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Abstract:

Tuning controller parameters is a recurring and time-consuming problem in control. This is
especially true in the field of adaptive control, where good performance is typically only achieved
after significant tuning. Recently, it has been shown that constrained Bayesian optimization is a
promising approach to automate the tuning process without risking system failures during the
optimization process. However, this approach is computationally too expensive for tuning more
than a couple of parameters. In this paper, we provide a heuristic in order to efficiently perform
constrained Bayesian optimization in high-dimensional parameter spaces by using an adaptive
discretization based on particle swarms. We apply the method to the tuning problem of an £
adaptive controller on a quadrotor vehicle and show that we can reliably and automatically tune

parameters in experiments.
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1. INTRODUCTION

Optimizing controller parameters is a difficult and re-
curring problem in practice. While methods have been
proposed in the field of reinforcement learning, few con-
sider the problem of providing safety guarantees during
the optimization (e.g., satisfying state and input con-
straints). One promising method is constrained Bayesian
optimization, which enables safe tuning of controller pa-
rameters (Berkenkamp et al., 2016). However, the method
relies on a discretization of the parameter space, which
limits it to optimizing only few parameters in practice.

In this paper, we consider the problem of scaling up con-
strained Bayesian optimization to larger parameter spaces.
Specifically, we use an adaptive discretization based on
particle swarms as a heuristic to speed up the process
of determining the next parameters to evaluate. The re-
sulting method retains the safety guarantees for evaluated
parameters, but at a reduced computational cost. We show
that good results can be a achieved for the example of
tuning an £, adaptive controller, a task that is known to
be challenging in practice (Hovakimyan and Cao, 2010).

Optimizing or tuning controller parameters has been con-
sidered as part of the policy search problem in the rein-
forcement learning literature (Peters and Schaal, 2006).
Recently, it has been shown that Bayesian optimiza-
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tion (Mockus, 2012) is an effective tool for this purpose.
The method relies on Gaussian processes (GPs) (Ras-
mussen and Williams, 2006) in order to guide function
evaluations to informative locations and provably con-
verges to the global optimum (Srinivas et al., 2010). For
example, Abdelrahman et al. (2016) use Bayesian opti-
mization to optimize the power generated in photovoltaic
power plants, Marco et al. (2016) tune the weight matrices
of an LQR controller, and Calandra et al. (2014) optimize
gaits for bipedal locomotion.

In the Bayesian optimization setting, safety has been con-
sidered in terms of safety constraints in the optimization
problem that need to be satisfied for every parameter that
is evaluated on the physical system. Suitable algorithms
have been presented by Schreiter et al. (2015) and Sui et al.
(2015), while Berkenkamp et al. (2016) applied the latter
method to the parameter optimization of nonlinear control
laws on quadrotor vehicles. However, these methods are
relatively ineflicient: the first one relies on the DIRECT
algorithm (Jones et al., 1993) to determine parameters,
which wastes significant time evaluating unsafe parame-
ters, while the second one uses a fine discretization of the
parameter space, which suffers from the curse of dimen-
sionality.

An alternative optimization method is particle swarm
optimization (Kiranyaz et al., 2014). The method uses
particles that move through the parameter space, where
the particle’s dynamics depend both on the performance
of other particles and its own objective function value.
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While no convergence guarantees exist, these methods
have been shown to work well in practice (Engelbrecht,
2007). One appealing property of the method is that safety
constraints can be considered by adapting the dynamics
of the particles (Hu and Eberhart, 2002). this approach is
not practical to apply on real systems due to the many
simultaneous evaluations required for each particle.

In this paper, we use particle swarms to adaptively dis-
cretize the safe parameter space in constrained Bayesian
optimization. We adapt the definitions in (Sui et al., 2015)
and (Berkenkamp et al., 2016) to make them suitable
for particle swarms, without losing safety guarantees, and
show that the adaptive discretization drastically decreases
the computation time required to determine promising
controller parameters. We evaluate our approach on the
challenging £; adaptive controller tuning problem and
demonstrate the effectiveness of our approach.

2. PROBLEM STATEMENT

We consider the controller optimization objective from
(Berkenkamp et al., 2016). We assume that a control policy
is available, which is parameterized by parameters 6 within
a domain D; in our case, this is an £; adaptive controller.
Given a certain task that we want the controlled system to
perform, the goal is to determine the optimal controller pa-
rameters that maximize a performance measure J(6) over
the task, maxgep J(6). While the performance depends on
the choice of controller parameters 0, it is typically calcu-
lated along a trajectory as a function of the tracking error
and the control inputs. This corresponds to the standard
reinforcement learning policy search setting, where we can
query a parameter 6,, at each iteration n and observe a
noisy measurement of the resulting performance J(6,,).
Since these experiments cause wear in the robot and take
time, the goal is to minimize the number of iterations
before the optimal parameters are found.

In addition to the performance objective, we assume that
the system is safety-critical; that is, for each parameter 6,
that we evaluate on the system, a set of ¢ safety con-
straints must be satisfied, ¢;(0,) > 0, i € Z ={1,...,q}.
For example, these constraints may correspond to state
constraints that ensure operational safety. The resulting
optimization problem is

max J(0) such that: ¢;(8) >0 VieT. (1)
Solving (1) is difficult, since the functional dependence
of J(0) and g;(0) on the controller parameters in is
unknown a priori. Existing algorithms that solve (1),
e.g., SAFEOPT in (Sui et al., 2015), start from an initial
parameter set that is known to be safe a priori and use a
GP model of the performance and constraint functions to
generalize safety to untested parameters and safely explore
the parameter space. These methods usually assume that
computational resources are cheap and do not scale well
with an increasing number of parameters in 8,,. In this
paper, we focus on heuristics to make these methods
applicable in practice.

For ease of exposition, we consider a single constraint
g(0) = J(0) > 0 on the performance objective in the fol-
lowing. We provide information on how to extend the
framework to multiple constraints wherever needed.
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3. PRELIMINARIES

We start by introducing background information on GPs,
Bayesian optimization, and particle swarm optimization.

3.1 Gaussian Processes (GPs)

While the performance J(0) in (1) can easily be evaluated
for a given parameter @ in an experiment, the functional
relationship between parameters and the cost is unknown
a priori. We use GPs as a nonparametric model to approxi-
mate this unknown function, J(0): D — R, from an input
vector @ € D to the function value J(@). This is accom-
plished by assuming that function values J(6), associated
with different values of 8, are random variables and that
any finite number of these random variables have a joint
Gaussian distribution (Rasmussen and Williams, 2006).

For the nonparametric regression, we define a prior mean
function m(@), which encodes prior knowledge about the
function J(-), and a covariance function k(8,’), which
defines the covariance of any two function values, J(0)
and J(0'), 8,0’ € D, and is used to model uncertainty
about the mean estimate. The latter is also known as
the kernel. The choice of kernel is problem-dependent and
encodes assumptions about smoothness and rate of change
of the unknown function J(-).

The GP framework can be used to predict the function
value J(0") at an arbitrary input 8™ € D, based on a set
of n past observations D, = {6;,.J(0;)}"_,. We assume
that observations are noisy measurements of the true func-
tion, J(0) = J(8) + w with Gaussian noise w ~ N (0, o'2).
Conditioned on the previous observations, the mean and
variance of the posterior normal distribution are

pn(07) = m(07) + kn (0K ¥, (2)
a,(07) = k(67,0") — k. (6")K, 'k, (67), (3)

where ¥, = [J(01) — m(01),...,J(0,) —m(8,)]" is the
vector of observed, noisy deviations from the mean, the
vector k,(a*) = [k(0",601),...,k(0",0,)] contains the co-
variances between the new input 8 and the observed data
points in D,,, and the symmetric matrix K, € R"*" has
entries [Kn](i,j) = k(Oi, 9]') + 5ij027 1,j € {1, S ,n}.

8.2 Safe Bayesian Optimization

One class of methods that use GP models of the cost func-
tion to optimize parameters data-efficiently is Bayesian
optimization (Mockus, 2012). These methods aim to de-
termine the global optimum of cost functions that are
expensive to evaluate. In our case, each evaluation of the
cost represents an experiment on a robot with certain
controller parameters, which causes wear in the system and
may take a long time to perform. Bayesian optimization
uses the mean, (2), and variance, (3), information provided
by the GP to determine new parameters to evaluate that
are promising candidates for the global optimum.

Safe Bayesian optimization (Sui et al., 2015; Schreiter
et al., 2015) is an extension of this framework, which aims
to solve the constrained optimization problem in (1). The
method by Sui et al. (2015) uses a GP model of the safety
constraints together with a discretization of the param-
eter space in order to determine a set of parameters S,
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Performance J(0)

Parameters 0

Fig. 1. Example of SAFEOPT. The GP confidence intervals
(blue shaded) are used to determine safe controller pa-
rameters (red set) that are above the safety threshold
(gray dashed) with high probability. To optimize the
function, the most uncertain point from the expanders
(purple) or maximizers (green) is selected.

that satisfy the safety constraint with high probability.
Within this set, the algorithm determines two sets: the
set M,, C §,, contains maximizers, parameters that could
potentially obtain the maximum within the current safe
set. The other set, G, C S,,, uses a Lipschitz constant in
order to determine safe parameters that could potentially
enlargen the safe set given an optimistic measurement.
These two sets are used to trade off exploration (expander
set) and exploitation (maximizers) by choosing to evaluate
the most uncertain parameter within both sets,

6, = argmax o,_1(0), (4)

0c M, UG,

where 0,_1(0) is the standard deviation of the GP
model (3). Repeatedly evaluating the objective at param-
eters given by (4) either expands the safe set or decreases
uncertainty about the potential maximizers within the
current safe set, so that the global optimum is found
eventually. This is illustrated in Fig. 1. The main compu-
tational bottleneck of this method consists of maintaining
and updating a fine discretization of the parameter set.
Selecting a coarse discretization is not possible, since pa-
rameters need to be close to each other in order to use the
GP model to generalize safety.

3.8 Particle Swarm Optimization (PSO)

Particle Swarm optimization (PSO) (Engelbrecht, 2007;
Kiranyaz et al., 2014) is a heuristic method to optimize
non-convex objective functions f(-). In this paper, we
use a variant of this method to solve the optimization
problem in (4). Formally, a swarm is a set of particles with
positions x; € D that represent individual parameters.
Each particle has a velocity v; and its position is governed
by the standard equations of motion,
The velocity v; is chosen so that the parameter space
is explored effectively. At each iteration t of the swarm,
each particle i evaluates the objective function at x;(t)
and keeps track of its best, safe objective value, z;(t) =
maxy <y f(x;(t')). The velocity is then chosen by compar-
ing the particle’s best position, z;, and the global best po-
sition, z(t) = max; z;(¢), with the current position, x;(¢),
vi(t) = a()vi(t —1) +7r1(2:(t) — xi(t)) + r2(2(t) — Xi(t())j
6
Here, 1 € [0, ¢1] and 73 € [0, c2] are samples from uniform
distribution. It can be seen that particles are attracted
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both to their previous best position and the globally
optimal solution. The inertia «(t) together with the with ¢;
and ¢y are problem-specific tuning parameters that trade
off exploration for local or global exploitation.

Constraints in the optimization can be incorporated by
only updating the optimum estimates z; when the con-
straint is fulfilled (Hu and Eberhart, 2002) or by adding
a penalty for constraint violation; that is, changing the
objective function to f(x) + p(x), where p(x) is a smooth
penalty for constraint violation (Parsopoulos et al., 2002;
Parsopoulos and Vrahatis, 2005).

4. MAIN METHOD

In this section, we show how to scale safe Bayesian opti-
mization to larger dimensions by using an adaptive dis-
cretization. We provide a Python implementation of our
method at https://github.com/befelix/SafeOpt .

The main challenges to applying PSO to optimize the
acquisition function (4) of safe Bayesian optimization
are designing a sparse approximation for the safe set as
initial points for the particles, defining suitable objective
functions for the maxmimizers and expanders subject to
the safety constraints, and selecting the tuning parameters
of the PSO to be generally applicable.

4.1 Safety, Mazimizers, and Fxpanders

As a first step, we need to determine whether each particle
fulfills the safety constraints. To this end, we use high-
probability confidence intervals of the GP model of (1),

ln(X) = Mn (X) - Bngn(x)a (7)

un(x) = Mn (X) + /Bngn(x)a (8)
where [, and u,, are the lower and upper bound of the
GP model after n data points, with u, from (2) and oy,
from (3). The true function value J(x) lies within the
confidence interval [l,,(x),u,(x)] with high probability.
The exact probability depends on the choice of 3,; typical
choices are values of two or three. Based on these confi-
dence intervals, we can determine parameters that are safe
with high probability, I, (x) > 0; that is, parameters with
worst-case function values above the safety threshold.

To use the particles for safe Bayesian optimization, we
need to encode the objectives of expanding the safe set
and maximizing the function within the safe set. At the
same time, as in SAFEOPT, we trade off exploration and
exploitation by selecting the most uncertain parameter
as in (4). Thus, the swarm should aim for high-variance
parameters, while staying within the safe set.

Maximizers and expanders have fundamentally different
objectives, which are difficult to unify into one cost func-
tion. Instead, we use different swarms with separate ob-
jectives that explore the parameter space simultaneously.
We specify the objective functions of the particle swarms
as f(x) = I(x)(0,(x) + p(ln(x)), where the GP’s predic-
tive standard deviation and a penalty for the violation
of the safety constraint (p(l,,(x)) < 0 for violations) are
multiplied by the interest function I(x), which differs for
both swarms. Intuitively, the objective function encodes
that parameters with high variance that do not violate
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global optimum
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a: After 1 evaluation.

b: After 20 evaluations.
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Fig. 2. Swarm optimization example. We maintain a coarse approximation of the safe set (red dots), at which the particle
swarms are initialized. Starting from these, the expanders (magenta dots) and maximizers (green dots) search and
eventually the objective function is evaluated at one data point (real experiment, blue cross). The estimate of the
optimum (black dot) converges to the true, safely reachable optimum. Eventually only the optimum is evaluated.

the safety constraint significantly are desirable, while the
interest function is used to select parameters that are
expanders or maximizers.

For expanders, this interest function needs to be attractive
to parameters that are close to the boundary of the safe
set. As can be seen in Fig. 1, these boundary points have
a lower bound that is close to the safety threshold. Thus,
parameters with high uncertainty on the boundary of the
safe set are promising candidates for expansion of the safe
set. To encourage aiming close to the safety threshold, the
interest function is defined as

Lexp(x) = exp(=5l3 (x)), 9)
which is an exponential function centered on the safety

threshold. The value five is chosen experimentally, see
Sec. 4.3.

For the maximizers, relevant parameters are those that
achieve an upper bound that is better than the best
lower bound, which is the current estimate for the optimal
parameters. Ideally, we would use a step function to cut off
non-interesting states. However, in order to provide more
information to the particles, we use the logistic function
as a smooth approximation instead:

1

Imax(x) 1 + eXp(lmax _ un(x)) il
where lpax = maxxep [(x) is the best lower bound. Note
that this quantity itself is not easy to obtain. We use
a third swarm with objective f(x) = l,(x) in order to
approximate it efficiently. An additional advantage of this
scheme is that an estimate of the optimal parameters is
computed as a by-product.

(10)

Based on these interest functions, the estimates for the
best expander and maximizer can be found by running
PSO based on the dynamics in (6) with the corresponding
interest function. Based on this, the next parameters to
evaluate on the real system are

0, = argmax o0,(0), (11)

ee{gexpyemax}
where Oexp and O, are the optimal parameters with
respect to f(x) that are returned by the expander and
maximizer swarms, respectively.

4.2 Approximation of Safe Set

To make the algorithm efficient, particles must start in safe
positions. We use a sparse set of previously safe parameters
as initial positions. At the end of each run of the PSO, we
test whether any safe particle positions are sufficiently ‘far
away’ from positions in the sparse set of safe parameters. If
such a ‘new’ candidate is found, it is added to the safe set.
We discuss how to select an appropriate distance measure
in the next section. The resulting safe set is illustrated
by the red circles in Fig. 5. The initial positions of the
particles are choosen uniformly at random from this sparse
set of parameters at the beginning of each iteration n.

While the safe set grows over time, this growth is bounded.
In our experiments, the computational cost of this sparse
approximation was not significant relative to the cost of
evaluating the GP posterior distribution.

4.8 Parameter Selection

The performance of the algorithm depends on the choice
of parameters for the swarm optimization. Specifically, the
objective functions for the particle swarms in Sec. 4.1 are
not invariant with respect to the magnitude of the function
values of J(-) and g(-). Moreover, to approximate of the
safe set in Sec. 4.2 and for the swarm dynamics (6) we
have to compute distances. To ensure that particles explore
within the safe region of parameters, these distances must
depend on the rate of change of the constraints g(8).

In order to make the algorithm applicable to a general
class of problems, we have to make the swarm optimization
invariant with respect to the properties of the functions
that we optimize in (1). To this end, we use the assump-
tions about the objective and constraint functions that are
encoded within the kernel.

In particular, let o, be the prior standard deviation of
the kernel of the GP model. In order to encode invariance
towards function value magnitude, we scale o,,, [,,, and u,,
in the swarm objective functions in Sec. 4.1 as well as the
selection criterion in (4) by o,,. For multiple constraints,
this value varies for each GP model. Similarly, the prior
covariance k(60,0), between two data points encodes a
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distance measure. We conduct a simple bisection line
search to determine a distance scale: we selecte a distance
scale d such that k(0,0 +d)/o, ~0.95. This distance
measure is used to scale the distances in the computation
of the swarm velocities, see (6). Moreover, we set the initial
velocities of the particles equal to d, in order to encourage
a velocity that takes particles away from current positions,
but without risking moving to far away from existing data
points and leaving the safe set. In the case of multiple
constraints, the smallest initial velocity is used.

Following (Homaifar et al., 1994), we use a multi-stage
penalty function that is typical for swarm optimization,

0 if 1,,(x) > 0,

21, (x) if 1,(x) € [-0.001,0],
p(1n(x)) = { 5l,(x) if 1,(x) € [-0.1,-0.001],

101, (x) if 1,(x) € [~1,-0.1],

—3001,,(x)? if I,(x) < —1.

(12)
This function provides a strong incentive for particles to
remain inside the safe set. For multiple constraints, the
individual penalties are added up. In our experiments, the
algorithm was robust towards the choice of penalty used.

An illustrative run of the algorithm on a two-dimensional
optimization problem is shown in Fig. 5. The safe, global
optimum is indicated close to the top-right corner. Starting
from a single parameter evaluation that is known to be
safe a priori, the particles start to explore the space in
Fig. 2a. At the end of the particle swarm optimization, we
select 8,, according to (11) and evaluate its performance on
the physical system. As more data becomes available, we
update the GP model and the safe set increases. It can be
seen in Fig. 2c that expander particles (magenta) stay close
to the boundary of the safe set, while maximizers (green)
aim for areas with high function values. The estimate of
the best known parameters (black) eventually converges
to the global optimum.

Overall, our method determines good parameters even for
a small number of particles, since the particle swarms focus
on exploring within the safe set. This provides the opportu-
nity to actively trade off accuracy for computation time. In
contrast, the non-adaptive optimization in (Berkenkamp
et al., 2016) stalls on coarse discretizations. As a conse-
quence swarm-based SAFEOPT can be applied to higher-
dimensional problems.

5. EXPERIMENTS

To demonstrate the effectiveness of the proposed optimiza-
tion method, we use our approach to tune the parameters
of an £y adaptive output feedback controller. The con-
troller is implemented on a Parrot AR.Drone 2.0 quadro-
tor, and optimized for maximum tracking performance of
a circular trajectory with a diameter of 3m. First, two
parameters are optimized followed by optimization over
four parameters to show the computational benefits.

5.1 Overview of the Extended L1 Adaptive Controller

The L£; adaptive controller is based on the model ref-
erence adaptive control (MRAC) architecture with the
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r2(t) | Gain|"1(t) | Low P u(t) y2(t)
y1(t)
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Predictor )

Adaptation g(t)
5(t) Law

Fig. 3. The extended £; adaptive controller that is opti-
mized using the swarm-based SAFEOPT algorithm.

addition of a low-pass filter that decouples robustness
from adaptation (Hovakimyan and Cao, 2010). This allows
arbitrarily high gains to be chosen for fast adaptation. In
the experiments, the typical £; adaptive output feedback
controller for single-input single-output (SISO) systems
in (Hovakimyan and Cao, 2010) is nested within a pro-
portional controller, as shown in Fig. 3. The SISO archi-
tecture is implemented separately in each direction and
combined to control the multi-input multi-output (MIMO)
quadrotor system. This architecture is identical to the one
by Michini and How (2009) and Pereida et al. (2017).
The £; adaptive output feedback controls the quadrotor’s
translational velocity, while the outer-loop proportional
position controller ensures that the system remains within
the physical limitations of the flight area.

The objective of the extended £ adaptive output feedback
controller is to determine a control input u(t) such that the
quadrotor system position yo(¢) tracks a bounded, piece-
wise continuous reference position trajectory ra(t). The
L1 adaptive controller uses the adaptive estimate ¢ in the
control law to compensate for any unknown disturbances
and unmodeled dynamics of the system. The theoretical
details of this architecture are provided in (Pereida et al.,
2017), while £, adaptive control theory is discussed in (Ho-
vakimyan and Cao, 2010).

The individual components of the SISO £; architecture are
introduced next. With the exception of the proportional
negative feedback loop, this architecture from r; to y; is
identical to (Hovakimyan and Cao, 2010). The equations
describing the components of the extended L£; output
feedback architecture are (13), (14), (15), and (17) below.

Output Predictor ~ We use a first-order, continuous-time
output predictor in the frequency domain within the
L4 adaptive output feedback architecture,

in(s) = o (u(s) +6(5)),

where 6(t) is the adaptive estimate, and m is the eigen-
value or pole location of the output predictor. Larger mag-
nitudes of m demand a faster response from the system and
contributes to the high frequency signal in the adaptive
estimate that enables fast adaptation.

(13)

Adaptation Law  We update the adaptive estimate &(t)
according to the update law

o(t) = TProj(6(t), —mPy(t)),  &(0)=0,  (14)

where (t) 2 91(t) — y1(t) and P > 0 solves the algebraic
Lyapunov equation mP + Pm = 2mP = —Z for Z > 0.
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The variable I' € R > 0 is the adaptation rate. It has a
lower bound as discussed in (Hovakimyan and Cao, 2010)
to guarantee stability. Typically in £, adaptive control,
T is set very large. Our experiments were carried out with
an adaptation rate of I' = 5000. The projection operator
defined in (Hovakimyan and Cao, 2010) guarantees that
the estimation of o remains within a specified convex set.

Control Law  'The control input signal is the difference
between the £; desired trajectory signal r; and the adap-
tive estimate & after being filtered by the low-pass filter

C(s):

u(s) = C(s)(ri(s) — 6(s)). (15)
The low-pass filter used in our experiments is the following
third-order filter:
_ 3w?s + w?
(st we)d’
where w, is the cutoff frequency of the filter. The filter
ensures that only the low frequencies of the error signal
that the system actuators are capable of counteracting are
passed through. The high-frequency portion is attenuated
by the low-pass filter.

C(s) (16)

Closed-Loop Feedback  The following equation describes
the closed-loop feedback acting on the input to the
L1 adaptive output feedback controller r; based on the
position of the system y;:

ri(s) = K(r2(s) — y2(s)), (17)
where the objective is for ys to track ry. The proportional
gain is K.

The SISO L, adaptive control architecture discussed above
is extended to the MIMO quadrotor system by implement-
ing (3 x 3) diagonal transfer function matrices for the low-
pass filter and first-order output predictor. The signals
r1(t), r2(t), y1(t), and yo(t) are the desired translational
velocity, desired position, quadrotor translational velocity
and quadrotor position, respectively. Each element of the
three-dimensional signals and each diagonal element of the
transfer function matrices correspond to the z, y and z
inertial directions, respectively. Since the transfer function
matrices are diagonal, any coupling between the z and y
dynamics are compensated for by the controller.

5.2 Optimization Parameters

In the following, we present the results of two experiments.
The first optimization problem considers the two main
L1 adaptive control tuning parameters of the horizontal
velocity controller, namely the first-order output predictor
pole location and the low-pass filter cutoff frequency, such
that @ = {wyy, Mgy }. This two-dimensional problem shows
the ability of the algorithm to safely optimize the nonlinear
underlying cost function of the L£; adaptive controller,
and allows the exploration strategy of the algorithm to
be visualized. Since the quadrotor is assumed to behave
identically in roll and pitch, the optimization is conducted
in the horizontal plane over the low-pass filter cutoff
frequency wyy, and the first-order output predictor my,
in both the x and y directions simultaneously. For this
reason, a circular trajectory was chosen in the horizontal
plane with a diameter of 3 m. The performance metric used
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for this optimization penalizes the radial position error
according to the cost function
AR
-2
J(6) = ; N( 5007;%), (18)
where ¢ denotes the timestep within a particular exper-
iment, N is the total number of timesteps within an
iteration of the optimization, and 7; £ rqes — /22 + ;2
is the radial position error at the 7th timestep. The safety
constraint is defined to be g(0) = J(0) > —25 determined
experimentally to produce safe results with this cost func-
tion.

The main computational advantage of the proposed
method is demonstrated through the second optimization
problem over four parameters of the £; adaptive con-
troller. These are the cutoff frequency and output pre-
dictor eigenvalue of the z controller as well as the hor-
izontal controller as in the first optimization, such that
0 = {wyy, Myy,w., m;}. The trajectory is changed to in-
clude a total altitude change of 0.5 m over the same circular
trajectory. To capture the altitude tracking performance
in the cost function, an additional term is added for the
vertical position error:
Al

J(6) = ; N( — 5007;% — 1000%,?), (19)
where Z; £ Zzges; — 2 is the altitude error at the ith
timestep at which the radial error is also computed. The
safety constraint is adjusted to g(@) = J(6) > —30, which
reflects the additional altitude error cost term.

5.3 Gaussian Process (GP) Kernel

To use Bayesian optimization, we need to specify a GP
prior over the objective functions (18) and (19). The
kernel used in the optimization is the Matern kernel with
parameter v = 3/2 (Rasmussen and Williams, 2006):

5(0,60') = 0—3,(1 +V3 (6, e’)) exp ( — V3 (0, 0’)),
(20)

(21)

r(0,6) = /(0 - 0)TM (8 - ),
where 0727 is the prior variance and M is a diagonal matrix

containing the positive length-scales 1 € RIPI > 0, such
that M = diag(l). This means there are the following three
hyperparameters, the process noise o defined in Sec. 3.1,
the prior variance 0727, and the positive length-scales 1. For
the experiments conducted for this paper, the process noise
is set to 6% of the initial controller performance J(6y) and
the prior variance is set to 50% of the initial controller
performance. In the first optimization problem, the GP
length-scales were chosen to be 0.60 for both the cutoff
frequency w,, and the output predictor eigenvalue my,
such that 1 = [0.6 0.6]. Larger length-scales assume that
the underlying cost function does not vary as much with
respect to the parameters. This speeds up the optimization
process since fewer data points are required to capture the
behavior of the cost function.

In the second optimization problem, the GP kernel models
the parameters of the z controller to be additive, which
makes the assumption that the controller parameters in
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Fig. 4. Contour plot of the optimization of the low-pass fil-
ter and output predictor eigenvalue for the horizontal
controller. Individual evaluations are indicated by the
red dots. The contour shows the GP mean estimate
of the cost function.

the z direction independently influence the cost from the
parameters of the z and y directions. Modeling the z
direction as an additive error allows for more data-efficient
optimization, as this encodes additional problem structure.
The length-scales were chosen to be 1 = [0.6 0.6 0.7 0.7]
to take the two additional parameters into account and ex-
pedite the exploration of the four-dimensional parameter
space.

5.4 Optimization Results

The contour plot of the first optimization problem of the
low-pass filter and output predictor is shown in Fig. 4.
The optimization begins with a parameter combination
of wyy = 2.0rad/s and my, = —1.75 with an initial
performance of —16.97. Convergence was reached after 187
iterations, after the standard deviation within the safe
region decreased below a threshold of 0.7. The optimal
parameters were found to be wy, = 1.34 rad/s and Mgy =
—0.92 with a performance of —2.80. This is an 83.5%
reduction in the cost. The contour plot in Fig. 4 shows
the nonlinear and non-convex cost function that confirms
the challenge of manually finding the optimal parameters
of the £; adaptive controller. In favor of exploring the
space faster, the length-scales were chosen to be relatively
large. This occasionally resulted in high penalties that
violated the safety constraint indicated by the parameter
evaluations lying outside of the contours. This illustrates
the trade-off between data-efficiency and safety.

The trajectories of the two-dimensional optimization are
shown in Fig. 5a. The 83.5% improvement in the per-
formance metric is clearly visible when comparing the
optimized (red) and initial (blue) radial errors. Although
the intermediate iterations have worse performance, the
evaluations were still safe and resulted in no crashes, as
the gray trajectories show. The time required to calculate
the set of parameters for each iteration was between 0.22
and 0.53 seconds.

The second optimization problem was started with the
controller parameters set to wy, = 1.34rad/s, mgy, =
—0.92, w, = 0.45rad/s and m, = —3.5, which resulted
in an initial performance of —14.60. The initial z,y pa-
rameters were chosen to be the optimal parameters of the
two-dimensional optimization. This allows us to examine
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a: Two parameter optimization. b: Four parameter optimization.

Fig. 5. Tracking performance comparison for the two and
four parameter optimization. The initial controller
trajectory is shown in blue, the optimized controller
in red, and the desired trajectory in black. The other
iterations of the optimization are shown in gray.
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Fig. 6. Radial square error showing the initial and opti-
mized controller in blue and red, respectively.
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Fig. 7. Altitude square error showing the initial and
optimized controller in blue and red, respectively.

the z direction independence discussed above. This occurs
when the optimal x,y parameters of the four-dimensional
optimization problem correspond to the same x and y con-
troller parameters from the two-dimensional optimization.

The high dimensionality of the problem results in an
exponential increase in the number of iterations required
for convergence, because the kernel in (20) couples all
the parameters. For this reason, the z parameters are
modelled to be additive to reduce the number of iterations.
The two parameter optimization above found the optimal
parameters at the 43rd iteration, so in practice, reasonable
performance can be obtained in relatively few experiments
and convergence is not required. For this reason, the four
parameter optimization was stopped after 100 iterations.
The optimized parameters after 100 iterations are wy, =
1.73rad/s, mgy = —0.68,w, = 1,01rad/s and m, = —2.14
with a performance of —7.34. Compared to the initial
controller performance of —14.60, the optimized trajectory
represents a 49.7% improvement. The trajectories of the
four-dimensional optimization are shown in Fig. 5b and
the cost function error metrics composed of the radial and
altitude square errors are shown in Fig. 6 and Fig. 7,
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respectively. The areas under the curves relate to the
square error over the entire trajectory used in the cost
function. The reduction in area under the optimized curves
relative to the initial curves illustrates the performance
improvement. In terms of computation, the time that was
required to calculate the set of parameters for each itera-
tion was between 0.32 and 0.46 seconds. This is compara-
ble to the iterations of the two-dimensional optimization
above, demonstrating the computational advantage of our
approach. In contrast, without the adaptive discretization
as in (Berkenkamp et al., 2016), computation time with the
GP model can take several minutes for four parameters.

To analyze the independence of the z controller param-
eters, Fig. 6 shows that the initial radial square error
is lower compared to the optimal parameters. Although
this suggests that the z controller parameters are not
independent, it can also be due to the optimization that
was not completed to convergence and noise that is present
in the results. Furthermore, the optimal x and y controller
parameters wg, = 1.73rad/s and mg, = —0.68 correspond
to the third local maximum with magnitude —3.30 in the
cost function shown in Fig. 4. This still represents an 80.6%
improvement, and likely confirms that the z controller
parameters influence the cost independently.

The current optimization approach solves the computa-
tional burden when the number of optimization param-
eters is increased. However, the statistical problem that
stationary kernels lead to an exponentional increase in the
number of iterations required until convergence remains.
In practice, this can be alleviated by encoding structure
(e.g, additivity in the cost function), increasing the length-
scales, or relaxing the convergence condition.

6. CONCLUSION

We presented an extension of SAFEOPT, a safe Bayesian
optimization algorithm. We used an adaptive discretiza-
tion based on particle swarms in order to decrease the
computational complexity for high-dimensional problems.
The resulting algorithm was applied to tuning an £; adap-
tive controller on a quadrotor, which confirmed that this
approach is flexible, practical, and can safely optimize
controller parameters with low computational cost.
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