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Abstract—We propose a fixed-lag smoother-based sensor fusion
architecture to leverage the complementary benefits of range-
based sensors and visual-inertial odometry (VIO) for localization.
We use two fixed-lag smoothers (FLS) to decouple accurate
state estimation and high-rate pose generation for closed-loop
control. The first FLS combines ultrawideband (UWB)-based
range measurements and VIO to estimate the robot trajectory
and any systematic biases that affect the range measurements
in cluttered environments. The second FLS estimates smooth
corrections to VIO to generate pose estimates at a high rate
for online control. The proposed method is lightweight and
can run on a computationally constrained micro-aerial vehicle
(MAV). We validate our approach through closed-loop flight tests
involving dynamic trajectories in multiple real-world cluttered
indoor environments. Our method achieves decimeter-to-sub-
decimeter-level positioning accuracy using off-the-shelf sensors
and decimeter-level tracking accuracy with minimally-tuned
open-source controllers.

I. INTRODUCTION

Range-based positioning involves determining the position
of a robot by measuring the distance to specific landmarks
known as anchors. Range-based positioning is appealing as
it is lightweight, drift-free, and computationally inexpensive.
Additionally, unlike camera or lidar-based positioning, it does
not require a detailed map of the environment or persis-
tent features. Common approaches to range-based positioning
include radio-frequency (RF)-based positioning technologies
such as the Global Positioning System (GPS) for outdoor
environments [1]

However, urban canyons and most indoor environments
are not amenable to GPS-based positioning. Ultrawideband
(UWB) [2] is an alternative RF-based technology suitable for
such environments. A challenge of RF technologies such as
UWB is that the measurements are affected by objects in the
environment that obstruct the line of sight between the anchor
and the robot, resulting in biased non-line of sight (NLOS)
measurements [3]. The effect of NLOS measurements is more
pronounced in cluttered environments. The combination of
biases and the low-dimensional nature of range measurements
can result in non-smooth state estimates that is undesirable for
closed-loop control [4].

Since range measurements are low dimensional, a single
range sensor cannot determine the full pose of a robot.
As such, range sensors are typically combined with other
sensing modalities such as wheel odometry, inertial odometry,
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Fig. 1: Overlay of trajectories from closed-loop flight experiments using our
proposed method for localization. The proposed method uses a dual-rate fixed-
lag smoother architecture to combine range measurements from ultrawideband
radios and visual inertial odometry for localization. The UTIAS testbed (left
top and left bottom) and the Myhal testbed (right bottom) present challenging
scenarios in terms of poor geometry of anchors for range-based positioning,
and sparse features for visual inertial odometry, respectively. The UTIAS
cafeteria (right top) is challenging as ultrwideband signals are affected by
reflections from the obstacles. A video of our experiments is available at:
http://tiny.cc/uwb vio.

and visual odometry [5]–[7]. Decreasing cost of high-quality
cameras and inertial measurement units (IMUs) has led to
the development of mature visual-inertial odometry (VIO) [8]
algorithms. VIO provides smooth relative 3D pose measure-
ments at a high rate. We refer to output obtained from a VIO
algorithm as simply odometry. The smooth nature of VIO
makes it suitable for closed-loop control. However, VIO is
susceptible to drift, especially in dynamic environments with
changing scenery.

The above discussion highlights the complementary nature
of range-based positioning and odometry-based positioning.
We refer to the combination of range and odometry-based
localization as range-aided localization. To leverage their
complementary benefits for accurate state estimation and
closed-loop control, any sensor fusion scheme must (i) be
tractable for online estimation on computationally constrained
platforms, (ii) estimate any biases associated with the range
measurements, and (iii) provide high-rate, drift-free, smooth
state estimates for reliable trajectory tracking.

A common approach to state estimation is to use a batch
trajectory estimator [9, Chapter 4]. While such an approach
can provide smooth and accurate state estimates, it is not
well-suited for online control. Filtering-based methods [5],
[10], [11], while computationally lightweight, can result in
poorer accuracy and non-smooth estimates as they discard
older measurements. These non-smooth estimates can result
in oscillatory behavior when used for online control [12]. In
this paper, we propose a sensor fusion architecture that meets
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all of the above requirements. The following are the main
contributions of our work.

• We propose a dual fixed-lag smoother (FLS) architecture
to fuse range measurements from UWB radios and VIO
for localization and navigation. The decoupled nature
of our architecture enables high-accuracy trajectory es-
timation and high-rate smooth pose generation for online
control simultaneously.

• We present a computationally lightweight method to esti-
mate the systematic biases in range measurements. Unlike
previous works, our approach does not require ground
truth pose information, additional sensors, or training
data. The proposed bias estimation method reduces the
trajectory estimation error by 50% compared to not
estimating the biases.

• We demonstrate the effectiveness of our approach in
closed-loop flights where the proposed method achieves
decimeter-to-sub-decimeter-level localization accuracy
and decimeter-level tracking accuracy in real-world clut-
tered indoor environments.

• We release our source code1 and the dataset2 collected
during the experiments.

II. RELATED WORK

In this section, we review previous works that combine
range sensors with other sensors to achieve accurate local-
ization. We also review works that estimate biases in UWB
measurements. Finally, we review works that focus on the
fusion of range and odometry measurements for navigation.

UWB-aided localization and navigation: As alluded to
earlier, a single UWB radio cannot estimate the full 3D pose,
and as such it is used with other sensors such as an IMU or
camera. The fusion of UWB and IMU measurements can be
done either by using range measurements, referred to as range-
based approach, or by first estimating position from range
measurements and then using the position as input, referred
to as position-based approach. Systems adopting range-based
approaches [5], [13], position-based approaches [14], and a
combination thereof [15] have been shown previously. The
common sensor fusion strategies include parametric filtering-
based methods such as the extended Kalman filter (EKF) [5],
[10], [11], [13], [16] and non-parametric methods such as par-
ticle filters [3]. More recently, optimization-based approaches
have gained traction [7], [17]. Computer vision algorithms
have also been used in conjunction with UWB sensors to
achieve accurate localization using filtering-based [4], [11],
[18] and optimization-based approaches [7]. More recently,
tightly-coupled approaches that combine range measurements
with data from cameras, IMUs, and lidars [19], [20] for multi-
modal simultaneous localization and mapping (SLAM) have
been demonstrated. In addition to localization, our proposed
system is also designed for reliable closed-loop trajectory
tracking on computationally constrained platforms.

Bias estimation in UWB-based localization: As mentioned
previously, in cluttered environments, UWB measurements are

1https://github.com/utiasDSL/ra lan.git
2https://utiasdsl.github.io/utias ra loc

susceptible to noise and bias. The identification of biases
in UWB measurements requires additional information from
other sources. Measurements from a motion capture system are
used to estimate biases in [14], [21], [22]. Fiducial markers-
based pose estimation is used to facilitate bias estimation in
[4]. In [19] additional sensors such as lidars are used. The
methods proposed in [12], [23] use training data collected
from multiple closed-loop flights to learn the bias models. A
variety of models including parametric models [3], [12], [14]
and non-parametric models such as Gaussian processes [21],
neural networks [22], and kernel density-based models [24]
have been used to estimate the biases in range measurements.
Some of the limitations of previous works are that they require
accurate ground truth information or training data and can be
computationally intractable for online estimation. In contrast,
our method does not require ground truth or training data
and is tractable to run online on computationally constrained
platforms.

Multisensor fusion: We review works that focus on the
fusion range measurements obtained from UWB or GPS-based
systems and odometry obtained from VIO or IMU for closed-
loop control. A common approach is to combine absolute and
relative measurements directly using a filtering-based method
[11], [25] or an optimization-based method [7]. An alternative
approach is to model the sensor fusion problem as a frame
alignment problem [26]. The benefit of such an approach is
that the core estimation pipeline runs at a lower rate to correct
the drift in the high-rate relative measurements, which is then
used to perform control. We extend the approach of [26] to use
range measurements (instead of position measurements) with
online bias estimation. Additionally, we augment the frame
alignment method of [26] to generate smooth frame alignment.

To the best of the authors’ knowledge, sensor fusion of
UWB-based range measurements and odometry from VIO for
(i) estimation of the robot state, (ii) generation of smooth state
estimates at high-rate for closed-loop control, and (iii) online
estimation of systematic biases in range measurements without
additional sensors on computationally constrained platforms
has not been demonstrated previously.

III. PROBLEM STATEMENT

The objective of our work is to not only estimate the robot
trajectory and the biases associated with range measurements,
but also to generate smooth state estimates at high-rate for
closed-loop control. We assume that (i) the position of the
anchors is known, and (ii) the robot is equipped with a UWB
radio and a high-rate VIO sensor.

We introduce the notation that will be used throughout the
paper. Elements of the special Euclidean Lie group T ∈ SE(3)
are used to represent 3D poses. A generic pose T is param-
eterized as T = {p,R}, where p ∈ R3 represents the 3D
position and R ∈ SO(3), a member of the special orthogonal
group, represents the orientation. The pose of a frame A in
frame B is represented by TA

B = {pA
B ,R

A
B}.

We denote the world frame by {W}, the robot frame by
{i}, and the local frame associated with VIO by {o}. Unlike
the world frame, the local frame is not fixed and is set to

https://github.com/utiasDSL/ra_lan.git
https://utiasdsl.github.io/utias_ra_loc
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Fig. 2: The problem of sensor fusion of UWB range measurements and VIO
odometry is modeled as a frame alignment problem between the world frame
{W} and the odometry frame {o}. The absolute but non-smooth estimate
TW

i obtained from fusing UWB and VIO measurements is combined with
the relative but smooth estimate To

i from VIO to estimate the offset TW
o

between the two frames.

the point in space where the VIO algorithm is initialized. The
UWB range measurements are reported in the world frame
whereas odometry from VIO is in the local frame. The bias
associated with the measurements from the lth anchor, al, is
denoted by bal

∈ R.

IV. MODELLING
In the next subsection, we provided an overview of our

system architecture. A detailed description of the individual
components is provided in the subsequent subsection.

A. Motivation and System description

Similar to [26], we formulate the problem of sensor fusion
as a frame alignment problem. Unlike [26], which considers
a position-based approach, we use a range-based approach. A
limitation of the position-based approach is that the effects
of the biases in range measurements are not discernible from
the position measurements. In a range-based approach, biases
result in longer range measurements, and hence, the biases can
be estimated.

The block diagram of our system architecture is shown in
Figure 3. First, we combine range measurements and odometry
to estimate the robot trajectory and any systematic biases in
range measurements using a fixed-lag smoother (UFLS). The
estimated robot pose, TW

i , is non-smooth due to the sparse
and non-smooth nature of range measurements. To keep the
computational cost low, UFLS is run at a lower rate compared
to individual sensor update rates. However, the low-rate and
non-smooth nature of the output of UFLS makes it unsuitable
for online control.

The output of VIO, To
i , is typically high-rate and smooth

but drifts over time. An approach to get high-rate drift-free
estimates is to combine the output of UFLS, TW

i , and the
output of VIO, To

i , by performing frame alignment. Specifi-
cally, the output of UFLS and VIO can be used to obtain the
frame offset between the world frame and the local frame

TW
o = TW

i (To
i )

−1. (1)

The frame diagram for such a setup is shown in Figure 2. We
have omitted the dependency on time for notational clarity.
This frame offset can be combined with the latest odometry-
based pose estimate [26] to generate high-rate and drift-free

 

Fig. 3: Overview of the proposed architecture. Range measurements from
UWB radios and odometry from VIO are combined in the first fixed-lag
smoother (UFLS) to estimate the robot pose TW

i and the systematic biases in
range measurements. The estimated robot pose is then combined with the latest
estimate from VIO To

i to estimate the frame offset TW
o between the world

frame and the local frame. A white-noise-on-acceleration (WNOA) motion
model is used to generate a smooth frame offset, T̂W

o , using the second
fixed-lag smoother (WFLS). The smoothed frame offset is then combined
with VIO-baed odometry to obtain smooth, high-rate, and drift-free robot
pose T̂W

i which is sent to the controller.

pose estimates, T̃W
i = TW

o To
i . While this addresses the issue

of generating drift-free high-rate pose estimates, in a range-
based setup, the frame offset TW

o (and hence T̃W
i ) is non-

smooth on account of TW
i being non-smooth.

To generate smooth frame offset estimates, we impose a
white-noise-on-acceleration (WNOA) [27], [28] motion model
on the frame offset. The motivation for choosing such a
model is that (i) the WNOA model provides a smooth prior
which acts as a regularization term to filter any non-smooth
component, and (ii) the WNOA model leads to motion priors
with sparse system matrices which be solved efficiently. The
motion prior and the frame offset estimates obtained from (1)
are combined in a WNOA-based fixed-lag smoother (WFLS in
Figure 3) to generate smooth frame offset T̂W

o . This smoothed
frame offset is then combined with the latest odometry-derived
pose estimate to generate drift-free, high-rate, and smooth
robot pose estimate, T̂W

i = T̂W
o To

i .
The advantage of such an architecture is that the estimation

of the biases and the robot trajectory can happen at a lower
rate while still being able to generate smooth state estimates
using drift-corrected odometry for online control. Note that the
odometry from VIO is used twice in entire pipeline. However,
the odometry estimate used for calculating the frame offset is
different (older) compared to the odometry estimate combined
with the smoothed frame offset for control, which precludes
double counting of odometry.

B. UWB-aided fixed-lag smoother

In UFLS, a fixed window of range and odometry mea-
surements are combined to estimate the robot trajectory and
the biases in range measurements. The size of the window is
parameterized by time duration δtufls. Measurements older than
δtufls are discarded and states older than δtufls are marginalized.
The factor graph corresponding to such a setup is shown in
Figure 4. The UWB range measurement at any time t between
the robot and an anchor al is given by

rlt = ∥pW
al

−RW
it p

i
u − pW

it ∥2 + bal
+ ηrt, (2)



TW
i0

ϕo0
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Fig. 4: Factor graph for the UWB-aided fixed-lag smoother (UFLS). Prein-
tegrated odometry is added as a binary factor ϕot to constrain consecutive
robot poses. Each range measurement adds a binary factor ϕrlt between the
robot pose TW

it
and the node bal representing the bias associated with anchor

al.

where ∥ · ∥2 is the ℓ2 norm, TW
it = {pW

it ,R
W
it } is the pose

of the robot at time t, pi
u is the position of the UWB radio

w.r.t the body frame a.k.a lever arm, ηrt ∼ N (0, σ2
r) is the

additive white Gaussian noise, pW
al

is the anchor position,
and bal

is the bias associated with measurements from anchor
al, respectively. In contrast to previous works, we model the
biases as part of the same factor graph as the robot trajectory.
The motivation for such a model is to capture the correlations
between the robot trajectory and the measurement biases.
Although biases are assumed to be constant in a particular
window of the smoother, they can change between subsequent
windows to accommodate spatially varying biases. A binary
factor ϕrlt between the latent robot state and the latent anchor-
specific bias is added for every range measurement. To filter
outliers, we employ a simple Euclidean distance check where
range measurements that exceed the predicted range by δrthr
are discarded.

As mentioned previously, the update rate of VIO is generally
higher than that of UWB. Consequently, multiple odometry
estimates are received between two subsequent range mea-
surements. The conventional approach of adding a node in
the factor graph for every odometry estimate can result in a
large graph size and increase the computational cost quickly.
Alternatively, only those odometry estimates that are time-
aligned with the range measurements can be included in the
graph [26], however, in doing so, useful odometry information
is discarded. In order to include all of the odometry infor-
mation while keeping the computational cost low, we take
inspiration from IMU preintegration [29] and propose a similar
method to integrate multiple odometry estimates into a single
preintegrated measurement.

Odometry preintegration: We represent uncertainty in 3D
poses using the formulation of [30] but with the right per-
turbation convention. Specifically, a generic pose is decom-
posed into a nominal pose T̄it ∈ SE(3) and a perturbation
ξt ∈ R6×1:

Tit = T̄it exp(ξ
∧
t ), (3)

where exp is a retraction operation for SE(3), ∧ maps an
element of R6 to an element of the associated Lie algebra
se(3), and ξt ∼ N (0,Σit) is a Gaussian random variable.
Consider a sequence of monotonic time steps (t0, t1, ..., tk),
and the corresponding odometry estimates obtained at those
time steps: {{T̄o

i1
,Σi1}, {T̄o

i2
,Σi2}, ..., {T̄o

ik
,Σik}}. Here,

T̄o
it

∈ SE(3) represents the pose of the robot frame
{i} in the odometry frame {o} at time t and Σit

pW
o0

ϕw0

pW
o1

ϕw1

pW
o2

. . . pW
ok

ϕy1 ϕy2 ϕyk

Fig. 5: Factor graph for the white-noise-on-acceleration (WNOA) fixed-lag
smoother (WFLS). Motion priors obtained using the WNOA motion model
are added as binary factors ϕwt to constrain the position component of the
frame offset, pW

ot
. Frame offsets computed by UFLS are added as unary

measurement factors ϕyt .

is a positive definite matrix representing the correspond-
ing covariance. First, we convert the odometry estimates
into incremental odometry between consecutive time steps:
{{∆T̄i0

i1
,Σ′

i1
}, {∆T̄i1

i2
,Σ′

i2
}, , ..., {∆T̄

ik−1

ik
,Σ′

ik
}}, where

∆T̄it
it+1

= (T̄o
it)

−1T̄o
it+1

, (4)

Σ′
it+1

= Ad
(∆T̄

it
it+1

)−1ΣitAdT
(∆T̄

it
it+1

)−1 +Σit+1
, (5)

and, AdT is the Adjoint operator for SE(3). The incremental
odometry estimates are then composed to give a single prein-
tegrated measurement:

∆T̄it
it+2

= ∆T̄it
it+1

∆T̄
it+1

it+2
, (6)

Σ′′
it+2

= Ad
(∆T̄

it+1
it+2

)−1
Σ′

it+1
AdT

(∆T̄
it+1
it+2

)−1
+Σ′

it+2
. (7)

The derivation of the above equations can be found in Ap-
pendix A. Equations (14) and (15) provide the mean and
the covariance of the preintegrated odometry measurement
which captures the total relative displacement and orientation
change as given the individual odometry estimates. Each
preintegrated odometry measurement ϕot is added as a binary
factor between consecutive nodes in the factor graph as shown
in Figure 4. We estimate the latent states using maximum a
posteriori (MAP) inference.

C. WNOA-based fixed-lag smoother

The output of UFLS is combined with a time-aligned
odometry estimate to estimate the frame offset using (1).
The WNOA-based fixed-lag smoother (WFLS) uses a WNOA
motion model and noisy estimates of the frame offset, TW

o ,
to generate smooth estimates of the frame offset, T̂W

o . The
factor graph for this setup is shown in Figure 3. Generally,
range measurements have a more direct impact on the position
component pW

o of the frame offset compared to the rotation
component RW

o . This is because a range measurement influ-
ences the rotation component only through the lever arm, pi

u,
which is generally small compared to the magnitude of range
measurement. Hence, we impart a motion model only on the
position component.

Motion model: We adopt the Gaussian process (GP)-based
continuous-time formulation proposed in [27] and impart the
following linear time-invariant motion model on the position
component pW

ot :

ẋ(t) = Ax(t) + Lηw(t),

with

x(t) =

[
pW
ot

ṗW
ot

]
,A =

[
0 I
0 0

]
,L =

[
0
I

]
,



where I and 0 are the identity and zero matrices of appropriate
dimensions, ṗW

ot = dpW
ot /dt, and ηw(t) ∼ GP(0,Qwδ(t−t′))

is white noise drawn from a zero-mean GP with power spectral
density matrix Qw.

Consider a sequence of monotonic times (t0, t1, ..., tk). The
mean state at time tj is

xtj = Φ(tj , tj−1)xj−1, (8)

with the state transition matrix

Φ(tj , tj−1) =

[
I ∆tj:j−1I
0 I

]
,

where ∆tj:j−1 = tj − tj−1. The corresponding covariance
matrix is

Qj:j−1 =

[
1
3∆t3j:j−1Qw

1
2∆t2j:j−1Qw

1
2∆t2j:j−1Qw ∆tj:j−1Qw

]
. (9)

The motion prior given by (8) and (15) is added as a binary
factor ϕwj−1

in the factor graph (see Figure 5). The measure-
ment in this case is the position component of the frame offset
at time tj computed using (1)

yj = pW
oj + ηoj , (10)

where ηoj ∼ N (0,ΣpW
oj
) is the additive white Gaussian noise.

The covariance ΣpW
oj

is obtained from UFLS as the marginal
covariance. We add a unary factor ϕyj

to the factor graph upon
the receipt of a new frame offset. Similar to UFLS, latent states
in WFLS are inferred using MAP inference. As before, the
window size is parameterized by a time duration δtwfls. The
window size and the update rate of WFLS are independent
of UFLS update rate and can be run at a lower or higher rate
depending on the application. The output of WFLS is a smooth
estimate of the position component of the frame offset p̂W

oj .
The rotation component of the frame offset R̂W

oj is obtained by
plugging in the most recent estimate from UFLS and a time-
aligned VIO measurement in (1). Although we have imposed
a motion model only on the position component, the extension
to include the rotation component is straightforward.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our
method through simulation and real experiments. In sim-
ulation, we present qualitative results which highlight the
importance of the WNOA motion model on the frame offset.
We defer results quantifying the efficacy and accuracy of our
method to real world experiments.

A. Simulation

We use the Gazebo simulator and a quadrotor from the
Rotors simulator package as our test platform. The quadrotor is
equipped with a generic range sensor and an odometry sensor.
The noise parameters for the simulated sensors are chosen to
reflect real sensor behavior.

We perform a qualitative comparison of the closed-loop
performance of our method against two different baselines in
simulation as it provides a safe environment to test different
methodologies. The first baseline is the conventional (CONV)
method where the output of the fixed-lag smoother UFLS is

x(m)

−2
0

2 y(
m

)

−2

0
2

z(
m

)

1

2

Estimation

x(m)

−2
0

2 y(
m

)

−2

0

2

z(
m

)

1

2

Tracking

CMD

CONV

Ours (w/o WNOA)

Ours (w WNOA)

Fig. 6: Trajectory estimation (left) and tracking (right) performance of
different approaches. The inclusion of a white-noise-on-acceleration (WNOA)
motion model (Ours w WNOA) provides smooth corrections to VIO which
results in reliable tracking of the commanded (CMD) trajectory compared to
not including a WNOA motion model (Ours w/o WNOA) or the conventional
approach (CONV) where output of UFLS is used for control.

used for closed-loop control. The second baseline uses the
output of WFLS but without any smoothing, dubbed Ours
(w/o WNOA). This is similar to the method of [26]. We
refer to our proposed method as Ours (w WNOA). The same
minimum-jerk trajectory is commanded in all experiments.
The stock proportional-integral-derivative (PID) controllers
from the Rotors simulator package are used for both position
and attitude control.

The results are shown in Figure 6. The CONV baseline
results in unstable tracking due to the low rate and non-smooth
output of UFLS. The second baseline tracks the commanded
trajectory, however, the non-smooth nature of the estimated
frame offset results in poor tracking performance. In contrast,
our proposed method tracks the commanded trajectory reliably.
We provide additional details on the benefit of the additional
smoothing in Appendix B.

B. Real experiments

To quantify the performance of the proposed method, we
performed closed-loop flight experiments in three real in-
door environments: (i) University of Toronto, Institute for
Aerospace Studies (UTIAS) testbed, (ii) UTIAS cafeteria, and
(iii) Myhal testbed. Due to space constraints, we provide
quantitative results from the UTIAS testbed and the UTIAS
cafeteria. Footage of the flight experiments from all three
environments can be found in the accompanying video1.

Baselines: We focus on trajectory estimation accuracy,
which is the core contribution of our work. We compare our
method against three different baselines. The first baseline
consists of VIO-only estimation, which we refer to as VIO.
Since VIO provides relative pose estimates, we initialize the
VIO algorithm close to the ground truth only for comparison.
The second baseline is similar to the method proposed in [26]
where no bias estimation is done, which we refer to as Ours
(w/o bias). Note that we had to modify the method of [26]
to incorporate range measurements as the UWB system used
in our experiments does not provide position measurements.
The third baseline is batch trajectory estimation [9, Chapter 4].

1http://tiny.cc/uwb vio

http://tiny.cc/uwb_vio
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Fig. 7: Results from closed-loop flight experiments at the UTIAS testbed. The top row shows the qualitative trajectory estimation performance. The ground
truth trajectory also shows the closed-loop tracking performance compared to the commanded trajectory (Command). The bottom row shows the position
root-mean-square error (RMSE) box plots for (i) visual-inertial odometry (VIO), (ii) our method without anchor bias compensation (Ours w/o bias), (iii) batch
estimation with constant anchor bias compensation (Batch const bias), and (iv) our method including anchor bias compensation (Ours). The maximum speed
for the slalom path is 2m/s and for the others is 1m/s.
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Fig. 8: Our test platform used in experiments is a quadrotor equipped with
a DW1000-based UWB radio and an Intel Realsense T261. All computation
is performed onboard on a Nvidia Jetson TX1 computer. In areas where a
motion capture system is not available, a Leica total station is used to get
ground truth position by tracking the prism on the quadrotor.

This represents the ideal scenario where all of the sensor data
is available for estimation. For batch estimation, we consider
a single bias latent variable for each anchor across the entire
trajectory, which we refer to as Batch (const bias). We refer
to our method as Ours.

Setup: We use DW1000-based UWB radios from Bitcraze.
The position of the UWB anchors is measured using a Leica
total station. Our test platform is a custom-built quadrotor (see
Figure 8) equipped with a UWB radio which provides range
measurements, and an Intel Realsense T261 that provides VIO.
We disable the the loop closure feature on the T261 to run
it in VIO-only mode. All computation is performed onboard
on a Jetson TX1 single-board computer. The lower-level flight
controller is run on a PX4-based autopilot with stock firmware.
The quadrotor is also equipped with a Leica prism to obtain
ground truth position in environments where a motion capture
system is not available. The UWB radios are operated in
two-way range (TWR) mode. The range measurement outlier
rejection threshold is chosen as δrthr = 0.5m, which is larger

 

 

 

 

 

 

 
 

Fig. 9: A panoramic view of the UTIAS cafeteria with the positions of the
UWB anchors highlighted in red circles. The dimensions of the cafeteria are
10m× 10m× 5m.

than 3σr with σr = 0.1m. The two fixed-lag smoothers, UFLS
and WFLS, are implemented using the GTSAM library [31].
The frequency of range measurements and odometry from
VIO are 17 Hz and 200 Hz, respectively. The update rate
of UFLS is 5 Hz and that of WFLS is 10 Hz with δtufls = 1 s
and δtwfls = 1 s.

Experimental procedure: The proposed estimation and con-
trol pipelines run online on the onboard computer of the
quadrotor. For navigation, we generate minimum-jerk trajecto-
ries using coarse user-defined waypoints. A trajectory sampler
uses the estimated state to generate pose and velocity setpoints
to track the reference minimum-jerk trajectory. In a new en-
vironment, we perform a single autonomous calibration flight
to obtain coarse values for anchor-related biases, which are
then used as priors for subsequent flights. In each experiment,
estimation results for the proposed method along with the
sensor data are recorded onboard. The recorded sensor data
is used to evaluate the different baselines offline.

UTIAS testbed: Our first test space is an indoor testbed
with 8 UWB anchors at the corners of a flight arena of
dimensions 7m × 8m × 3.5m The arena is equipped with a
Vicon motion capture system for ground truth. We performed



multiple closed-loop flight experiments with 4 different paths
shown in Figure 7. The commanded speed for the first 3
paths is 1m/s, whereas the commanded speed for the slalom
path is 2m/s. Box plots showing the absolute position root-
mean-square error (RMSE) are provided in the bottom row
of Figure 7. The top row shows qualitative estimation and
tracking results from one such experiment for the different
paths. Note that since we are doing closed-loop flights, the
ground truth (GT) trajectory shows the tracking performance.

The box plots highlight the importance of anchor bias
estimation as it doubles the estimation accuracy in many cases.
Since batch estimation considers the full measurement history,
it is expected to be better than the proposed method. However,
in some cases, the proposed method is more accurate than
batch estimation, which can be attributed to spatially varying
biases. Specifically, batch estimation considers constant anchor
biases for the entire trajectory whereas the proposed method
considers the biases to be constant only within the current
estimation window. This observation is consistent with the
results of [3]. In most cases we achieve a position RMSE
below 10 cm. The performance on the butterfly trajectory is
poorer as the MAV travels to the extremities of the test arena
where the estimation is affected by the dilution of precision [1,
Section 7.3]. The position RMSE values observed in the square
path are similar to the values observed in [17]. The results are
promising considering that the DW1000-based UWB radios
used in our experiments have a precision of ±10 cm compared
to the P440 UWB radios used in [17] which have a precision of
±1 cm. The results show that the assumption of constant bias
within the current estimation window is sufficient to achieve
(sub)decimeter-level accuracy in many cases.

Although the core contribution of our work is on localiza-
tion, we provide the best-case trajectory tracking performance
for the four test trajectories in Table I. The results show
that our method achieves smooth and reliable tracking at
moderate speeds with minimally tuned off-the-shelf open-
source controllers. The higher tracking error in the slalom path
can be attributed to the minimally tuned controller as the MAV
overshoots the commanded trajectory at higher speeds. Note
however that the trajectory estimation accuracy is still high in
this case (see boxplot in Figure 7).

UTIAS cafeteria: Our second test space is the UTIAS
cafeteria. A panoramic view of the cafeteria is shown in Figure
9. The dimensions of the cafeteria are 10m×10m×5m with 8
UWB anchors installed on the ceiling and on the floor. This is
a very challenging setup for UWB-based localization as all of
the anchors are occluded by metallic and non-metallic objects
that induce serve NLOS scenarios.

For ground truth data, we use a Leica total station in track-
ing mode. In this mode, the total station tracks a prism that is
mounted on the quadrotor (see Figure 8) and outputs position
of the prism at 5Hz. We observed that the total station would

TABLE I: Best-case trajectory tracking performance using the proposed
method from flight tests in the UTIAS testbed.

Path square hourglass butterfly slalom
RMS Tracking Error (m) 0.106 0.118 0.135 0.232
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Fig. 10: Trajectory estimation results from two experiments in the UTIAS
cafeteria. The quadrotor is manually moved along different paths in the
experiments. The proposed estimation pipeline is run online onboard the
quadrotor and results from our method (Ours), VIO-only estimation (VIO),
and ground truth (GT) are recorded. The corresponding position root-mean-
square error (RMSE) values are provided in Table II.
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Fig. 11: Results from closed-loop flight experiments in the UTIAS cafeteria.
The estimated trajectories from VIO-only estimation (VIO) and our proposed
method (Ours) are shown. The maximum speeds for the square path and the
slalom path are 1m/s and 2m/s, respectively.

lose track of the quadrotor during closed-loop flights. Hence,
to quantify the estimation accuracy we simulated closed-loop
flights by moving the quadrotor manually at lower speeds. In
each of the experiments, the estimation pipeline runs online
onboard the quadrotor. Results from two such experiments are
shown in Figure 10. The corresponding position RMSE values
from four experiments are provided in Table II. The accuracy
of the proposed method is lower compared to the previous
case but similar to that observed with the butterfly path in
the UTIAS testbed. We see that in some cases the proposed
method performs better than the batch approach, which can
be attributed to spatially varying biases.

We performed flight experiments with the same four paths

TABLE II: Position root-mean-square error (RMSE) for VIO-only estimation,
batch trajectory estimation with constant bias compensation (Batch const bias)
and our method (Ours) from experiments in UTIAS cafeteria.

Algorithm Position RMSE (m)
Path 1 Path 2 Path 3 Path 4

VIO 0.272 0.434 0.208 0.227
Batch (const bias) 0.125 0.217 0.150 0.137

Ours 0.130 0.154 0.152 0.121



from the previous setup. Results from two such experiments
are shown in Figure 11. During the experiments, we observed
that most of the anchors were occluded and less than half were
in line of sight at any given time. The proposed method is still
able to accurately track the desired trajectories at moderate
speeds in highly-cluttered environments.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a dual fixed-lag smoother
approach to fusion of range measurements and VIO for
localization and navigation of MAVs. We showed that the pro-
posed method achieves accurate localization and also generates
smooth pose estimates for control. The proposed approach is
able to estimate any systematic biases in range measurements
resulting in a two-fold increase in localization accuracy. Our
method is lightweight and can run on a computationally
constrained MAV. Through multiple real world experiments,
we showed that the proposed approach achieves decimeter-
to-sub-decimeter-level localization accuracy with off-the-shelf
sensors and open-source controllers in cluttered indoor envi-
ronments.
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APPENDIX

This appendix accompanies the arXiv verison of this paper.

A. Odometry preintegration

We represent the uncertainty associated with 3D poses on
the corresponding Lie algebra [9]. Specifically, a pose Tit ∈
SE(3) is decomposed into a nominal pose T̄it ∈ SE(3) and
a small perturbation ξt ∈ R6×1:

Tit = T̄it exp(ξ
∧
t ), (11)

where exp is the retraction operation for SE(3), and ∧ is
the hat operator that maps an element of R6 to an element
of the Lie algebra se(3), and ξt ∼ N (0,Σit) is a Gaussian
random variable. Consider a sequence of monotonic time
steps (t0, t1, ..., tk) and the corresponding odometry estimates
{{T̄o

i1
,Σi1}, {T̄o

i2
,Σi2}, ..., {T̄o

ik
,Σik}} as shown in Figure

12. Here T̄o
it
∈ SE(3) represents the pose of the robot frame

{i} with respect to the odometry frame {o} at time t and Σit

is a positive definite matrix representing the corresponding
covariance. First, we convert the absolute odometry measure-
ments into incremental odometry between consecutive time
steps:

∆Tit
it+1

= (To
it)

−1To
it+1

,

= (T̄o
it exp(ξ

∧
t ))

−1T̄o
it+1

exp(ξ∧t+1),

= exp(−ξ∧t ) (T̄
o
it)

−1T̄o
it+1︸ ︷︷ ︸

∆T̄
it
it+1

exp(ξ∧t+1),

= ∆T̄it
it+1

exp(−(Ad
(∆T̄

it
it+1

)−1ξt)
∧) exp(ξ∧t+1),

where Ad() is the Adjoint operator for SE(3). Thus, the
incremental odometry can be represented as combination of
a nominal pose:

∆T̄it
it+1

= (T̄o
it)

−1T̄o
it+1

(12)

and a perturbation:

exp(ξ′
∧

t+1) = exp(−(Ad
(∆T̄

it
it+1

)−1ξt)
∧) exp(ξ∧t+1).

To calculate the covariance associated with incremental odom-
etry, we apply the Baker–Campbell–Hausdorff (BCH) formula
to the above equation and use a second-order approximation
[9]:

Σ′
it+1

= Ad
(∆T̄

it
it+1

)−1ΣitAdT
(∆T̄

it
it+1

)−1 +Σit+1
(13)

Fig. 12: Visual-inertial odometry (VIO) estimates the robot pose To
it

at
different times steps along with the corresponding uncertainty Σit . In
odometry preintegration multiple odometry measurements are summarized
with a single preintegrated odometry measurement.
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Fig. 13: Trajectory tracking performance with (w WNOA) and without (wo
WNOA) additional smoothing. (a) The trajectory estimated by the first fixed-
lag smoother (UFLS). (b) Output of the second fixed-lag smoother used for
close-loop control.

Using (12) and (13), we can convert the odometry measure-
ments into a sequence of incremental odometry measurements
{{∆T̄i0

i1
,Σ′

i1
}, {∆T̄i1

i2
,Σ′

i2
}, , ..., {∆T̄

ik−1

ik
,Σ′

ik
}}.

The incremental odometry measurements can be composed
recursively as follows.

∆Tit
it+2

= ∆Tit
it+1

∆T
it+1

it+2
,

= ∆T̄it
it+1

exp(ξ′
∧

t+1)∆T̄
it+1

it+2
exp(ξ′

∧

t+2),

= ∆T̄it
it+1

∆T̄
it+1

it+2
exp(ξ′′

∧

t+1) exp(ξ
′∧
t+2),

where ξ′′t+1 = Ad
(T̄

it+1
it+2

)−1
ξ′t+1. The mean and covariance of

the composition can be derived similar to (12) and (13):

∆T̄it
it+2

= ∆T̄it
it+1

∆T̄
it+1

it+2
, (14)

Σ′′
it+2

= Ad
(∆T̄

it+1
it+2

)−1
Σ′

it+1
AdT

(∆T̄
it+1
it+2

)−1
+Σ′

it+2
. (15)

Equations (14) and (15) provide the mean and the covari-
ance associated with the preintegrated odometry measurement.

B. Effect of WNOA smoothing

In this section, we provide additional details to highlight the
benefit of additional smoothing for online control.

As mentioned previously, we decouple the core state estima-
tion routine and the localization routine that is used for control.
Specifically, the core state estimation is carried out using a



fixed-lag smoother (UFLS) that combines range measurement
and odometry and does not impose any smoothness require-
ments. The output of UFLS will be non-smooth on account of
corrections from range measurements and hence is not used
directly for close-loop control (see Figure 13a).

The output of UFLS is then fed to a second smoother
(WFLS) which imposes smoothness requirements using a
white-noise-on-acceleration (WNOA) motion model. Note that
the output of this particular smoother is used purely for
control and does not influence the core state estimation routine
or the localization RMSE. This additional smoothing could
result in lower trajectory tracking accuracy but we observed
empirically that without additional smoothing the trajectory
tracking accuracy is lower and results in unstable flights as
shown in Figure 13b.
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