assumptions for dynamic
initialization. We assume that the robot moves with a constant
velocity for a short time duration tv and that the range
measurements arrive periodically every ∆tr seconds during
this period. The value of tv is chosen to ensure sufficient
measurements given a particular range measurement rate. In
all cases, we assume that a sufficient number of noncollinear
anchors (≥ 4) are available and that their positions with respect
to the world frame, FW , are known. We assume that the
range measurements are corrupted with moderate noise levels
commonly encountered in practice.

IV. METHODOLOGY

In this section, we develop SDP-based relaxations to the
(non-convex) problems of RO pose and trajectory estimation.
Solving these non-convex problems locally using iterative
solvers can result in sub-optimal solutions when local solvers
get stuck in local minima. In contrast, the proposed relaxations
are convex and can be solved to global optimality in polyno-
mial time with off-the-shelf solvers. We find empirically that
the relaxations are also often approximately tight – meaning

http://tiny.cc/opt_ro_init_video
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that a viable estimate to the original, non-convex optimization
problem can be extracted from the SDP solution.

We introduce the notation that will be used in the rest of
the paper. The variable d ∈ {2, 3} is used to represent the
pose dimension. Rotations are represented using elements of
the special orthogonal group SO(d) = {R ∈ Rd×d,RTR =
Id,det(R) = 1}, where Id is the identity matrix of dimension
d, and det(·) is the determinant operation. We represent
the robot pose T(t) at time t with elements of the special
Euclidean group:

T(t) =

[
R(t) p(t)
0 1

]
∈ SE(d), (1)

where the pose is parameterized by its position p(t) ∈ Rd

and rotation R(t) ∈ SO(d). Elements of the corresponding
Lie algebra are denoted by ϖ ∈ se(d) [29]. The homogenized
version of a vector p ∈ Rd is represented by p̄ =

[
pT 1

]T ∈
Rd+1. The trace of a matrix A is denoted by tr(A). The
Kronecker and the Hadamard products are denoted by ⊗
and ⊙, respectively, and X ≽ 0 implies X is a positive-
semidefinite matrix.

A. Range measurement model

We assume Nl > 1 tags on the robot and seek to find its
pose from measurements to Na anchors. The range measure-
ment at any time t is given by

rjl(t) = ∥paj −KT(t)p̄ul
∥2,

where ∥ · ∥2 is the L2 norm, T(t) is the robot pose at time
t, paj ∈ Rd is the position of anchor j with respect to the
world frame FW , pul

is the position of tag l with respect to
the robot body frame Fb, and p̄ul

is its homogeneous form.
The matrix K is such that p = Kp̄. Similar to [10], [15], we
consider a squared-distance measurement model:

r̃jl(t)
2 = ∥paj −KT(t)p̄ul

∥22 + ηr(t), (2)

where ηr(t) ∼ N (0, σ2
r) is additive white Gaussian noise of

variance σ2
r . Next, we derive the MAP formulation and the

corresponding SDP relaxation for static initialization.

B. Static initialization

1) Maximum a posteriori inference: The state for static
initialization is the robot pose at a single time step. The
MAP estimate is the robot pose that minimizes the following
objective function

T(t)∗MAP = argmin
T(t)∈SE(d)

1

Nr

∑
(j,l)∈E

ejl(t)
2

σ2
r

, (3)

where E ⊆ {(j, l) | j = 1, ..., Na, l = 1, ..., Nl} is the index
set for all measured anchor-tag pairs, Nr = |E| is the total
number of range measurements, and

ejl(t) = r̃jl(t)
2 − ∥paj −KT(t)p̄ul

∥22. (4)

The MAP problem (3) can be solved using a local solver such
as the Gauss-Newton or Levenberg-Marquardt algorithm [29,
Section 9.2.5]. Static initialization across multiple time steps

can be done in a similar manner by running multiple instances
of (3), one for each time step. As mentioned earlier, in the
absence of a good initialization point, the local solver might
return a suboptimal robot pose.

We now derive an SDP relaxation to our original prob-
lem (3) following the approach presented in [15], but extending
it to accommodate pose variables instead of only position
variables. First, we reformulate our original problem (3) as a
QCQP for which SDP relaxations exist. We begin by making
the substitution p̃ul

(t) = KTp̄ul
, which we refer to as the

lever-arm substitution, and expand the error term (4):

ejl(t) = r̃jl(t)
2 − ∥paj

− p̃ul
∥22,

= r̃jl(t)
2 − ∥paj

∥22︸ ︷︷ ︸
djl(t)

−∥p̃ul
(t)∥22︸ ︷︷ ︸

zul

+2pT
aj
p̃ul

(t),

= djl(t) +
[
2pT

aj
− 1

] [
p̃ul

(t)
zul

]
,

where we have introduced a second substitution,
zul

= ∥p̃ul
(t)∥22. With the new substitutions, the error term (4)

is linear and the cost function (3) quadratic in the unknown
vector

[
p̃ul

(t)T zul

]T
. We define the vector of unknowns

xl = [p̃u1
(t)T zu1

. . . p̃uNl
(t)T zuNl

]
T ∈ R(d+1)Nl .

Stacking error terms corresponding to measurements from
all anchor-tag pairs, we obtain the following optimization
problem equivalent to (3):

min
xl,p(t),
R(t)

1

σ2
rNr

∥w ⊙ (d+Pa xl)∥22

s.t. p̃ul
(t) = KT(t)p̄ul

, l = 1, ..., Nl,

∥p̃ul
(t)∥22 = zul

, l = 1, ..., Nl,

R(t)TR(t) = Id,

det(R(t)) = 1,

(5)

where

w=

 δ11
...

δNaNl

,d=

 d11(t)
...

dNaNl
(t)

,Pa = INl
⊗

2pT
a1

− 1
...

2pT
aNa

− 1

,
and

δjl =

{
1 if (j, l) ∈ E ,
0 otherwise.

The orthogonality (R(t)TR(t) = Id) and the determinant con-
straints (det(R(t)) = 1) associated with the rotation matrix
are included as explicit constraints; with this formulation the
domain of optimization is now a vector space.

2) SDP relaxation: We define our new state as x =[
xT
l vec(R(t))T p(t)T h

]T
, where vec(·) converts the matrix

R(t) into a vector by stacking its columns, and h is a
homogenization variable. With the new state, (5) can be written
as a QCQP:

q∗ = min
x

xTQx

s.t. xTA0x = 1,

xTAix = 0, i = 1, ..., (d+ 1)Nl + 1,

xTBjx = 0, j = 1, ..., d(d− 1).

(6)
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Fig. 2: Qualitative results showing the effect of redundant constraints on
the eigenvalue spectrum of the SDP solution. The set Crot represents the
orthogonality and the determinant constraints, and the set Clrn denotes the
additional redundant constraints (8). In all cases, substitution constraints Csub
are included. The inclusion of additional redundant constraints results in a
larger ratio of the dominant eigenvalues, and can lead to a rank-1 solution,
as shown in the rightmost plot.

The relation between constraints in (5) and (6) is as follows.
The matrix A0 represents the homogenization constraint,
h2 = 1, matrices {Ai | i = 1, ..., dNl} correspond to the lever-
arm constraints, {Ai | i = dNl+1, ..., (d+1)Nl+1} encode
zul

= ∥p̃ul
(t)∥22, and {Bj | j = 1, ..., d(d − 1)} encode the

orthogonality and the determinant constraints on R(t). Details
on formulation of the orthogonality and the determinant con-
straints as quadratic constraints can be found in [20], [23], and
in Appendix A. To obtain an SDP relaxation for (6), we make
the substitution X = xxT . This substitution can be enforced
with a convex positive semidefiniteness constraint X ≽ 0 and
a non-convex rank constraint rank(X) = 1. We relax the rank
constraint to obtain the SDP relaxation:

p∗ = min
X

tr(QTX)

s.t. tr(A0X) = 1,

tr(AiX) = 0, i = 1, ..., 2(d+ 1)Nl,

tr(BjX) = 0, j = 1, ..., 2(d− 1),

X ≽ 0.

(7)

The SDP relaxation (7) provides a lower bound to our original
problem (3). If the solution X∗ of (7), is such that rank(X∗) =
1, then the global minimum to our original problem (3) can
be recovered using X∗ = x∗x∗T . In this case, we say that the
SDP relaxation is tight.

In general, the relaxation (7) may not be tight and we may
need to incorporate additional redundant constraints to obtain
a rank-1 solution [31]. These constraints restrict the feasible
set of our SDP relaxation (7) to favor rank-1 solutions, but
do not affect the feasible set of the original problem (3).
We leverage the method of [28] to automatically generate
the necessary redundant constraints by sampling the state
space and identifying the nullspace associated with (7). These
constraints are added as additional constraints to the original
SDP relaxation (7) as

tr(SmX) = 0, ∀m, (8)

where each Sm encodes one redundant constraint. Examples
of some redundant constraints for our method can be found
in Appendix B. Qualitative results from real 2D static ini-
tialization experiments showing the effect of the redundant
constraints on the eigenvalue spectrum of the SDP solution
are shown in Figure 2.

C. Dynamic initialization

The method described so far requires the robot to be
stationary to obtain an initial pose. This can be restrictive in
certain dynamic settings such as initializing a quadrotor mid-
flight. In dynamic initialization, the goal is to estimate the
robot’s trajectory, while in motion, over a short time horizon.

1) Motion model: We use a constant-velocity motion model
where the robot moves with a constant body-centric velocity
for duration tv . The motivation for such a motion model is to
obtain SDPs that can be solved quickly for online applications.
Specifically, under such a motion model, the robot trajectory
is parameterized by the initial robot pose and the constant
body-centric velocity. A similar approach has been adopted
in [32]. Additionally, we assume range measurements arrive
periodically every ∆tr during the time window tv . The value
of tv depends on the measurement rate and is selected to
obtain sufficiently many range measurements. For example,
with measurement frequencies greater than 12Hz, the value
of tv is less than 1 s, during which the constant-velocity
assumption is often a good approximation.

Let T(t1) represent the unknown initial robot pose and ϖ ∈
se(d) = [vT ωT ]T the generalized constant velocity, where v
and ω represent the body-centric linear and angular velocities,
respectively. Under the constant-velocity assumption, the robot
pose at any time tk is given by

T(tk) = T(t1) exp((ckϖ)∧), (9)

where ck = (k − 1)∆tr, exp(·) maps an element of the
associated Lie algebra back to the Lie group, and (·)∧ maps
a vector to the corresponding skew-symmetric matrix. Next,
we modify the MAP formulation from static initialization to
incorporate the motion model for dynamic initialization.

2) Maximum a posteriori inference: The measured distance
between anchor j and the robot at time tk is

r̃jl(tk)
2 = ∥paj

−KT(tk)p̄ul
∥22 + ηr(t)

= ∥paj
−KT(t1) exp((ckϖ)∧) p̄ul

∥22 + ηr(t),

where the last line follows from (9). The corresponding error
term for MAP inference is

ejl(tk) = r̃jl(tk)
2 − ∥paj

−KT(t1) exp((ckϖ)∧) p̄ul
∥22.

The state for dynamic initialization is θ = {T(t1),ϖ} and
the corresponding objective function for MAP inference is

θ∗
MAP = argmin

θ

1

Nr

K∑
k=1

∑
(j,l)∈E

ejl(tk)
2

σ2
r

. (10)

3) SDP relaxation: A benefit of our constant-velocity
motion model is that we can reuse the SDP relaxation we
developed for static initialization, as the MAP objectives (3)
and (10) are similar. To account for motion across different
time steps, the lever-arm constraints need to be modified to
reflect the relationship between the initial pose, T(t1), the
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body-centric velocity, ϖ, and the pose at time tk, T(tk).
Specifically, the new lever-arm constraint for time tk is

p̃ul
(tk) = KT(tk)p̄ul

= KT(t1) exp((ckϖ)∧) p̄ul

≈ KT(t1) (I+ (ckϖ)∧)) p̄ul

= KT(t1)p̄ul
+ ckKT(t1)(ϖ

∧)p̄ul
, (11)

where we have used a first-order approximation to the ex-
ponential map exp(ϖ∧) ≈ Id +ϖ∧. The above equation is
quadratic in the unknowns and leads to an addition of dNr

constraints to our SDP relaxation (7). Note that with the first-
order approximation, we are generating a lower bound to an
approximation of our original problem (10); the motivation
for doing so is to keep the computational complexity low.
Details of an approximation-free approach can be found in
Appendix C.

4) 2.5D dynamic initialization: The size of the state for
the SDP relaxation from Section IV-C3 is larger compared to
the one in Section IV-B2. Furthermore, as in Section IV-B2,
we find that redundant constraints, identified using the tool
described in [28], are necessary for the solutions of the SDP
relaxation of (10) to be rank 1. The number of required
redundant constraints grows quickly with the size of the state,
which poses a computational challenge to the SDP solver.

To ensure a tractable initialization, we also consider 2.5D
dynamic initialization where the robot pose is given by T(t) ∈
SO(2) × R3 and the corresponding body-centric velocity by
ϖ = [vT ωT

z ]
T , with ωz = [0 0 ωz]

T . Specifically, only
rotations around the body z-axis (yaw) and the corresponding
angular rate are estimated. From a practical standpoint, this is
adequate for most ground and aerial robots with built-in roll
and pitch stabilization.

V. EXPERIMENTS

In this section, we show the efficacy of our method through
simulations and real experiments. In simulation, we show
that our proposed initialization methods recover the global
optimum under moderate range-measurement noise regimes.
We then evaluate our approach on range data collected using
multiple robots.

To solve semidefinite programs, we use the CVXPY [33]
package with the MOSEK [34] solver. As a baseline, we
compare our method against MAP estimation with a cus-
tom implementation of the Levenberg-Marquardt solver. We
compare our proposed approach (SDP) and the baseline local
solver (LS) using L2 position and rotation errors:

Position Error = ∥pgt − pest∥2, (12)

Rotation Error = ∥RT
gtRest − Id∥F , (13)

where pgt is the ground-truth position, pest is the estimated
position, Rgt and Rest are the ground-truth and the estimated
rotation matrices, and ∥C∥F = ∥vec(C)∥2 is the Forbenius
norm of matrix C. As mentioned earlier, our SDP relaxation
is tight if its solution has rank 1. In order to quantify the rank,
we define the following ratio:

feig(X) = log10

(
e1
e2

)
, (14)
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Fig. 3: Distribution of L2 position and rotation errors from simulation
for 2D static initialization (top) and 3D static initialization (bottom). The
distributions are generated from 100 Monte Carlo trials across increasing
range measurement noise, σr . The distribution of errors from the proposed
method (SDP) is tighter compared to the baseline local solver (LS). The local
solver accuracy is lower as it often gets stuck in local minima. The local
solver typically converges to the global minimum when the robot is inside
the convex hull of the anchors and performs poorly towards the boundary and
outside the convex hull, whereas the proposed approach performs reliably
even in such challenging scenarios.

where e1 and e2 are the dominant eigenvalues of the SDP
solution X, respectively. A large feig(X) suggests a rank-1
solution. All experiments are run on a laptop with an Intel
Core i9 9750 CPU with 32 GB RAM.

A. Simulation

The objective of our simulation experiments is to demon-
strate that our proposed approach recovers the global optimum
while the baseline local solver is susceptible to local minima.
Simulation parameters such as the measurement frequency and
lever-arm configurations are selected to reflect real sensors and
robots. Unless mentioned otherwise, we consider Nl = 2 tags
in our experiments. The positions of the tags in the body frame
are pu1

= [0 0.095]
T
m and pu2

= [0 − 0.095]
T
m.

Static initialization: We perform multiple Monte Carlo
simulations to evaluate the effectiveness of our proposed
approach and the baseline in estimating an arbitrary initial
pose. The setup for one trial is generated as follows. First,
a random anchor configuration and a ground-truth robot pose
are generated by (i) sampling (robot and anchor) positions
uniformly from [−4, 4] m and (ii) sampling robot rotations
uniformly from [−π, π] rad. We then simulate range mea-
surements between all possible anchor-tag pairs and corrupt
the range measurements with Gaussian noise of increasing
variance. For a given anchor configuration and ground-truth
robot pose, we initialize the local solver with a random robot
pose generated using the same procedure as before. Note that
our proposed approach does not require an initial point.

For the 2D static initialization, we consider Na = 3
anchors with Nr = 6 range measurements to the two tags,
pu1

and pu2
. Results from 100 simulation experiments are
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Fig. 4: Distribution of L2 position (top row) and rotation errors (bottom row)
under increasing range measurement noise (σr) for 2D dynamic initialization
from simulation. The position and rotation errors are computed over the full
trajectory, which reflects any errors associated with the estimated velocity. The
distribution of errors from the proposed method (SDP) is much tighter than
the baseline local solver (LS) as the local solver gets stuck in local minima
whereas the proposed method does not.
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Fig. 5: Two simulation results from 2.5D dynamic initialization showing
the trajectories estimated by the iterative local solver (LS) and our proposed
method (SDP) along with the ground-truth trajectory (GT). Without a good
initial point, the local solver estimates suboptimal trajectories, while our
proposed approach is able to generate better trajectory estimates. For each
method, the robot pose at t = 0 is indicated by a red dot at the origin of the
orthogonal axes.

shown in Figure 3a. We see that the proposed method has
a tighter distribution of errors compared to the local solver.
The distribution of errors is larger for the local solver as it
gets stuck in local minima. Additionally, solutions from our
proposed method had feig(X) ≥ 7 in all of our experiments,
which we consider rank 1, indicating optimal solutions. In
general, the local solver converges to the global minimum
when the robot is inside the convex hull of the anchors and
performs poorly outside the convex hull, whereas the proposed
approach performs reliably even in such challenging scenarios.

In 3D static initialization, we consider Na = 4 anchors and
Nl = 3 tags with Nr = 12 range measurements. The positions
of the tags in the body frame are pu1

= [0.01 0.41 0]
T
m,

pu2
= [0 − 0.43 0.01]

T
m, and pu3

= [−0.57 0.02 0]
T
m.

Results from 100 simulations are shown in Figure 3b. We see
that the proposed method has a tighter distribution of errors
compared to the baseline. Additionally, the ratio of the first
two dominant eigenvalues of the SDP is large, feig(X) ≥ 8,
which we consider rank 1, indicating an optimal solution.

Dynamic initialization: The setup for a single trial of
dynamic initialization is as follows. The anchor configuration
and the initial robot pose are generated in a manner similar
to the static case. In addition, a body-centric velocity is
generated by uniformly sampling linear and angular velocities
in the range [−1, 1] m/s and [−0.3, 0.3] rad/s, respectively.
The initial pose and velocity are used to generate a constant-
velocity trajectory for tv seconds with a pose every ∆tr
seconds. We then simulate range measurements between a tag
and an anchor at each robot pose. Unlike the static case, there

0.01 m 0.03 m 0.05 m 0.08 m 0.1 m
σr

2.5

5.0

lo
g

1
0
(e

1 e 2
)

Fig. 6: Simulation results from 2D static initialization quantifying the effect
of measurement noise σr on the optimality of the solution returned by the
SDP solver. We quantify the optimality of an SDP solution as the logarithm
of the ratio of its largest and second largest eigenvalues, denoted e1 and e2,
respectively. As the magnitude of the measurement noise increases, the ratio
of eigenvalues decreases.

is a single range measurement at each time step.
The parameters for the 2D dynamic initialization are as

follows. We consider Na = 3 anchors, Nl = 2 tags, Nr = 12
range measurements, tv = 1.1 s, and ∆tr = 0.1 s. The lever-
arm configuration is the same as in the previous case. Results
from 100 simulation experiments are shown in Figure 4.
In this case, the position and rotation errors are calculated
using all the poses in the robot trajectory, which captures any
errors associated with the estimated velocity. Similarly to static
initialization, the proposed method can estimate the trajectory
reliably as indicated by a tighter distribution. The local solver
is more susceptible to local minima in this case, potentially due
to the sparse nature of the problem as there is a single range
measurement at each time step. The distribution of dominant
eigenvalue ratios is still relatively large, feig(X) ≥ 5, with
moderate measurement noise. We still consider it adequate to
claim we have rank-1 solutions.

For 2.5D dynamic initialization, we consider Na = 4
anchors and Nl = 2 tags. The rest of the parameters are
identical to the previous case. Qualitative results showing
estimated trajectories with σr = 1 cm from two such ex-
periments are presented in Figure 5. The local solver is
particularly susceptible to poor initializations in this case,
while the proposed approach recovers the initial trajectory
reliably. Additional result from simulation with σr = 5 cm
is provided in Appendix D1.

The average time required by the SDP optimizer and the
local solver for different initialization methods is presented in
Table I. The time taken for 2.5D dynamic initialization is on
the higher end due to the additional redundant constraints.
However, 2.5D dynamic initialization can still be used to
perform delayed initialization of local solvers where older
states are initialized followed by an application of a forward
motion model until the current time step.

Effect of noise on optimality: To further quantify the effect
of noise on the optimality of the solution returned by the
SDP solver, we performed multiple 2D dynamic initialization
experiments with varying measurement noise magnitudes. Re-
sults from 100 experiments across 5 different measurement
noise levels are shown in Figure 6. As the magnitude of

TABLE I: Average computation time of the SDP optimizer and the local
solver (LS) for static (stat) and dynamic (dyn) initialization in simulation.

2D stat. 3D stat. 2D dyn. 2.5D dyn.
SDP (s) 0.02 0.05 0.83 3.15

LS (s) 0.003 0.006 1.4 2.22
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Fig. 7: Our test platform for (i) 2D static and dynamic initialization experi-
ments is a ground robot with two ultrawideband (UWB) tags (left), (ii) 2.5D
dynamic initialization experiments is a quadrotor with two tags (centre), and
(iii) 3D static initialization experiments is a wand with three tags (right).
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(b) 3D static initialization

Fig. 8: Distribution of L2 position and rotation errors for 2D static initial-
ization (left) and 3D static initialization (right) from real experiments. Error
distributions for 2D static initialization are generated from 12 experiments
where a ground robot’s initial pose is estimated at different locations in
the test space without any prior knowledge. For 3D static initialization, the
distributions are generated from 10 experiments where a sensor wand’s initial
pose is estimated. The tighter spread of errors from the proposed method
(SDP) shows that it recovers the initial pose consistently. The accuracy of the
local solver (LS) is lower since it gets stuck in local minima.

measurement noise increases, the solution returned by the SDP
solver is no longer obviously rank 1.

B. Hardware experiments

Our test space is an indoor flight arena with 6 UWB anchors
at the corners of a room of dimensions 7m × 8m × 3.5m.
The arena is equipped with a Vicon motion capture system
for ground truth. We use the following test platforms: (i)
a ground robot with two tags for 2D static and dynamic
initialization, (ii) a quadrotor with two tags for 2.5D dynamic
initialization, and (ii) a sensor wand with three tags for 3D
static initialization (see Figure 7). The positions of the tags
with respect to the body frame are the same as in simulation.
We remove any constant biases in the range data using ground-
truth information.

Static initialization: For 2D static initialization, we per-
formed multiple experiments by driving the ground robot
to arbitrary positions in the test space. The range data and
the ground-truth pose information were collected onboard
for offline evaluation. The local solver is initialized with
a random pose. Results from 12 experiments are shown in
Figure 8a. We see that the proposed method has a tighter
distribution of errors compared to the baseline. The local
solver performs poorly as it gets stuck in local minima. The
solutions from our proposed method had feig(X) ≥ 7, which
we consider rank 1, indicating global minima. The estimated
pose and the eigenvalue spectrum of the SDP solution from
one such experiment are shown in Figure 9. As in simulation,
the local solver converges to the global minimum when the
robot is inside the convex hull of the anchors and performs
poorly outside the convex hull, whereas the proposed method
performs reliably even in such conditions.

In 3D static initialization, we place the sensor wand at
arbitrary poses at multiple locations in the test space and
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Fig. 9: (Left) Estimated pose from real experiment for 2D static initialization.
The pose estimated by the local solver (LS) and the proposed method (SDP) is
shown along with the ground-truth pose (GT) and the anchor (Anc) positions.
The GT pose overlaps with the SDP pose. (Right) The eigenvalue spectrum
suggests a rank-1 solution, indicating a global minimum.
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Fig. 10: Distribution of L2 position and rotation errors for 2D dynamic
initialization from 5 real experiments. The narrow spread of errors for the
proposed method (SDP) shows the efficacy of the proposed SDP relaxation
in estimating the initial trajectory accurately compared to the local solver
(LS), which gets stuck in local minima.

collect range data and ground-truth pose information for offline
evaluation. Error plots from 10 experiments are shown in
Figure 8b. The proposed method has a tighter spread of errors
compared to the local solver. Qualitative results along with the
eigenvalue spectrum for 3D static initialization can be found
in Appendix E1.

Dynamic initialization: For 2D dynamic initialization, the
ground robot is commanded along constant-velocity trajec-
tories and the sensor data are recorded onboard for offline
evaluation. The parameters for 2D dynamic initialization are
the same as in simulation. Results from 5 real experiments are
shown in Figure 10. The proposed method estimates the robot
trajectory accurately relative to the baseline. We observed
that the measurement noise was higher than in simulation
(σr = 8 cm), leading to a drop in the ratio of the first two
dominant eigenvalues with feig(X) = 4. However, even with
a lower feig(X), the extracted solution candidates are superior
to LS, as seen by the errors in Figure 10. Qualitative results
including the eigenvalue spectra can be found in Appendix E2.

The parameters for 2.5D dynamic initialization are Na = 5
anchors, Nl = 2 tags, tv = 1.1 s, ∆tr = 0.1 s, and Nr = 12
range measurements. The tag positions in quadrotor body
frame are pu1

= [0 0.09]
T
m and pu2

= [0 − 0.09]
T
m. In

each experiment, the quadrotor is commanded along constant-
velocity trajectories and the sensor data and the ground-truth
information are collected on the onboard computer. Ground-
truth pose information from the Vicon system is used for
closed-loop control of the quadrotor. We evaluated dynamic
initialization on arbitrary segments of the trajectory. The local
solver is initialized with the ground-truth pose in each case.
Results from one such experiment is shown in Figure 1. The
average position and rotation errors from four experiments are
provided in Table II. As with 2D dynamic initialization, we
observed that the measurement noise was high (σr = 8 cm).
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TABLE II: Average L2 position and rotation error of the baseline local
solver (LS) and the proposed method (SDP) from four hardware 2.5D dynamic
initialization experiments.

Algorithm L2 position error (m) L2 rotation error
LS 0.47 0.72

SDP 0.02 0.07

The baseline LS performs poorly without a good initialization,
while our method estimates the trajectories accurately.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented approaches for estimating the
initial pose and trajectory of a robot equipped with multi-
ple range sensors. We developed semidefinite relaxations for
range-only pose estimation under static conditions and range-
only trajectory estimation for motion under constant-velocity
trajectories. Through simulation and real experiments, we
showed that the proposed relaxations achieve lower estimation
error than local solvers and recover optimal initial poses
and trajectories under moderate measurement noise. Because
redundant constraints are required for tightness, our proposed
methods are limited to low-dimensional states. Future work
will look at trajectory estimation over longer horizons and
attempt to use substitutions that require fewer redundant
constraints. Another future direction involves exploring robust
estimation approaches such as the truncated least-squares
formulation [24] to handle outlier range measurements.
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APPENDIX

This appendix is published along with the arXiv verison of
this paper and provides additional details and results.

A. Quadratic formulation of constraints of SO(d) for d = 2
and d = 3

In this section, we provide details on formulating the
constraints associated with the special orthogonal group
SO(d), d ∈ {2, 3} as quadratic constraints. Next, we show that
nonconvex determinant constraint for SO(3) is equivalent to
the columns of the matrix satisfying the right-hand rule, which
can be expressed as convex quadratic constraints.

1) Equivalence of the determinant and the right-handedness
constraint for SO(3): Consider a matrix R in the orthogonal
group:

O(3) = {R ∈ R3 | RTR = I3,RRT = I3}.
We represent the matrix by its columns as R = [r1 r2 r3],
where {r1, r2, r3} ∈ R3. Then we have

RT (r1 × r2) =

rT1rT2
rT3

 (r1 × r2) =

 0
0

det(R)

 ,

where × denotes the cross product and det(·) denotes the
determinant operator. The last equality follows from properties
of scalar triple product. Multiplying by R on both sides, we
get

R RT (r1 × r2) = det(R) R

00
1


r1 × r2 = det(R) r3.

In a similar manner, we have

r3 × r1 = det(R) r2,

r2 × r3 = det(R) r1.

From the above equations, the following equivalence holds:

det(R) = 1 ⇐⇒


r1 × r2 = r3

r3 × r1 = r2

r2 × r3 = r1

(15)

2) Quadratic formulation of orthogonality and right-
handedness constraints : The determinant of any 2D matrix
R is

det(R) = r1r4 − r2r3,

where
R =

[
r1 r2
r3 r4

]
Thus, the determinant constraint (det(R) = 1) for a 2D
rotation matrix can be expressed as a homogeneous quadratic
equation:

r1r4 − r2r3 − h2 = 0, (16)

where h is the homogenization variable with the constraint
h2 = 1. In this case, vec(R) = [r1 r3 r2 r4]

T . For the state

defined in static initialization, x = [xT
l vec(R(t))T p(t)T h],

the above equation can be represented as a quadratic con-
straint:

xTBjx = 0, (17)

where the entries of the matrix Bj are the coefficients of the
corresponding terms in (16) with the rest of entries set to zero.

For a 3D rotation matrix, using the column representation
from Appendix A1 and the equivalence from (15), we can
express the determinant constraint with the following homo-
geneous quadratic equations:

[ri]× rj − rkh− 1h2 = 0,

where (i, j, k) ∈ {(1, 2, 3), (3, 1, 2), (2, 3, 1)}, [·]× maps a
vector to the corresponding skew-symmetric matrix [29] and
1 is a vector of ones of appropriate dimensions.

The orthogonality constraint (RTR = Id) for both 2D
and 3D rotation matrices can be written as the following
homogeneous quadratic equations:

ri
T ri − h2 = 0, i ∈ {1, ..., d}, (18)

ri
T rj = 0, i, j ∈ {1, ..., d}, i ̸= j, (19)

where d ∈ {2, 3}.

B. Redundant constraints

We provide some examples of redundant constraints from
our 2D static initialization setup. The lever-arm constraint can
also be written as

p̃ul
(t) = R(t)pul

+ p(t), (20)

We rewrite the above equation in expanded form, using the
lever-arm configuration from our setup, as[

x̃ul

ỹul

]
︸ ︷︷ ︸
p̃ul(t)

=

[
r1 r2
r3 r4

]
︸ ︷︷ ︸

R(t)

[
0
yul

]
︸ ︷︷ ︸
pul

+

[
x
y

]
︸︷︷︸
p(t)

.

Examples of redundant constraints corresponding to (20) are

(x̃ul − x)2 = (x̃ul − x)(r2yul), l = 1, ..., Nl,

(ỹul − y)2 = (ỹul − y)(r4yul), l = 1, ..., Nl.

Some redundant constraints involving the rotation matrix are

r1 − r4 = 0,

r2 + r3 = 0,

zul(t)(r1 − r4) = 0.

Using the homogenization variable, h, the above constraints
and all others determined using the method of [28] can be
expressed as quadratic constraints for inclusion in our SDP
formulation.



10

x (m)

1.8
2.3

y
(m

)-2.8

-2.3

-1.8

z
(m

)

2.7

3.2

3.7

GT Proposed SDP

σr = 0.05 m

0 50

index

10−12

10−7

10−2

103

ei
g
en

va
lu

e

Fig. 11: (Left) Simulation results from 2.5D dynamic initialization with range
measurement noise σr = 5 cm. The trajectory estimated by the proposed
method (SDP) and the ground-truth trajectory (GT) are shown. The trajectory
estimated by the local solver (LS) is not in the vicinity of the ground truth
(GT) and hence is not visible. (Right) The eigenvalue spectrum of the SDP
solution.

C. Approximation-free dynamic initialization

An exact SDP formulation for (10), without a first-order
approximation to the exponential map (exp(ϖ∧) ≈ Id +ϖ∧)
can be obtained as follows. For each lever-arm substitution,
p̃u = KT(tk)p̄ul

, we add the following additional con-
straints:

T(tk) = T(tk−1)δT, k = 2 . . .K (21)

where δT := exp((ϖ∆tr)
∧) ∈ SE(d). In addition, the

orthogonality and the right-handedness constraints for each
R(tk) are included in our SDP formulation. The state is then
extended to include {Tk|k = 1, ..., Nr} and δT:

x = [xT
l vec(R(t1))

T p(t1)
T . . . vec(R(tK))T p(tK)T

vec(δR)T δpT h]T

This formulation incurs higher computational cost due to the
additional variables in the state. Specifically, we found that
in the case of 2D dynamic initialization, the SDP optimizer
took on average 12 s for the approximation-free approach, even
without the inclusion of additional redundant constraints.

D. Simulation

1) 2.5D dynamic initialization: Qualitative results of the
estimated trajectory and the eigenvalue spectrum with range
measurement noise σr = 5 cm are shown in Figure 11. The
trajectory estimated by the SDP relaxation aligns with the
ground-truth trajectory. The trajectory estimated by the local
solver is not in the vicinity of the ground truth and hence is
not visible.

E. Real experiments

1) 3D static initialization: Qualitative results from 3D
static initialization showing the pose estimated by the local
solver and the proposed method are shown in Figure 12.
The estimated pose by the proposed method overlaps with
the ground-truth pose. The eigenvalue spectrum of the SDP
solution shown in Figure 12 suggests a rank-1 solution.
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Fig. 12: (Left) Qualitative results of the estimated pose from real 3D static
initialization experiments. The pose estimated by the local solver (LS) and
the proposed method (SDP) are shown along with the ground-truth pose
(GT). The GT pose overlaps with the SDP pose. (Right) Log plot of the
eigenvalue magnitudes of the corresponding SDP solution. The eigenvalue
spectrum suggests a rank-1 solution, indicating that the proposed method
recovers the global minimum.

−1.75−1.50−1.25
x (m)

0

5

y
(m

)
0 25

index

10−10

10−3

ei
ge

n
va

lu
e

GT LS Proposed SDP

Fig. 13: Results from a real 2D dynamic initialization experiment. (Left)
Estimated trajectories from the local solver (LS) and the proposed method
(SDP) along with the ground-truth trajectory (GT). The GT trajectory is not
discernible as it overlaps with the SDP trajectory. For each method, the robot
pose at t = 0 is indicated by a red dot at the robot position. (Right) Log plot
of the eigenvalue spectrum of the corresponding SDP solution.

2) 2D dynamic initialization: Results from 2D dynamic
initialization with the trajectory estimated by the proposed
method and the local solver are shown in Figure 13. The
eigenvalue spectrum of the SDP solution suggests a rank-1
solution.
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