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Abstract— The combination of ultrawideband (UWB) radios
and inertial measurement units (IMU) can provide accurate
positioning in environments where the Global Positioning Sys-
tem (GPS) service is either unavailable or has unsatisfactory
performance. The two sensors, IMU and UWB radio, are
often not co-located on a moving system. The UWB radio
is typically located at the extremities of the system to ensure
reliable communication, whereas the IMUs are located closer
to its center of gravity. Furthermore, without hardware or
software synchronization, data from heterogeneous sensors can
arrive at different time instants resulting in temporal offsets.
If uncalibrated, these spatial and temporal offsets can degrade
the positioning performance. In this paper, using observability
and identifiability criteria, we derive the conditions required
for successfully calibrating the spatial and the temporal offset
parameters of a tightly-coupled UWB-IMU system. We also
present an online method for jointly calibrating these offsets.
The results show that our calibration approach results in
improved positioning accuracy while simultaneously estimating
(i) the spatial offset parameters to millimeter precision and (ii)
the temporal offset parameter to millisecond precision.

I. INTRODUCTION

Global Positioning System (GPS) is the de facto standard
for positioning in outdoor environments. However, an equiv-
alently powerful localization scheme for indoor environ-
ments is missing and GPS performance can be significantly
degraded in urban canyons. With the shrinking costs of
high-quality inertial measurement units (IMUs) and cameras,
camera-IMU-based localization systems have gained popu-
larity for GPS-denied navigation. Yet, the reliable operation
of such systems requires good illumination, persistent and
distinguishable features, loop closures, and the dominant part
of the scene to be static and occlusion-free. In highly dy-
namic environments such as warehouses, factories, hospitals
and shopping malls, these requirements can be restrictive.

Ultrawideband (UWB) radio technology is a promising
sensor alternative; it is immune to illumination changes, it
does not require loop closures or persistent features, and it
can operate in visually challenging conditions. As such, there
has been extensive work on UWB-aided localization [1]–[3].
A typical UWB-based positioning system consists of radios,
known as anchors, installed in the periphery of an area of
interest, as shown in Fig. 1. A mobile agent equipped with
a UWB radio calculates its position by measuring the time-
of-flight (ToF) between its radio and the anchors. This setup
is similar to GPS, where a receiver calculates its position by
measuring the ToF to multiple satellites. However, UWB-
based positioning systems have several advantages: they are
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Fig. 1: The setup considered consists of an IMU (frame {I}) and an
UWB radio (frame {U}) mounted in a non-collocated manner on a mobile
robot. Localization is performed by measuring the distance between the
radio and the UWB anchors. Frame {W} corresponds to a gravity-aligned
world reference frame. The position of the jth anchor (frame {Aj}) in the
world frame is pW

j and the measured distance between the radio and the
jth anchor is denoted by rj . The pose of the IMU in the world frame is
{pW

I , qW
I }. The spatial offset, pI

U , is the position of the radio in the IMU
frame.

portable, easy to install, rely on less expensive infrastructure,
and provide higher accuracy (2-10 cm).

We refer to localization solutions that (i) compute position
from range measurements first (as done in GPS) and then
(ii) use that value in a state estimator as loosely-coupled.
Such a system can be restrictive; for example, for GPS,
no position estimate is available whenever less than four
satellites are visible [4]. We refer to a system that directly
uses the range measurements as inputs to a state estimator as
tightly-coupled. Such a system can update its internal state
even when a single anchor is available. UWB radios can be
used in two-way time-of-flight (TW-ToF) mode—in which
the range measurements between an anchor and a radio are
obtained by sending a signal from the radio to the anchor and
back. In this paper, we implement a tightly-coupled UWB-
based localization system which operates by the measuring
the TW-ToF to one anchor at a time.

A mobile system equipped with a UWB radio, however,
can estimate only 3D position. To obtain a 6 degree-of-
freedom pose, IMUs are used in conjunction [1]. Generally,
IMUs and UWB radios are not co-located and there is a
spatial offset between the two sensors, also referred to as
sensor extrinsic parameters. Current calibration techniques
involve measuring the spatial offset manually, using survey
equipment or additional sensors. These methods are prone to
error and expensive. While computer-aided diagrams provide



Fig. 2: Sensor latency in the UWB radio (∆r) and the IMU (∆I ) causes
data generated at the different time instants to arrive at the same time tr at
the estimator. By estimating the temporal offset td = ∆I −∆r , UWB and
IMU data can be realigned on a common time scale.

the mechanical specifications of a radio, the exact position
of the phase center1 is generally not known.

Our setup requires the IMU and the UWB data to have
accurate timestamps with respect to a single source of clock.
This is generally achieved through hardware synchronization
using a common clock signal. The next best choice is
software synchronization with a clock server running on a
destination computer and a client on the sensor hardware.
However, many off-the-shelf components do not support
either of these methods. Hence, due to sensor latency and
different clock sources, there is a temporal offset between
data from heterogeneous sensors as shown in Fig. 2. Estimat-
ing the state without compensating for the spatio-temporal
offsets can result in poor positioning accuracy, particularly
when these offsets are large. In this paper, we propose an
online calibration procedure that uses the available sensors
only for estimating the spatial and the temporal offsets.

An important aspect of calibration is the observability
and identifiability of the relevant states. Observability and
identifiability are measures to determine if the internal states
of a system can be inferred from its external output (i.e.,
measurements). In this paper, we perform an observability
analysis to derive conditions for the local weak observability
[5] of the internal states and the spatial offset. Using a related
property, local identifiability [6], we derive the conditions
under which the temporal offset is locally identifiable. Ob-
servability analysis helps us answer the question of whether a
particular system and its state is observable or not. However,
it does not lend itself to the design of a suitable estimator,
especially in the presence of noise. In this work, we propose
an online approach, based on the error state Kalman filter
(ESKF), to jointly estimate the state, and the spatial and tem-
poral offset parameters. In summary, our main contributions
are as follows:

1) we derive the conditions under which the temporal
offset is locally identifiable;

2) we derive the conditions under which the state of
a tightly-coupled UWB-IMU system, including the
spatial sensor offset, is locally weakly observable;

3) we provide a unified approach for estimating the IMU
position, orientation, velocity, IMU biases, the spatial
offset and the temporal offset of a tightly-coupled

1In antenna design theory, the phase center is the point from which the
electromagnetic radiation spreads spherically outward.

UWB-IMU system;
4) we evaluate the proposed method on simulated and real

data to validate our theory and show the efficacy of the
recommended approach.

II. RELATED WORK

The use of UWB radios for positioning in indoor and
outdoor environments has been demonstrated extensively in
the literature. Localization approaches ranging from paramet-
ric [1], [3] and non-parametric [2], [7] to graph-optimization-
based [8] methods have been proposed. Estimation of the
UWB-IMU spatial offset with the aid of GPS and cameras
was shown in [9]. However, most of the previous works either
assume known spatial offset parameters or calibrate only the
spatial offset using additional hardware.

Spatio-temporal calibration of camera-IMU systems has
been studied extensively [10]–[14]. Estimation of IMU pose,
velocity, biases, visual landmark positions, scale factor, and
camera-IMU spatial and temporal offsets has been conducted
in [13]. However, the measurement of a tightly-coupled
UWB-IMU system is a distance measurement and not a pose.
The calibration methods proposed for camera-IMU systems
are not applicable to the system considered in this paper.

GPS-based positioning schemes are similarly affected by
spatial and temporal offsets. In [15], estimation of the spatial
offset for a loosely-coupled GPS-IMU system is achieved
with an extended Kalman filter (EKF). Time synchronization
error calibration for a loosely-coupled GPS-aided inertial
navigation system is shown in [16]. Each of the previously
mentioned works calibrate either the spatial offset or the
temporal offset, but not both. Additionally, as alluded to
earlier, loosely-coupled systems have limitations. To the best
of the authors’ knowledge, joint spatio-temporal calibration
for a tightly-coupled UWB-IMU system has not been done.

The observability of the state is crucial for reliable es-
timation. Previous research has addressed the observability
analysis of various sensor combinations; analysis of the
observability of camera-IMU systems, including spatial and
temporal offsets, has been shown in [10], [13]. Since the
observation model of a tightly-coupled UWB-IMU system
is different from that of a camera-IMU system, the analysis
presented in [10], [13] is not directly applicable here. In [15],
the observability of a linear approximation of a loosely-
coupled GPS-IMU system, with the spatial offset only, is
shown. In contrast, we derive conditions for the local weak
observability of the system state and the spatial offset of a
tightly-coupled UWB-IMU system without any approxima-
tions. We also derive the conditions under which the temporal
offset of such a system is locally identifiable.

III. PROBLEM FORMULATION

Consider the setup shown in Fig. 1 wherein a system
equipped with an IMU and a UWB radio localizes itself by
measuring the TW-ToF between its radio and the anchors.
The following assumptions are made:

(A1) The spatial offset and the temporal offset are con-
stant and do not change over time.

(A2) The UWB radio is considered a point source.
Hence, its orientation is not considered.

Under these assumptions, the calibration objectives are to:



(O1) formulate the conditions under which the tightly-
coupled UWB-IMU system with the spatial offset
is locally weakly observable and the temporal offset
is locally identifiable;

(O2) improve positioning accuracy by jointly estimating
(i) the IMU position, orientation, and velocity, (ii)
the IMU biases, (iii) the UWB-IMU spatial offset
and (iv) the UWB-IMU temporal offset.

IV. SYSTEM MODELLING

We define the following coordinate frames for the setup
shown in Fig. 1:

1) world frame {W}, a gravity-aligned absolute refer-
ence frame, in which the pose of the IMU and the
positions of individual anchors are expressed;

2) mobile radio frame {U}, a frame affixed to the phase
center of the mobile radio antenna;

3) IMU frame {I}, a frame corresponding to the IMU
body center, in which the body accelerations and
angular velocities are measured;

4) anchor frame {Ai}, a frame affixed to the phase
center of the ith anchor.

A. System parameterization

The system in Fig. 1 is described by the following 20-
dimensional state vector:

x(t) = (pW
I (t),vW

I (t),qW
I (t),ba(t),bω(t),pI

U , td), (1)

where, {pW
I (t),vW

I (t),qW
I (t)} denote the position, transla-

tional velocity and orientation of the IMU frame with respect
to the world frame. A unit quaternion parameterization is
used for representing orientations. In this paper, we follow
the convention: q = q0 + qxi + qyj + qzk, where q0 is the
scalar part and qv = (qx, qy, qz) is the vector part. We use
quaternions for their singularity-free orientation representa-
tion. Accelerometer and gyroscope biases are denoted by
ba(t) and bg(t). The UWB-IMU spatial offset is denoted
by pI

U and td is the temporal offset (see Fig. 2).

B. Gyroscope and accelerometer model

The measured angular rate by a triaxial gyroscope ωm =
(ωx, ωy, ωz) is related to the true angular rate ωt as: ωm =
ωt + bω + nω , where bω is the time-varying bias and
nbω is a zero-mean additive white Gaussian noise (AWGN)
process with covariance Qω , i.e. nω ∼ N (0,Qω). The bias
is modelled as driven by another AWGN process nbω ∼
N (0,Qbω): ḃω = nbω .

The measured linear acceleration by a triaxial accelerome-
ter am = (ax, ay, az) is related to the true linear acceleration
at as: am = at + ba + na, where ba is the time-varying
bias and na is an AWGN processes of covariance Qa, i.e.
na ∼ N (0,Qa). The bias is driven by another AWGN noise
process nba ∼ N (0,Qba): ḃa = nba.

C. Motion model

The motion model in this work is a 3D kinematic motion
model, where the accelerometer and gyroscope measure-

ments are used as control inputs:

ṗW
I = vW

I , q̇W
I =

1

2
Ω(ωt)q

W
I , (2)

v̇W
I = RW

I at − gW , ḃa = nba, (3)

ḃg = nbω, ṗI
U = 03, (4)

ṫd = 0, (5)

where Ω(ω) =

[
0 −ωT

ω −[ω]×

]
, gW = [0, 0, 9.8]Tm/s2

represents the acceleration due to gravity in the world frame,
RW

I := R{qW
I } is the direction cosine matrix, and [·]×

denotes the skew-symmetric cross-product matrix.

D. Observation model
In a tightly-coupled system, the observation model is

the distance between an anchor and the mobile radio. The
measured distance to the ith anchor at time tr is a function
of the anchor position pW

i and the state x(tr):

h(pW
i ,x(tr)) = ‖pW

i − pW
U (tr)‖2 + nr(tr), (6)

where pW
U (tr) = RW

I (tr)pI
U + pW

I (tr) is the position of
the mobile radio in the world frame and ‖.‖2 denotes the `2
norm. The position of the anchor pW

i is determined using
the procedure outlined in Section VII-B. The measurement
noise nr(tr) is assumed to be a zero-mean AWGN process,
with covariance Qr, i.e. nr(tr) ∼ N (0,Qr). In this paper,
we use UWB timestamps as the reference time. Calculating
(6) requires the value of the state (1) at time tr. Let tr also be
the timestamp of the latest IMU measurement. Note that due
to the temporal offset td, the IMU measurement is actually
generated at time tI = tr − td with respect to the UWB
timestamp (see Fig. 2). To calculate the state at time tr,
we propagate the state at time tI for td seconds using the
motion model (2)-(5) and the IMU measurement(s) starting
at tI . Note that td can be positive or negative.

V. OBSERVABILITY AND IDENTIFIABILITY ANALYSIS

The goal of the observability analysis is to check if
the state of a system can be determined uniquely given
the outputs of a system. We decompose the problem of
observability of the state (1) into (i) local identifiability of
td [6] and (ii) local weak observability [5] of the part of the
state excluding td. The motivation and justification for this
two-step process is provided below.

In [6], it is shown that the identifiability of a single
unknown constant time-delay can be analyzed independent
of the observability of the state. The authors show that the
identifiability of time-delay in a nonlinear system is not
directly related to the observability of other system states
or parameters. Specifically, the time-delay parameter can be
determined directly from the input-output representation [6]
of the system, which solely depends on the systems inputs,
outputs, and their time-derivatives. Thus, local identifiability
of the time-delay is equivalent to determining if an input-
output representation exists. Finding such an input-output
representation for a general nonlinear system is difficult.
However, a necessary and sufficient condition for the exis-
tence of an input-output representation for a nonlinear system
is the occurrence of the delayed input variables (in our case



am and ωm) in the output (6) (Theorem 2 in [6]). We use
this approach to analyze the local identifiability of td.

As noted in [6], identifiability of the time-delay does not
imply observability of the state. After proving the local iden-
tifiability of td, we analyze the observability of the part of
the state excluding td, i.e. x̃ = (pW

I ,vW
I ,qW

I ,ba,bω,p
I
U ).

For this, we use the method outlined in [5], which involves
determining the rank of the observability matrix O [5]. The
methods outlined in [6] and [5] consider the case of noise-
free nonlinear systems. Hence, for this analysis, we neglect
the effect of noise parameters in the following sections.

A. Local identifiability of the temporal offset

Following [6], the local identifiablility of td depends on
whether it is present in the input-output representation of
the system (2)-(5) and (6), that is, the presence of delayed
input variable(s) in the output function. In our case, it is
sufficient to show that am(tr − td) or ωm(tr − td) appear
in the measurement model. Without loss of generality, the
measurement model (6) can be written as:

h(pW
i ,x(tr)) =

1

2
‖pW

i − pW
U (tr)‖22. (7)

We consider a single anchor as the analysis is identical for
multiple anchors. The factor 1/2 is introduced for simplifying
the analysis. Since there are two inputs, td can be locally
identified if am or ωm is excited. In the following theorem,
we state the conditions under which td is locally identifiable.

Theorem 1. The temporal offset parameter td ∈ (0, T ), for
some T ∈ R, is locally identifiable from the observation
model (7) if:

(T1) the mobile radio is not co-located with the anchor;
and either (T2) or (T3) is satisfied:

(T2) at least one of ax, ay , or az is excited; or
(T3) the mobile radio is not co-located with the IMU

and all three of ωx, ωy , and ωz are excited.

Proof. We provide a proof sketch here. The full proof can
be found in the supplementary material2. We approach the
proof as follows:
S1. As alluded to in Section IV-D, we calculate pW

U (tr)
by propagating the state (1) for td seconds using the
IMU measurement at time tI = tr − td. We perform
an Euler integration step by assuming am and ωm are
constant for td seconds. The measurement model (7) is
then given by:

h(pW
i ,x(tr)) =

1

2
‖pW

i − g1(ωm)− g2(am)‖22,

where,

g1(ωm) = RW
I (tI)

(
pI
U + [pI

U ]×bω(tI)td
)

−RW
I (tI)[pI

U ]×ωm(tr − td)td,

g2(am) = pW
I (tI) + vW

I (tI)td

+
1

2
RW

I (tI)(am(tr − td)− ba(tI))t2d.

S2. We then identify the conditions for which the derivative
of the expanded measurement model with respect to the

delayed inputs am(tr− td) or ωm(tr− td) is non-zero:

∂h
(
pW
i ,x(tr)

)
∂am(tr − td)

6= 0,
∂h
(
pW
i ,x(tr)

)
∂ωm(tr − td)

6= 0.

Condition T3 is a sufficient condition to handle all
pathological cases with a single anchor (see supplementary
material2). With multiple non-collinear anchors, excitation
of two of ωx, ωy , or ωz is sufficient. A requirement for local
identifiability of td is that a change in the input causes a
change in the measured range. Condition T3 reflects the fact
that if the mobile radio and the IMU are co-located, then the
measured range is constant for pure rotational motion.

B. Observability of a tightly-coupled UWB-IMU system
Now we analyze the observability of x̃. The system

dynamics (2)-(5) are rearranged into a control affine form [5]:

˙̃x =



vW
I

−RW
I ba − gW

− 1
2Ξ{qW

I }bω

03

03

03


︸ ︷︷ ︸

f0

+



03×3

RW
I

03×4

03×3

03×3

03×3


︸ ︷︷ ︸

f1

am +



03×3

03×3
1
2Ξ{qW

I }
03×3

03×3

03×3


︸ ︷︷ ︸

f2

ωm,

(8)

with Ξ{qW
I } =

[
−qT

v

q0I3 − [qv]×

]
. Without loss of generality,

the measurement model (6) can be rewritten as:

h(pW
i , x̃) =

1

2
‖pW

i −RW
I pI

U − pW
I ‖22,

where we remove the dependency on time for brevity and
expand pW

U as pW
U = RW

I pI
U + pW

I . The factor 1/2 is
introduced for simplifying the analysis. Measurements from
a single anchor are not sufficient to constrain the entire
state. Hence, we consider measurements using three anchors
pW
a = (pW

i , pW
j , pW

k ):

h(pW
a , x̃) =

1

2

‖pW
i −RW

I pI
U − pW

I ‖22
‖pW

j −RW
I pI

U − pW
I ‖22

‖pW
k −RW

I pI
U − pW

I ‖22

 . (9)

To prove the state is locally observable, we need to
determine the rank of the observability matrix O [5] asso-
ciated with the system (8)-(9). The matrix O is constructed
by taking the Lie derivatives [5] of (9) along the system
dynamics (8). Informally, a Lie derivative computes the
change in the system output for a change in the system state.
Thus, O maps changes in state to changes in output. If the
matrix O has a full column rank, then it can be inverted and
used to map changes in the output to changes in the state. In
the following theorem, we state the conditions under which
the system (8)-(9) is locally weakly observable.

Theorem 2. The system with motion model (8) and obser-
vation model (9) is locally weakly observable if:

(C1) at least three non-collinear anchors are available;



(C2) the mobile radio is non-coplanar with the three
non-collinear anchors;

(C3) all three of ax, ay , and az are excited; and
(C4) all three of ωx, ωy , and ωz are excited.

Proof. Due to space constraints, we provide a sketch of the
proof here. The full proof can be found in our supplementary
material2. We follow these steps in the proof:
S1. Calculate the gradients of increasing order Lie deriva-

tives of (9) along f0, f1 and, f2;
S2. stack the gradients to construct the matrix O;
S3. perform elementary row and column operations to en-

sure parts of O are block-diagonal;
S4. perform block Gaussian elimination and identify the

conditions needed for each block to have a full rank.

Note that these conditions are sufficient conditions. Due
to the nonlinear nature of the measurement model (9), the
matrix O is dense. Step S3 ensures that parts of the matrix
are sparse, thereby facilitating block Gaussian elimination.
A key observation in performing step S4 is that the matrix:

∆pijk =

(pW
i −RW

I pI
U − pW

I )T

(pW
j −RW

I pI
U − pW

I )T

(pW
k −RW

I pI
U − pW

I )T


T

, (10)

is a multiplicative factor of many blocks in O. Hence,
ensuring ∆pijk is full-rank is crucial in our analysis. The
matrix ∆pijk is full-rank when conditions C1 and C2 are
satisfied. Conditions C3 and C4 ensure that the effect of
control inputs on the system output is captured in the matrix
O via f1 and f2, respectively.

VI. ESTIMATION

The analysis in the previous section shows that, under
certain conditions, the state (1) can be reliably estimated.
However, the design or choice of a suitable state estimator
cannot be derived from such an analysis. In this section, we
present an approach that can be used for spatio-temporal
calibration of a tightly-coupled UWB-IMU system. The
choice of the estimator is motivated by its applicability to
nonlinear systems, computational efficiency, and ability to
operate with sparse sensor data.

To simultaneously estimate the state and calibrate the
spatio-temporal offset parameters, we use the ESKF [17]. In
this formulation, inertial dead reckoning is used to propagate
the state (1) forward in time using the model (8) and the
IMU measurements as inputs. The uncertainty associated
with dead reckoning is estimated in the prediction step.
In the correction step, the error and its uncertainty are
estimated by fusing the dead reckoned state and the UWB
measurements using their respective uncertainties. The error
state corresponding to the state (1) is:

δx = (δpW
I , δvW

I , δθWI , δba, δbω, δp
I
U , δtd), (11)

where δpW
I and δvW

I represent the error in IMU position and
translational velocity, respectively. The errors in accelerom-
eter bias, gyroscope bias, spatial offset and temporal offset
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Fig. 3: Position estimation results for multiple scenarios: in TR-C1, two
anchors are used; in TR-C2 height of mobile UWB radio is at the same level
as that of the anchor; in TR-C3, a constant velocity trajectory is commanded;
in TR-N, all conditions of Theorem 2 are satisfied. In all of the experiments,
the quadrotor was controlled using ground truth data, the plots show the
position output from the estimator. The corresponding RMSE values are
provided in Table I.

are represented by δba, δbω , δpI
U , and δtd respectively.

For a vector-valued parameter such as pI
U ∈ R3, the error

δpI
U corresponds to error in individual components: δpI

U =
[δpIUx, δp

I
Uy, δp

I
Uz]T . The local angular error δθWI is related

to small differential rotations δqW
I as: δq =

(
1, 1

2δθ
)
,

|δθ| � 1. Since the accelerometer and gyroscope measure-
ments are used as inputs, the process noise covariance matrix
Qp for the prediction step is composed of the covariances of
the noise and bias terms as defined in Section IV-B: Qp ,
diag ([Qa,Qω,Qba,Qbω]). The correction step estimates the
error between the dead reckoned state and the state consistent
with the measurements. The measurement model for the
correction phase of the ESKF is given by (6). The estimated
error (11) is then composed with the state to compensate
for the accumulated drift: x = x ⊕ δx, where ⊕ is a
generic composition operator which represents (i) quaternion
multiplication for the orientation error, qW

I = qW
I ⊗ δq,

and (ii) the addition operation for the remaining states,
pW
I = pW

I + δpW
I . We refer the reader to [18] for a

description of the prediction and correction step of the ESKF.
Covariance values for the process noise matrix Qp and the
measurement noise matrix Qr were determined using the
procedure outlined in Section VII-B.

VII. EXPERIMENTS

In this section, we present results from simulation and
real-world experiments that motivate the need for cali-
bration, validate the theory presented in Section V, and
show the stability and accuracy of the estimation approach
presented in Section VI. To evaluate the accuracy of the
proposed approach, position and rotation root-mean-square
errors (RMSE) are used as metrics. The rotation RMSE is
the Euclidean distance between the Euler angles as defined
in [19].

A. Simulation experiments
Our simulation environment is based on Gazebo [20] and

uses the Astec Firefly quadrotor from the RotorS simulator

http://tiny.cc/observability


TABLE I: Estimation performance for the experiments associated with Fig.
3. The position and the rotation RMSE are calculated by comparing the
estimated state with the ground truth state. ‖δpI

U‖2 and ‖δtd‖2 denote the
RMSE error in spatial and temporal offset, respectively.

Pos. RMSE (m) Rot. RMSE (rad) ‖δpI
U‖2 (cm) ‖δtd‖2 (ms)

TR-C1 0.37 0.03 6.0 3
TR-C2 0.27 0.06 1.6 48
TR-C3 0.25 0.75 2.0 21
TR-N 0.05 0.03 0.9 1

[21] as its mobile system. The quadrotor is equipped with
a UWB radio and an IMU. Anchors are simulated by fixed
radios. Range measurements from UWB radios are perturbed
with zero-mean AWGN having a 2 cm standard deviation.
The choice of noise parameters is based on the precision of
the UWB radios available on the market [22].

To validate the observability and the identifiability condi-
tions outlined in Section V, we performed multiple simula-
tion experiments where we varied (i) the number of anchors,
(ii) the heights of the anchors, and (iii) the velocity profiles
of the trajectories commanded to the quadrotor. In all of the
experiments, ground truth data was used for the control of
the quadrotor. The position estimated by the state estimator
is plotted in Fig. 3 and the corresponding error metrics are
provided in Table I. Each experiment violates one condition
from Theorem 2; experiment TR-C1 violates condition C1,
that is, two anchors are used for estimation; in TR-C2,
the anchor heights are adjusted so that the trajectory of
the mobile radio is coplanar with the anchors; in TR-C3,
a constant velocity trajectory with insufficient excitation of
accelerometer and gyroscope axes is commanded; in TR-N,
all the conditions outlined in Theorem 2 are satisfied. In
TR-C1, due to insufficient anchors, the positioning diverges
gradually (see Fig. 3); in TR-C2, the third column in the
matrix (10) is zero, which results in poor position estimates
along the z-axis; in TR-C3, the estimated yaw diverges,
which results in poor positioning in the xy-plane; in TR-N,
the estimated trajectory is close to the commanded trajectory
(see Table I).

To test the stability of the proposed estimation approach,
we performed Monte Carlo (MC) simulations varying the
magnitude of the UWB-IMU spatial offset between -0.5 m
to 0.5 m and the temporal offset between -25 ms to 25 ms.
In all of the MC experiments, the setup was identical to that
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Fig. 4: By including a white noise-on-velocity motion model, the estimated
temporal offset t̂d tracks the changing temporal offset td reliably.

TABLE II: Average RMSE from Monte Carlo simulation experiments for
different values of spatial and temporal offsets. ‖δpI

U‖2 and ‖δtd‖2 denote
the RMSE error in spatial and temporal offset, respectively.

Pos. RMSE (m) Rot. RMSE (rad) ‖δpI
U‖2 (cm) ‖δtd‖2 (ms)

0.027 0.033 1.11 1.26
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Fig. 5: Effect of error in spatial and temporal offset on position and rotation
RMSE. The impact of error in spatial and temporal offset is generally more
prominent for larger spatial offset (‖pI

U‖2 = 0.2 m) compared to smaller
spatial offset (‖pI

U‖2 = 0.02 m).

of TR-N from Fig. 3. The results from the MC experiments
are provided in Table II.

The temporal offset may be different from start up to
start up of the mobile system or over the duration of its
operation. Such situations can be accommodated by using a
random walk model: ṫd = nd, nd ∼ N (0, Qd), where Qd

can be determined empirically from Allan plots [23] of the
estimated temporal offset. For this experiment, the setup was
identical to that of TR-N from Fig. 3. The value of td was
changed dynamically during the simulation. The proposed
model manages to estimate varying td as shown in Fig. 4.

To generally quantify the impact of errors in spatial and
temporal offset on the position and the rotation RMSE, we
performed multiple experiments by perturbing the parameters
and recording the corresponding RMSE values without esti-
mating the spatio-temporal offsets. The results are shown in
Fig. 5: the influence of parametric errors is more prominent
for larger spatial offsets. For instance, a 50% error in the
spatial offset increases the position RMSE by 7% for the
smaller baseline (‖pI

U‖2 = 0.02m), whereas a 5% error in
the spatial offset for the larger baseline (‖pI

U‖2 = 0.2m)
increases the position RMSE by 4%. The effect of the
temporal offset is more prominent on the rotation RMSE: an
error of 20ms in the temporal offset increases the rotation
RMSE by 10% for the smaller baseline compared to 23%
for the larger baseline. In addition to quantifying the effect
of errors in spatio-temporal parameters, these experiments
also quantify the expected reduction in position and rotation
RMSE after calibration, which supports our discussion of the
results from the real-world experiments (see Section VIII).

B. Real-world experiments
1) Setup: Our setup consists of a sensor wand (see Fig. 6),

a constellation of 6 anchors, and a motion capture system.
Next, we describe the calibration of the anchor positions,
followed by a description of the sensor wand.

A benefit of UWB localization systems is that the calibra-
tion of anchor positions can be done independently of the
mobile system (or wand in our case). Inter-anchor distances
can be acquired by configuring one anchor as a receiver and
the remaining as transmitters. By choosing one of the anchors
frame as the origin, the positions of the rest of the anchors
can be determined using the inter-anchor distances [24], [25].
The approach followed here is similar to that of [25].
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Fig. 6: The sensor apparatus consists of a wand equipped with an Xsens
MTi 1 IMU and two UWB mobile radios mounted on the left and right
side of the IMU. Reflective markers are mounted to obtain ground truth
measurements.

The sensor wand is equipped with an Xsens IMU and
two Decawave UWB radios mounted as shown in Figure 6.
The IMU yields linear accelerations and angular velocities at
100Hz. The UWB radios operate in TW-ToF mode. Range
measurements are acquired at 20Hz by communicating with
the anchors in a round-robin fashion. Ground truth pose
information is acquired from a motion capture system. Pa-
rameters for the accelerometer and gyroscope noise models
outlined in Section IV-B were determined using Allan plots
[23]. The Decawave UWB radios used in this experiment
claim a precision of ±10 cm. However, different UWB
sensors can exhibit different noise characteristics. To estimate
Qr, we collected UWB measurements for every mobile-
anchor pair by holding the sensor wand static at multiple
locations in the operating area. The error in the measured
distance was computed by comparing with the ground truth
and the variance of the error was used as Qr in (6).

2) Experimental procedure: At the start of each experi-
ment, the sensor wand was held static for 60s to generate
initial estimates for the gyroscope and accelerometer biases.
Additionally, the static data were used to generate an initial
estimate for roll and pitch values by averaging the gravity
vector reported by the accelerometer. The position of the
IMU was initialized by placing the wand at the origin of
the world frame. Note that this is not a precise initialization
routine and the representative uncertainty in the initial pose
was captured by the initial covariance. The sensor wand
was moved manually through various rotation and translation
maneuvers in an attempt to simulate sufficient conditions for
the state to be locally weakly observable, as per Section V.

VIII. RESULTS AND DISCUSSION

We performed multiple experiments to show that joint cal-
ibration of spatial and temporal offsets, while simultaneously
localizing, is possible when the sufficient conditions outlined
in Theorem 1 and Theorem 2 are met. Spatial offsets for
both the left and right mobile radio were estimated, due to
space constraints, only the results for the left mobile radio
are presented here. Results for the right mobile radio are
similar. Since the ground truth values for the spatial and the
temporal offset were not available, we evaluated the accuracy
of the proposed approach by computing the position and
rotation RMSE for hand-measured (HM) and self-calibrated
(SC) values of the offsets. The HM values for the spatial
offsets were obtained by manually measuring the position
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Fig. 7: Position RMSE for self-calibrated (SC) and hand-measured (HM)
values of the spatial offset and the temporal offset parameters.
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Fig. 8: Rotation RMSE for self-calibrated (SC) and hand-measured (HM)
values of the spatial offset and the temporal offset parameters.

offset between the IMU and the UWB radio using a ruler.
The temporal offset parameter was initialized to zero. For
each experiment (TR-1 to TR-5) the sensor wand was moved
manually along a different trajectory. The calibration results
are shown in Table III. Error in the estimated position and
rotation was calculated by comparing the estimated pose
from the ESKF with the ground truth pose from the motion
capture system. The position and rotation error plots for SC
parameter values for TR-1, along with the 3σ covariance
envelopes, are shown in Fig. 9. The reduction in the position
and the rotation RMSE for SC offset values compared to HM
values is shown in Fig. 7 and Fig. 8, respectively. To quantify
the drift in the temporal offset over time, experiments TR-
3 to TR-5 were performed after the sensor wand had been
operating for 4 hours. Table III shows that the temporal offset
drifts by ∼9 ms after 4 hours of operation. These results
are promising, especially because the precision of the UWB
measurements (±10 cm) is similar in magnitude to the spatial
offset being estimated (∼20 cm). Furthermore, the reduction
in RMSE values agrees with the results from simulation
experiments. For a 20 cm baseline, Fig. 5 shows that a 2 cm
error in spatial offset increases the position RMSE by 18%
and a 30 ms error in temporal offset increases rotation RMSE
by 40%. The results from Fig. 7 and Fig. 8 show an average
reduction of ∼17% in position RMSE for an improvement of
2 cm in the spatial offset and an average ∼43% reduction in
rotation RMSE for an improvement of 35 ms in the temporal
offset.

IX. CONCLUSION AND FUTURE WORK

In this paper, we derived the conditions for (i) the local
weak observability of the spatial offset and (ii) the local
identifiability of the temporal offset of a tightly-coupled
UWB-IMU system. An online calibration approach, based
on ESKF was proposed. The results from both simulation
and real-world experiments show that if the observability
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Fig. 9: Position error (δx, δy and δz) plots from experiment TR-1 for SC values of spatial and temporal offset parameters, along with the 3σ bounds,
are shown in the top row. The corresponding rotation error plots in terms of roll (δφ), pitch (δθ) and yaw (δψ) error are shown in the bottom row. The
position and the rotation errors were calculated by comparing the estimated pose from the ESKF with the pose from the motion capture system. Note that
the estimation is consistent.

TABLE III: Estimated values of spatial and temporal offset parameters from 5 experiments (TR-1 to TR-5) along with the 3σ uncertainty values. For each
experiment, the sensor wand was moved along a different trajectory, ensuring all of the accelerometer and the gyroscope axes were excited. To quantify
the drift in the temporal offset over time, experiments TR-3 to TR-5 were performed after the sensor wand had been operating for 4 hours. The temporal
offset drifts by ∼9 ms after 4 hours of operation.

Parameter HM TR-1 TR-2 TR-3 TR-4 TR-5

pIUx ± 3σ (cm) 2.0 ± 6.0 2.3 ± 3.4 1.6 ± 3.3 1.9 ± 3.3 2.1 ± 3.5 1.6 ± 3.4
pIUy ± 3σ (cm) 19.0 ± 15.0 20.3 ± 4.2 20.1 ± 3.9 20.7 ± 4.0 20.1 ± 4.7 20.4 ± 4.1
pIUz ± 3σ (cm) 0.0 ± 0.15 -0.3 ± 1.4 -0.1 ± 1.4 -0.2 ± 1.4 0.3 ± 1.4 -0.2 ± 1.4
td ± 3σ (ms) 0.0 ± 300 36.9 ± 23.9 32.9 ± 24.1 44.8 ± 24.7 44.0 ± 26.4 42.4 ± 28.5

and the identifiability conditions are met, it is possible
to accurately calibrate the spatial offset and the temporal
offset while simultaneously localizing—without additional
sensors or hardware—thus precluding the need for a separate
calibration procedure. The addition of a camera to the UWB-
IMU system may offer many advantages, as UWB radios
and cameras have complementary characteristics. The spatio-
temporal calibration of such a system can be seen as a natural
extension of the work presented in this paper.
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