
Gaussian Variational Inference with Covariance Constraints Applied to
Range-only Localization

Abhishek Goudar, Wenda Zhao, Timothy D. Barfoot, and Angela P. Schoellig

Abstract— Accurate and reliable state estimation is becoming
increasingly important as robots venture into the real world.
Gaussian variational inference (GVI) is a promising alternative
for nonlinear state estimation, which estimates a full probability
density for the posterior instead of a point estimate as in
maximum a posteriori (MAP)-based approaches. GVI works
by optimizing for the parameters of a multivariate Gaussian
(MVG) that best agree with the observed data. However,
such an optimization procedure must ensure the parameter
constraints of a MVG are satisfied; in particular, the inverse
covariance matrix must be positive definite. In this work, we
propose a tractable algorithm for performing state estimation
using GVI that guarantees that the inverse covariance matrix
remains positive definite and is well-conditioned throughout the
optimization procedure. We evaluate our method extensively
in both simulation and real-world experiments for range-only
localization. Our results show GVI is consistent on this problem,
while MAP is over-confident.

I. INTRODUCTION

State estimation is a crucial component of any autonomous
system. A robotic platform uses data from its sensors to
estimate its state, which typically includes its location in
the world and other physical parameters. This process is
challenging since data reported by the sensors is generally
noisy. Hence, it is important to not only estimate the state
accurately, but also quantify the uncertainty in the estimated
state. For instance, if the estimated position is off by some
margin, any subsystem such as a planner or controller that
uses this information should be aware of the uncertainty
in the estimated position. Many planning algorithms use
covariance as a tool for generating safe and efficient paths.
As such, accurate estimation of uncertainty is important.

Probabilistic state estimation provides a systematic frame-
work for managing uncertainty. In a probabilistic setting,
the latest state x is treated as a random variable from
a probability density function (PDF), p(x). After sensor
data y becomes available, Bayes’ theorem can be used
to infer the posterior PDF p(x|y). Application of Bayes’
theorem involves calculation of the partition function p(y) =∫
p(x|y)p(x). The partition function is tractable only for a

limited set of linear problems and linear approximations. For
general nonlinear problems, evaluation of the partition func-
tion is generally intractable. Thus, different approximations
are sought to calculate the posterior.

A popular choice for approximating the posterior is the
extended Kalman filter, which performs a local linear ap-

The authors are with the Institute for Aerospace Studies,
University of Toronto, Canada, and affiliated with the Vec-
tor Institute for Artificial Intelligence in Toronto. E-mails:
{firstname.lastname}@robotics.utias.utoronto.ca

proximation. However, this method can incur errors since
the problem is linearized about an operating point only
once. A popular approach to estimate the posterior is to
use sampling-based methods such as Markov chain Monte
Carlo (MCMC) [1]. While this approach yields accurate so-
lutions, it requires high computation. An alternative approach
involves calculating a point approximation to the posterior
known as maximum a posteriori. In MAP, the uncertainty is
approximated locally (known as the Laplace approximation),
which can result in poor uncertainty estimates.

In this work, we use variational inference (VI) [2] for state
estimation. In VI, the intractable posterior PDF p(x|y) is ap-
proximated with another PDF q(x) that is generally tractable.
VI turns the problem of estimating the true posterior into an
optimization problem by finding another tractable PDF q(x)
that minimizes a particular distance, such as the Kullback
Leibler (KL) divergence, to the true posterior distribution. In
Gaussian variational inference (GVI), the distribution q(x) is
chosen from the parametric family of multivariate Gaussian
distributions. This choice is motivated by the the central
limit theorem. Some of the benefits of VI include: (i) unlike
MCMC methods, VI lends itself to tractable methods for
approximate Bayesian inference, (ii) VI estimates the entire
PDF and not just the most probable state as in MAP, and
(iii) VI lends itself to a systematic framework for learning
different hyperparameters [3].

The optimization of variational parameters poses certain
challenges. Firstly, the parameters of a multivariate Gaussian
must satisfy constraints: the covariance matrix, which quan-
tifies the uncertainty, must be positive definite. A second
challenge is to ensure that the covariance matrix is well-
conditioned. Thirdly, any inherent sparsity of the covariance
matrix must be maintained during the course of optimization.

We propose an algorithm that guarantees these three
covariance constraints. We also show that the estimated
covariance with the proposed method is consistent. Finally,
to make GVI tractable, we use the fact that in most robotics
applications the joint likelihood function p(x,y) factors [4].
This results in expectations involving PDFs whose dimension
is smaller compared to the full PDF. A factor graph with such
a structure for range-only localization is shown in Figure 2.

In summary, the main contributions of this paper are (i)
we present an algorithm for state estimation using tractable
GVI that guarantees covariance constraints and provides a
well-conditioned inverse covariance matrix, (ii) we show
how efficient computation of expectations for joint likelihood
functions that factor, as proposed in [4], can be incorporated
into our method, and (iii) we perform evaluation of the

proposed method by applying it to range-only localization
in simulation and real-world experiments.

The paper is organized as follows. In Section II we
review related work. We introduce notation in Section III
and formulate the problem in Section IV. An introduction to
GVI, its challenges, and the proposed solution are presented
in Section V. Experimental evaluation is presented in Section
VI followed by the conclusion in Section VII.

II. RELATED WORK

In this section, we review the works that are the most
relevant to our method. A detailed overview of the different
estimation methods can be found in [5]–[7].

The application of variational inference to state estimation
has gained traction recently. As alluded to in the introduction
section, performing GVI is in general intractable. Various
approximations have been proposed to address this. In [8],
it is assumed that the posterior factors completely, giving
rise to the mean field approximation [9]. This assumption
ignores correlations between the states and can result in
poor estimation [1]. More recently, a batch state estimation
method called exactly sparse Gaussian variational inference
(ESGVI), which calculates the full posterior by exploiting
likelihood functions which factor, was proposed in [4]. In
[4] the authors iteratively maximize a lower bound, known as
the evidence lower bound (ELBO), which in turn minimizes
the KL divergence. This is also the most relevant work to
our method. The update equations proposed in [4] guarantee
sparsity constraints. However, the covariance matrix is not
guaranteed to be positive definite. The authors in [4] also
present a Gauss-Newton (ESGVI-GN) style approach, which
uses Jenson’s inequality to ensure all desired covariance
constraints are met. However, ESGVI-GN can result in
parameter estimates that are conservative.

Variational inference has been widely used in the field of
machine learning [10], [11]. As such, many methods have
been proposed to minimize ELBO (or its variants) while
ensuring parameter constraint satisfaction [12]–[14]. In [14],
a method is proposed based on natural gradient descent
[15] where the Cholesky factor of the covariance matrix
is updated directly. In [12], parameters for the square root
of the covariance matrix are optimized instead of directly
optimizing for the covariance matrix. The matrix square root
is then mapped to the covariance matrix using the matrix
exponential map. This method is generalized to other struc-
tured covariance matrices (such as inverse-covariance matrix
or low-rank covariance matrix) in [13]. We use this approach
to make sure the convariance constraints are satisfied. Unlike
[13], where the authors use a second-order approximation,
we show that a first-order approximation can be used with
our method, reducing the amount of computation required.
Additionally, the previous works do not take advantage of
likelihood functions that factor.

To the best of our knowledge, the application of GVI for
tractable state estimation that guarantees all of our desired
covariance constraints are satisfied and exploits likelihood
functions that factor has not been proposed previously.

III. NOTATION

We represent scalar variables by unbold letters, vectors
by bold lowercase letters, and matrices by bold uppercase
letters. The set GLN denotes the general linear group of all
invertible N×N matrices. The sets SN , SN+ , and SN++ denote
the set of N×N symmetric, symmetric positive semidefinite,
and symmetric positive definite matrices, respectively. The
operator Ep(x) [f(x)] denotes the expected value of the
function f under the distribution p(x):

∫
p(x)f(x)dx. The

determinant of a matrix A is denoted by |A|. The gradient
of a function f(x) is given by ∇xf(x) = ∂f(x)/∂x with
∇xf(x)|xl

denoting the value of the gradient evaluated
at xl. Similarly, the Hessian is given by ∇2

xxf(x) =
∂2f(x)/∂xT∂x. The letter I denotes the identity matrix
whose dimensions are to be inferred from the context.

IV. PROBLEM FORMULATION

We represent the general latent state by the N -dimensional
vector, x. In the context of state estimation, the latent space
could denote the entire robot trajectory along with additional
states such as position of landmarks and sensor-sensor ex-
trinsic parameters. The set of observations is denoted by y.
We assume that the joint likelihood p(x,y) factors:

p(x,y) =

K∏
k=1

pk(xk,yk), (1)

where xk and yk are subsets of x and y, and K is the total
number of factors. The goal is to find a tractable approxi-
mation to the posterior p(x|y) using variational inference.

V. GAUSSIAN VARIATIONAL INFERENCE

In variational inference, the goal is to select a probability
density function, q(x), over the latent variables that best ap-
proximates the true posterior density, p(x|y) [1]. A common
measure of similarity between two probability densities is the
Kullback-Leibler (KL) divergence [16]:

DKL(q||p) = −
∫
RN

q(x) ln

(
p(x|y)

q(x)

)
dx. (2)

The problem of approximating the posterior density p(x|y)
involves finding q(x) that minimizes (2). In GVI, the density
q(x) is restricted to the family of multivariate Gaussian
densities parameterized by the mean µ and the covariance
matrix Σ ∈ SN++, q(x) = N (µ,Σ):

q(x) =
1√

(2π)N |Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

(3)
As is convention in robotics applications, we parameterize

q(x) with the mean µ and the precision or the information
matrix Σ−1. The motivation is that the information matrix
is generally sparse, while the covariance matrix is dense.
Specifically, the information matrix is block-tridiagonal for
batch trajectory estimation and is an ‘arrowhead’ matrix for
SLAM problems [7]. Thus, the optimization parameters are
θ = {µ,Σ−1} and the parameter space is Ωθ = RN ×SN++.

Using Bayes’ theorem and the definition of entropy for a
multivariate Gaussian, equation (2) can be rewritten as:

DKL(q||p) = Eq(x) [− ln p(x,y)] +
1

2
ln |Σ−1|+ const,

where all the terms that are constant w.r.t. q(x) are ab-
sorbed into the constant term. Thus, minimizing DKL(q||p)
is equivalent to finding the parameters θ of q(x) that solve
the following optimization problem:

θ∗ = arg min
θ∈Ωθ

L(q), (4)

where

L(q) = Eq(x) [φ(x,y)] +
γ

2
ln |Σ−1|, (5)

and where φ(x,y) = − ln p(x,y) and γ ≥ 0 is a hy-
perparameter. The first term in the cost function pushes
the solution to match the observed data while the second
term prevents the solution from being too (un)certain. The
hyperparameter γ ≥ 0 is used to balance between fitting the
observed data and the solution being too (un)certain. The
hyperparameter can be tuned depending on the application.

Optimization of (5) can be achieved using Newton-like
methods, which minimize a local quadratic approximation
to the cost function. Alternatively, a gradient-descent-based
approach can be used. However, performing minimization
without taking into account the structure of the parameter
space can result in solutions that violate the set constraints.
In particular, for the case of the multivariate Gaussian, it is
necessary that the information matrix be in the set of positive
definite matrices: Σ−1 ∈ SN++. Next we discuss two methods
proposed in literature to minimize (5).

An iterative approach, based on Newton’s method, is
proposed in ESGVI [4]. It proceeds by minimizing a local
quadratic approximation to the cost function (5) and updates
the parameters θ in an iterative manner:

Σ−1
i+1 = Eqi(x)

[
∇2

xxφ(x,y)
]
, (6)

Σ−1
i+1δµ = −Eqi(x) [∇xφ(x,y)] , (7)
µi+1 = µi + δµ, (8)

where i is the iteration index with qi(x) denoting the density
obtained after the ith iteration. A limitation of the above
update scheme is that (6) does not ensure the information
matrix Σ−1 remains positive definite. Specifically, the infor-
mation matrix is set to the expected value of the Hessian
of the cost function, which is not guaranteed to be positive
definite for many problems, especially when the evaluation
point is not close to a minimum of the cost function.

A popular choice for minimizing cost functions of the
form (5) is natural gradient descent (NGD) [15]. In contrast
to regular gradient descent, NGD exploits the manifold
structure to achieve better convergence. Specifically, the
set of all probability density functions parameterized by
θ ∈ Ωθ is a manifold where each point θ denotes a
probability density function with KL divergence providing
the manifold with a Riemannian structure [14]. The natural
gradient ∇̃θL of (5) is related to the regular gradient∇θL as:

∇̃θL(q) = F−1
θ ∇θL , where F−1

θ is the inverse of the Fisher
information matrix (FIM). The connection between Gaussian
variational inference and NGD has already been established
in [4]. Note that the choice of parameterization θ for q(x) can
simplify the computation of the FIM significantly [17]. The
update equations for the mean and the information matrix
using NGD can be written as [13], [14]:

Σ−1
i+1 = (1− βγ)Σ−1

i + βEqi(x))

[
∇2

xxφ(x,y)
]
, (9)

µi+1 = µi −Σi+1βEqi(x) [∇xφ(x,y)] , (10)

where β is the step size and γ is the hyperparameter intro-
duced earlier. Although NGD exploits the manifold structure
of the space of probability density functions, the standard
NGD update of (9) does not guarantee that the updated
information matrix is positive definite.

A. NGD using Local Parameters

In order to ensure that the information matrix remains
positive definite, we work with the matrix factor of the
information matrix instead of the information matrix itself,
where the matrix factor A of any matrix S is defined as
S = AAT . We make use of the following two properties
in the optimization process: (i) any matrix S ∈ SN++ can be
decomposed as: S = AAT , where A ∈ GLN , and (ii) for
any real matrix A, and ε > 0,

(
AAT + εI

)
∈ SN++ . The

proofs can for these properties can be found [18].
An overview of the approach is as follows. We start

by computing a matrix factor of the information matrix,
Σ−1

i = AiA
T
i . In each iteration of the optimization routine,

we perform a NGD step on the matrix factor Ai to generate
an updated estimated Ai+1, which is used to update the
information matrix as Σ−1

i+1 = Ai+1A
T
i+1 + εI.

In this work, we chose the square root of the information
matrix as the matrix factor: Σ−1 = AAT . To perform
tractable NGD on the space of the matrix factors, we use the
method of structured NGD using local parameters proposed
in [13]. Using structured NGD, the update equations for the
mean and the matrix factor are given by:

Ai+1 = Aiexp(β(A−1
i ∇ΣL(qi)A

−T
i)), (11)

µi+1 = µi −Σi+1β∇µL(qi), (12)

where

exp(βM) =

∞∑
j=0

(βM)j

j!
, (13)

is the matrix exponential. To make the computation further
tractable, we consider a first-order approximation of the
matrix exponential map:

h(βM) ≈ I + βM. (14)

Using Stein’s lemma [19], the gradient of (5) with respect
to the mean µ and covariance Σ can be written as

∇µL(q) = Eq(x) [∇xφ(x,y)] , (15)

∇ΣL(q) =
1

2
Eq(x)

[
∇2

x,xφ(x,y)
]
− γ

2
Σ−1. (16)

Inserting (16) in (11) and expanding (14) we get

Ai+1 =

(
1− βγ

2

)
Ai +

β

2
Eqi(x)

[
∇2

x,xφ(x,y)
]
A−Ti .

The above expression relies on calculation of the matrix
factor inverse, A−1

i , which will be dense. However, this can
be avoided by a simple reformulation. Multiplying both sides
of the above equation by AT

i on the right and exploiting the
symmetric nature of the Hessian and the information matrix
we arrive at

AiA
T
i+1 =

(
1− βγ

2

)
Σ−1

i +
β

2
Eqi(x)

[
∇2

x,xφ(x,y)
]

︸ ︷︷ ︸
Si

.

(17)

In most robotics applications the Hessian and the information
matrix are sparse. Thus, the updated matrix factor Ai+1 can
be calculated very efficiently as the solution to system of
sparse linear equations: AiA

T
i+1 = Si. Additionally, if the

initial information matrix, Σ−1
0 , is sparse, then the update

(17) will result in sparse matrix factors, Ai (see Figure 1).
The update equation for the mean is obtained by substi-

tuting (15) in (12):

µi+1 = µi − βΣi+1Eqi(x) [∇xφ(x,y)] . (18)

Equations (17) and (18) are the proposed updates for the ma-
trix factor and the mean, respectively. We call the proposed
algorithm ESGVI-C to highlight the formal guarantees on
covariance constraints. The complete algorithm is presented
in Algorithm 1 about which we now make some remarks.
In [13], the authors use a second-order approximation of

the matrix exponential map, which ensures that Ai+1 is
invertible. However, the second-order approximation is com-
putationally more expensive. Specifically, it incurs additional
matrix multiplication operations of order O(N3). The first-
order approximation in (14) by itself does not guarantee
Ai+1 is invertible. In such a case the matrix factor can
be updated after line 7 of Algorithm 1 by factoring Σ−1

i+1

as Ãi+1Ã
T
i+1 = Σ−1

i+1, and updating Ai+1 ← Ãi+1. In
practice, we found that Ai+1 was invertible after update (17).
Additional computational savings can be obtained by using
Ai+1 to compute δµ in line 8 of Algorithm 1. We now prove
that the information matrix iterates obtained using Algorithm
1 remain positive definite.

0 100 200

0

100

200

Σ−1

0 100 200

0

100

200

A

Fig. 1: Sparsity pattern of the information matrix Σ−1 and the matrix
factor A corresponding to range-only localization setup involving 100 robot
positions from a real-world experiment. The information matrix has block-
tridiagonal structure with non-zero entries only along block lower diagonal,
main diagonal, and upper diagonal.

Algorithm 1: ESGVI-C

Require: γ, β, ε, J .
1: Initialize µ0 and Σ−1

0 .
2: A0 ← (Σ−1

0)
1
2 .

3: while i < J do
4: Compute Eqi(x) [∇xφ(x,y)].
5: Compute Eqi(x)

[
∇2

x,xφ(x,y)
]
.

6: Compute Ai+1. . (17)
7: Σ−1

i+1 ← Ai+1A
T
i+1 + εI .

8: Compute δµ: Σ−1
i+1δµ = −βEqi(x) [∇xφ(x,y)].

9: µi+1 ← µi + δµ.
10: i← i+ 1.
11: end while
12: return µJ ,Σ

−1
J .

Lemma 1: If Ai ∈ GLN , then the information matrix
Σ−1

i+1 computed using Algorithm 1 is positive definite.
Proof: For convenience, we assume β = 1. Let Mi =

A−1
i ∇ΣL(qi)A

−T
i . The precision matrix at the end of the

(i+ 1)th iteration is given by line 7 in Algorithm 1:

Σ−1
i+1 = Ai+1A

T
i+1 + εI,

(11)
= Aih(Mi)h(Mi)

TAT
i + εI,

(14)≈ Ai(I + Mi)︸ ︷︷ ︸
Bi

(I + Mi)
TAT

i︸ ︷︷ ︸
BT

i

+εI,

= (BiB
T
i + εI) � 0 (positive definite).

B. Connection to ESGVI

We now show that the update equations for ESGVI can
be recovered from our proposed method. The ESGVI mean
update step (8) is equal to (18) when β = 1, which
corresponds to the Newton-like update method. For β = 2
and γ = 1, the matrix factor update is:

AiA
T
i+1 = Eqi(x)

[
∇2

x,xφ(x,y)
]
. (19)

Note that the update equation (6) is obtained by taking the
gradient of the cost function w.r.t. Σ−1 and setting it to zero,
which occurs at a stationary point of the cost function (5).
Note that it is important for the cost function to be locally
convex for equation (6) to be valid. In such a case, the matrix
factor iterates converge to a stationary point: Ai+1 ≈ Ai:

Ai+1A
T
i+1 = Σ−1

i+1 = Eqi(x)

[
∇2

x,xφ(x,y)
]
,

which is identical to (6).

C. Calculation of Expectations

A central part of Algorithm 1 is the computation of the
expectations, Eqi(x) [∇xφ(x,y)] and Eqi(x)

[
∇2

x,xφ(x,y)
]
.

A common approach is to approximate the expectations with
a random sample x̃ ∼ q(x): ∇xφ(x,y)|x̃ and ∇2

xxφ(x,y)|x̃,
which gives a version of stochastic NGD [14]. However,
this approach would require many samples to achieve a

reasonably accurate approximation to the expectations. Alter-
natively, the expectations can be approximated at the mean µ
[13], ∇xφ(x,y)|µ and ∇2

xxφ(x,y)|µ, giving MAP updates.
We use multidimensional Gauss-Hermite quadrature for

calculating expectations in this work since it allows for
efficient expectation computation for polynomials under
Gaussian integrals [6]. The expected value of a function,
f(x), under a distribution, q(x), is given by the weighted
sum:

Eq(x)[f(x)] =

∫ ∞
−∞

f(x)q(x)dx ≈
L∑

l=1

wlf(xl),

where wl are weights, xl = µ +
√

Σξl are sigmapoints, ξl
are unit sigmapoints, and L is total number of sigmapoints.
Similarly, the expected value of the gradient and the Hessian
can be calculated as

Eqi(x) [∇xφ(x,y)] ≈
L∑

l=1

wl∇xφ(x,y)|xl
, (20)

Eqi(x)

[
∇2

x,xφ(x,y)
]
≈

L∑
l=1

wl∇2
xxφ(x,y)|xl

. (21)

The accuracy of the numerical approximation depends
on the degree, D, of the Gauss-Hermite quadrature. The
number of weights and sigmapoints required for a D-degree
Gauss-Hermite quadrature is L = DN , where N is the
dimension of x. This can be infeasible even for moderately
sized problems. Fortunately, as noted by [4], the number of
sigmapoint evaluations can be drastically reduced by noting
that many problems in robotics have a structure where the
function φ(x,y) factors as

φ(x,y) =

K∑
k=1

ψk(xk,yk), (22)

where ψk is the kth factor, which depends on a subset of the
state xk and a subset of the observations, yk. We incorporate
an identical method in our approach. For completeness, we
provide a brief overview here; a more detailed description
can be found in [4]. With the factored function (22), the
expectations (20) and (21) can be written as:

Eqi(x) [∇xφ(x,y)] =

K∑
k=1

PT
k Eqi(xk) [∇xk

ψk] ,

≈
K∑

k=1

PT
k

Lk∑
l=1

wk,l∇xk
ψk|xk,l

, (23)

Eqi(x)

[
∇2

x,xφ(x,y)
]

=

K∑
k=1

PT
k Eqi(xk)

[
∇2

xkxk
ψk

]
Pk,

≈
K∑

k=1

PT
k

(
Lk∑
l=1

wk,l∇2
xkxk

ψk|xk,l

)
Pk, (24)

where Pk is the projection matrix so that xk = Pkx. We
have omitted the explicit dependency of ψk on (xk,yk) to
reduce clutter. The sigmapoints for the factors are given by
xk,l = µk +

√
Σkkξk,l, where Σkk corresponds to blocks of

x0
o0

x1
o1

x2 . . . xM

y1 y2 yM

xa1
xal

Fig. 2: Factor graph for a range-only (RO) localization setup. In RO
localization, a robot equipped with a sensor, such as a wireless radio,
estimates its position by measuring the distance to other wireless radios,
known as anchors, installed in the environment. The trajectory consists of
a set of nodes representing the robot position xt at time t. The anchor
positions, xa# , are known as indicated by the filled circles. Odometry
measurements are denoted by factors ot and the range measurements by
factors yt. Note that the measurements depend only on adjacent nodes. The
joint probability density function (PDF) over the entire trajectory can be
written as product of smaller PDFs over individual factors.

Σ related to xk. Note that the expectation is now over the
factors and the number of sigmapoint evaluations drops to
Lk = DNk where Nk is the dimension of xk.

D. Hyperparameters

The value of the hyperparameter, γ, can be tuned by eval-
uating the algorithm against a particular metric. For instance,
a common metric to measure the quality of estimation is the
normalized estimation error squared (NEES):

NEES =
1

N
(xtrue − µ)TΣ−1(xtrue − µ), (25)

where xtrue is the true value of state, x. If the estimated state
is consistent, then the mean NEES value should be equal
to the dimension of the state. For example, in the case of
robot position estimation, the mean NEES value should be
the dimension of the robot position. Hyperparameters, β and
ε, can be calculated using a back-tracking approach.

VI. EXPERIMENTS

In this section, we demonstrate the performance of the
proposed method using range-only (RO) localization. RO lo-
calization is a challenging scenario, since the measurements
are sparse and the measurement model is nonlinear.

A. Range-only Localization

In RO localization, a robot equipped with a sensor, typi-
cally a wireless radio, localizes by measuring the distance or
range to multiple anchors installed in the environment. The
range measurement at any time t is given by

rl,t = ‖xal
− xt‖2 + ηr,t, (26)

where ‖ · ‖2 is the `2-norm, xt ∈ R3 is the position of
the robot at time t, xal

∈ R3 is the position of the athl
anchor, and ηr,t ∼ N (0, σ2

r) is the additive white Gaussian
noise (AWGN) associated with range measurements. Since
the range measurement (26) does not involve the orientation
of the robot, we choose to represent the robot trajectory by
the vector of robot positions. The state is a sequence of robot
positions over time: x = [xT

0 xT
1 xT

2 . . .x
T
M]T .

A single distance measurement cannot constrain the full
3D position at any given time. We assume that a source

of odometry, which provides relative pose data ot−1 =
{δxt−1, δRt−1}, is available:

xt = xt−1 + δRt−1δxt−1 + ηo,t, (27)

where ηo,t ∼ N (0,Σo) is the AWGN, δxt−1 is relative
position increment, and δRt−1 is the direction cosine matrix
(DCM) representing the relative orientation increment from
time t − 1 to t as measured by the odometry sensor. The
trajectory calculated using relative pose increments provides
a suitable initialization for ESGVI-C. The set of observations
is given by y = {o0,o1, ...,ot, ..., rl,0, rl,1, ..., rl,t, ...}. The
factor graph for such a setup is shown in Figure 2. We see
from the graph that the conditional independence of the dif-
ferent state variables gives rise to the following factorization
of φ(x,y):

φ(x,y) =

M∑
t=0

ψr,t +

M∑
t=0

ψo,t, (28)

with

ψr,t =
1

2σ2
r

(rl,t − ||xa,l − xt||2)2,

ψo,t =
1

2

(
δxt−1 − δRT

t−1(xt − xt−1)
)T

Σo
−1

×
(
δxt−1 − δRT

t−1(xt − xt−1)
)
,

where we have omitted terms constant w.r.t. x.

B. Setup
We evaluated the proposed method in both simulation and

real-world experiments.
Simulation setup: Our simulation environment consists of

the Gazebo simulator [20]. We use the Astec Firefly quadro-
tor from the Rotors Simulator [21] package as our robot.
The quadrotor is equipped with a generic odometry sensor
that provides relative pose measurements. The quadrotor is
also equipped with an ultrawideband (UWB) radio, which
provides range measurements by calculating the distance to
UWB anchors. The sensor measurements are corrupted with
Gaussian noise whose parameters are chosen to reflect the
performance of real-world sensors.

Real-world setup: The real-world setup consists of a
constellation of 6 UWB anchors, a motion-capture capture
system, and a quadrotor. The quadrotor is equipped with a
DW1000-based UWB radio and an Intel Realsense T265,
which provides visual inertial odometry (VIO) measure-
ments. The UWB radio is operated in two-way range (TWR)
mode and calculates the distance to anchors by measuring
the time-of-flight. The location of the anchors was measured
using a Leica total station.

ESGVI-C hyperparameters: The hyperparameter, γ, was
tuned using ground truth on a single trajectory with NEES as
the metric. The same value of γ = 0.72 was used for all other
experiments. A constant step size β = 1 was used in all the
experiments. The value of ε was set to 1000 and reduced by
a factor of 10 on each iteration. A more sophisticated back-
tracking method could be used to set the hyperparameters, β
and ε. In all of the experiments, Gauss-Hermite integration
of degree D = 3 was used.

C. Evaluation
We evaluated the proposed method against maximum a

posteriori (MAP) estimation and ESGVI, which represent
the state-of-the-art in Gaussian state estimation.

1) Comparison against MAP: We use the Gauss-Newton
optimizer for MAP estimation. For a detailed description of
the MAP method, we refer the reader to [7]. The performance
of the two approaches is compared using trajectory root-
mean-square error (RMSE) and NEES metrics.

Simulation experiments: We performed several exper-
iments where the quadrotor was commanded to execute
multiple trajectories. In each case, the sensor data was used
only for estimation and the ground truth data was used for
control. The sensor data was recorded for offboard evaluation
to compare different algorithms. In each case, the baseline
MAP algorithm and the proposed ESGVI-C algorithm were
run with the same parameters. The performance of the two
methods from 20 experiments is shown in Figure 3a. The
proposed approach performs similar to MAP estimation in
terms of position RMSE. However, in terms of consistency of
the reported covariance, the proposed approach outperforms
MAP. Specifically, we see that the NEES value is close to
the dimension of the robot position, which is the target for a
consistent estimator. The improved consistency of ESGVI-C
comes from the hyperparameter, γ = 0.72, which balances
between being over-confident and fitting the observed data.

Real-world Experiments: We performed multiple exper-
iments where the quadrotor was flown manually in different
trajectories. All the sensor data, including ground truth
data from the motion capture system, was recorded on the
onboard computer. The values of the noise parameters, σr
and Σo, were obtained from datasheets. UWB range mea-
surements are susceptible to reflections from objects in the
environment. These reflections can result in large erroneous
range measurements. We filtered outlier range measurements
that exceeded the expected range measurement by more
than 1 m. Results from 10 experiments are shown in Figure
3b. Similar to the simulation experiments, the proposed
approach performs marginally better than MAP estimation in
terms of position RMSE but reports better NEES values. As
alluded to earlier, UWB range measurements are susceptible
to reflections from objects in the environment. This gives rise
to measurements that violate the AWGN assumption for ηr,t
and hence we see a lower average NEES value compared to
simulation. The improved consistency of ESGVI-C comes
from the hyperparameter, γ = 0.72, which balances between
being over-confident and fitting the observed data. In the best
case, ESGVI-C achieves a position RMSE of 3 cm.

2) Comparison against ESGVI: We observed that when
the initial estimate for the robot trajectory was close to the
true value, the performance of ESGVI was similar to our
method. This is expected since near the local minimum,
the update equations of ESGVI are similar to the proposed
method (see Section V-B). However, away from the true
value the Hessian is not guaranteed to be positive definite.
To evaluate the robustness of our approach, we provide a
qualitative Monte Carlo estimate of the basin of convergence.

MAP ESGVI-C
0.040 (m) 0.039 (m)

0.00

0.05

0.10

R
M
S
E
(m

)

MAP ESGVI-C
1.06 2.98

0

2

4

N
E
E
S

(a) Simulation experiments

MAP ESGVI-C
0.052 (m) 0.051 (m)

0.00

0.05

0.10

R
M
S
E
(m

)

MAP ESGVI-C
0.49 2.51

0

2

4

N
E
E
S

(b) Real-world experiments

Fig. 3: Performance of MAP estimation and the proposed ESGVI-C
algorithm in (a) simulation and (b) real-world experiments. The proposed
approach has similar performance as MAP in terms of position root-mean-
square error (RMSE). In terms of the normalized estimation error squared
(NEES), the proposed approach is better compared to MAP. The expected
value of NEES is indicated by the red dashed line. The mean value for each
algorithm is provided below the labels.

We generated random initial conditions by uniformly
sampling x and y-coordinates of the initial state, x0, around
its true value. Since the initial trajectory is calculated using
relative pose increments from odometry data, translating
the initial state translates the entire initial trajectory, thus
providing different initial estimates for the robot trajectory.

We evaluated the convergence of ESGVI and ESGVI-
C on 1000 random initial trajectories. Qualitative Monte
Carlo estimates of the basins of convergence for ESGVI
and ESGVI-C are shown in Figure 4. We see that the
proposed ESGVI-C method converges even with poor initial
conditions, indicating a larger basin of convergence.

Lemma 1 provides formal guarantees that the information
matrix remains positive definite. However, another critical as-
pect is that the information matrix must be well-conditioned
i.e., the ratio of the largest to smallest eigenvalue of the
information matrix must be not too large. The condition num-
ber of ESGVI-C from a real-world experiment with random
initial condition, for which ESGVI fails to converge, is shown
in Figure 5. We also calculated the condition number of
ESGVI with an initial condition where it converges (red line
in Figure 5). We see that ESGVI-C achieves better condition
numbers and similar accuracy with poor initial condition.

3) Comparison against MAP-ESGVI: As demonstrated
in the previous section, ESGVI has a smaller basin of
convergence compared to ESGVI-C. MAP estimation, on
the other hand, has a larger basin of convergence since it
uses an approximation to the Hessian and hence can be used

TABLE I: Total wall-clock time of different algorithms on real-world data.

Algorithm Wall-clock time(s)
MAP-ESGVI 452

ESGVI-C 800

0 2
x(m)

0

1

2

y
(m

)

ESGVI

0 2
x(m)

ESGVI-C

0 2
x(m)

MAP-ESGVI

Fig. 4: Qualitative Monte Carlo estimate of basin of convergence for ESGVI,
ESGVI-C and MAP-ESGVI. The axes represent the range of values from
which x and y-coordinates of the initial state x0 are sampled. Each sample
point is used generate an initial estimate for the trajectory using odometry
data. Sample points for which the corresponding algorithms converge and
diverge are represented by green circles and red circles, respectively. The
black circle represents the ground truth (GT) value of x0. The figure clearly
shows that ESGVI-C has a larger basin of convergence compared to ESGVI
and comparable to that of MAP-ESGVI.

0 5 10

Iterations

102

105

C
o
n
d
it
io
n
n
u
m
b
er

0 5 10

Iterations

0.5

1.0

1.5

R
M
S
E
(m

)

ESGVI ESGVI-C MAP-ESGVI

Fig. 5: Evolution of the condition number of the information matrix and the
root mean square error (RMSE) for the proposed ESGVI-C method. In each
experiment a different initial condition for which ESGVI fails to converge,
is used. The condition number and RMSE of a successful run of ESGVI
and MAP-ESGVI are plotted for comparison. The proposed ESGVI-C is
able to accommodate poorer initial conditions and achieve better condition
numbers with accuracy comparable to ESGVI.

as a source to initialize ESGVI, which we refer to as MAP-
ESGVI. Such an approach was followed in [4]. We calculated
the basin of convergence for MAP-ESGVI using the same
random initial trajectories generated previously. In each case,
we ran MAP to convergence and then used the output of
MAP to initialize ESGVI. A qualitative estimate of the basin
of convergence for MAP-ESGVI is shown in Figure 4. We
see that the MAP-ESGVI and ESGVI-C have identical basins
of convergence. This is because MAP provides a good initial
estimate for which the Hessian is generally convex.

We calculated the condition number and RMSE for MAP-
ESGVI with the same initial condition used for ESGVI-C in
the previous section. The results are shown in Figure 5. We
see that ESGVI-C achieves reasonable condition numbers
than MAP-ESGVI. However, MAP-ESGVI achieves similar
accuracy as both ESGVI and ESGVI-C. This is because
MAP provides a better initial condition for ESGVI in MAP-
ESGVI (blue line in Figure 5) compared to the initial
condition used for ESGVI-only case (red line in Figure 5).

We calculated the total computation time of ESGVI-C and
MAP-ESGVI. The results are summarized in Table I. The
higher computation time of ESGVI-C is largely due to the
calculation of expectations of gradients and Hessians. Using
MAP to initialize ESGVI-C results in similar computation

−0.1

0.0

0.1
∆
x
±

3σ
x

(m
)

−0.05
0.00
0.05

−0.1

0.0

0.1

∆
y
±

3σ
y

(m
)

−0.05
0.00
0.05

0 50 100

−0.1
0.0
0.1

∆
z
±

3
σ
z

(m
)

0 2

−0.05
0.00
0.05

Time (s)

Fig. 6: Error plots for ESGVI-C from a real-world experiment with
odometry dropout. The residual position errors, xtrue−µ, are shown along
with the 3σ covariance bounds. Due to odometry dropout the Hessian is ill-
conditioned at the start of the trajectory. The time at which odometry dropout
ends is indicated with red vertical lines. The proposed method is still able
to provide reliable estimates in such cases. Note that the errors are bounded
within the estimated uncertainty. Magnified error plots corresponding to
odometry dropout period are shown on the right.

time as MAP-ESGVI. Although MAP-ESGVI has a lower
computation time, unlike the proposed method, there are no
formal guarantees about covariance constraint satisfaction.

An advantage of ESGVI-C is demonstrated in cases
where the Hessian is ill-conditioned. In our experiments, we
observed that the VIO output would dropout sporadically
at startup. In this case, consecutive range measurements
are received without any odometry data to constrain the
relevant states resulting in ill-conditioned Hessian. In this
case, both ESGVI and MAP-ESGVI fail as we do not include
regularization to better condition the problem. However, the
proposed method is able to handle such scenarios. The results
from a real-world experiment with odometry dropout at
startup are shown in Figure 6. We see that ESGVI-C provides
reasonable estimates in such cases as well. Additionally,
the errors are bounded by the 3σ covariance envelopes,
indicating consistent estimation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm for state estima-
tion using Gaussian variational inference. We proved the-
oretically that the covariance constraints of the multivariate
Gaussian probability density function are satisfied during op-
timization. Through simulation and real-world experiments,
we demonstrated that our method produces consistent uncer-
tainty estimates while achieving accuracy comparable to the
state-of-the-art. We would still like to expand our experimen-
tal comparisons to see how ESGVI-C holds up against other
methods of regularizing such estimation problems including
the use of motion priors (e.g., constant-velocity [22])

Most sensors are susceptible to environmental factors that
result in outlier measurements. We are looking at the inclu-
sion of robust cost functions for reliable state estimation in
adverse conditions. In this work, we assumed that the sensor
noise parameters obtained from the datasheet were reliable.
However, the sensor noise parameters can be influenced by
the surrounding environment. A future direction aims at
learning the sensor noise parameters online along the lines
of parameter learning described by [4] and [23]. We are also

looking at inclusion of neural network parameter learning for
improved measurement models as demonstrated in [24].

REFERENCES

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag, Berlin, Heidel-
berg, 2006.

[2] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and
Lawrence K Saul. An introduction to variational methods for graphical
models. Machine learning, 37(2):183–233, 1999.

[3] Radford M Neal and Geoffrey E Hinton. A view of the EM algorithm
that justifies incremental, sparse, and other variants. In Learning in
graphical models, pages 355–368. Springer, 1998.

[4] Timothy D Barfoot, James R Forbes, and David J Yoon. Exactly
sparse Gaussian variational inference with application to derivative-
free batch nonlinear state estimation. The International Journal of
Robotics Research (IJRR), 39(13):1473–1502, 2020.

[5] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT
Press, 2005.

[6] Särkkä Simo. Bayesian Filtering and Smoothing. Cambridge Univer-
sity Press, 2013.

[7] Timothy D Barfoot. State estimation for robotics. Cambridge
University Press, Toronto, 2021.

[8] Hongwei Wang, Hongbin Li, Jun Fang, and Heping Wang. Robust
Gaussian Kalman filter with outlier detection. IEEE Signal Processing
Letters, 25(8):1236–1240, 2018.

[9] Giorgio Parisi and Macht Jonathan. Statistical Field Theory. Springer-
Verlag, 1989.

[10] M.J. Beal. Variational Algorithms for Approximate Bayesian Inference.
PhD thesis, Gatsby Computational Neuroscience Unit, University
College London., 2003.

[11] Martin J. Wainwright and Michael I. Jordan. Graphical models,
exponential families, and variational inference. Foundations and
Trends in Machine Learning, 1(12):1–305, 2008.

[12] Tobias Glasmachers, Tom Schaul, Sun Yi, Daan Wierstra, and Jürgen
Schmidhuber. Exponential natural evolution strategies. In Proceedings
of the 12th annual conference on Genetic and evolutionary computa-
tion, pages 393–400, 2010.

[13] Wu Lin, Frank Nielsen, Khan Mohammad Emtiyaz, and Mark
Schmidt. Tractable structured natural-gradient descent using local
parameterizations. In International Conference on Machine Learning,
pages 6680–6691. PMLR, 2021.

[14] Linda S. L. Tan. Explicit natural gradient updates for Cholesky factor
in Gaussian variational approximation, 2022.

[15] Shun-Ichi Amari. Natural gradient works efficiently in learning.
Neural computation, 10(2):251–276, 1998.

[16] Solomon Kullback and Richard A Leibler. On information and
sufficiency. The annals of mathematical statistics, 22(1):79–86, 1951.

[17] Timothy D Barfoot. Multivariate Gaussian variational inference by
natural gradient descent. arXiv preprint arXiv:2001.10025, 2020.

[18] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, 2 edition, 2012.

[19] Manfred Opper and Cédric Archambeau. The variational Gaussian
approximation revisited. Neural computation, 21(3):786–792, 2009.

[20] N. Koenig and A. Howard. Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), volume 3, pages 2149–2154 vol.3, 2004.

[21] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart.
Robot Operating System (ROS): The Complete Reference (Volume
1), chapter RotorS—A Modular Gazebo MAV Simulator Framework,
pages 595–625. Springer International Publishing, Cham, 2016.

[22] Tim D Barfoot, Chi Hay Tong, and Simo Särkkä. Batch continuous-
time trajectory estimation as exactly sparse gaussian process regres-
sion. In Robotics: Science and Systems, volume 10, pages 1–10.
Citeseer, 2014.

[23] Jeremy Nathan Wong, David Juny Yoon, Angela P. Schoellig, and
Timothy D. Barfoot. Variational inference with parameter learning
applied to vehicle trajectory estimation. IEEE Robotics and Automa-
tion Letters, 5(4):5291–5298, 2020.

[24] David J. Yoon, Haowei Zhang, Mona Gridseth, Hugues Thomas, and
Timothy D. Barfoot. Unsupervised learning of lidar features for use
ina probabilistic trajectory estimator. IEEE Robotics and Automation
Letters, 6(2):2130–2138, 2021.

