
Fast and In Sync: Periodic Swarm Patterns for Quadrotors

Xintong Du, Carlos E. Luis, Marijan Vukosavljev, and Angela P. Schoellig

Abstract— This paper aims to design quadrotor swarm per-
formances, where the swarm acts as an integrated, coordinated
unit embodying moving and deforming objects. We divide
the task of creating a choreography into three basic steps:
designing swarm motion primitives, transitioning between those
movements, and synchronizing the motion of the drones. The
result is a flexible framework for designing choreographies
comprised of a wide variety of motions. The motion primitives
can be intuitively designed using a few parameters, providing
a rich library for choreography design. Moreover, we combine
and adapt existing goal assignment and trajectory generation
algorithms to maximize the smoothness of the transitions
between motion primitives. Finally, we propose a correction
algorithm to compensate for motion delays and synchronize
the motion of the drones to a desired periodic motion pattern.
The proposed methodology was validated experimentally by
generating and executing choreographies on a swarm of 25
quadrotors.

I. INTRODUCTION

In recent years, robots have gradually found their way
into the entertainment industry. Due to the advancements
in both software and hardware, autonomous quadrotors, for
example, have become active participants in art work and
entertainment activities, showing off their exceptional agility
in navigating in the three-dimensional space. Companies
such as Intel and SKYMAGIC have delivered dazzling drone
shows, where hundreds or even thousands of drones equipped
with dedicated LEDs were coordinated to display enormous
animations in the sky. Other companies, such as Verity
Studios and ElevenPlay, have taken their shows to a differ-
ent level, involving coordinated movements of drones with
human performers, light effects, and music.

Drone shows where visual effects dominate the audience’s
experience have been pushed to an unprecedented scale and
flown as many as 2018 drones [1]. However, shows that
primarily rely on the effect of highly dynamic motions and
fully leverage the motion capabilities of quadrotors remain at
a much smaller scale. One reason is that drone swarms per-
forming highly dynamical motions demand fast and accurate
state estimates, motion planners and controllers, as well as an
efficient and reliable overall flight control system architecture
(e.g. with little or predictable time delays). Moreover, from
a producer’s perspective, the design and choreography of
attractive, highly dynamic, swarm-like motion patterns for
a large troupe of drones becomes more challenging due to
inter-agent collision constraints and spatial constraints, as
well as aerodynamic effects. Therefore, our work aims to

Authors are with the Dynamic Systems Lab (www.dynsyslab.org)
at the University of Toronto Institute for Aerospace Studies (UTIAS),
Canada. Email: xintong.du@mail.utoronto.ca, carlos.luis@mail.utoronto.ca,
mario.vukosavljev@mail.utoronto.ca, schoellig@utias.utoronto.ca

Fig. 1. Twenty-five quadrotors perform a periodic wave motion in the
vertical direction. A video of a full performance is available at http:
//tiny.cc/fast-periodic.

provide motion planning and control strategies that enable a
quadrotor swarm to act as an integrated entity and display
highly dynamic motion patterns, as shown in Fig. 1.

In the context of motion planning for complex task spec-
ifications, motion primitives have proven to be a successful
framework. Motivated by creating theatrical performances,
we aim to design a library of motion primitives, from
which choreographers can then choose and combine motion
primitives to form a coherent story. First, individual motion
primitives must be designed. Rhythmic motion primitives
for individual vehicles were proposed in [2]. A set of
representative behaviour descriptors in [3] was designed
to enable online interaction with a small group of robots.
However, a unified framework for encoding a library of
motion primitives for swarms is lacking.

Next, to concatenate swarm motion primitives, we develop
an algorithm for smooth and safe transitions. Many tech-
niques in the robot planning and control literature already
exist to transition vehicles from one configuration to another.
Of particular interest is a simultaneous goal assignment
and trajectory planning algorithm with a simple collision
avoidance scheme proposed in [4], which has been applied in
the context of drone performances [5]. Despite its scalability
to large swarms and its consideration of vehicle dynamics
at an early stage in the planning process, this method does
not immediately apply to our situation. Namely, it does not
guarantee a common start and end time for all vehicles, and
it assumes the vehicles are at rest at the start and end, which
makes designing smooth trajectories difficult for our dynamic
motions.

Finally, once motion primitives and their transitions are
designed, they need to be executed reliably by the real
system. To this end, a phase comparator was proposed
in [6] to eliminate the phase error in tracking the desired

www.dynsyslab.org
http://tiny.cc/fast-periodic
http://tiny.cc/fast-periodic
http://tiny.cc/fast-periodic
http://tiny.cc/fast-periodic

position trajectories. Moreover, a correction method was
taken to compensate for the predictable delay in sensing
and communication. In this work, we directly apply the
correction method to quadrotors with standard position and
attitude controllers. We demonstrate that this method can
reliably minimize tracking errors of periodic signals for
quadrotor swarms.

The contributions of this paper are as follows. First, we
present a generic formulation for swarm motion primitives
that is suitable for describing periodic, highly dynamic
motion patterns, where drones appear as a coordinated
unit embodying moving and deforming objects. Second,
we adapt and combine various state-of-the-art trajectory
planning methods to safely and smoothly connect arbitrary
swarm motion primitives and, additionally, preserve patterns
in the swarm behaviour that could emerge from strategic
goal assignment. Third, we show that a simple correction
algorithm is capable of compensating for amplitude and
phase errors that arise when trying to synchronize a swarm’s
motion to a desired periodic motion pattern. Finally, results
are demonstrated experimentally on a large swarm of drones.

II. DYNAMIC, PERIODIC MOTION PATTERNS

This section presents our design of dynamic, periodic
motion primitives for drone swarms. These motion primitives
embody moving and deforming objects and are inspired
by natural particle phenomena such as wave motions or
rigid body rotations. The goal is that vehicles appear as an
integrated entity.

A. Generic Formulation

We define a motion primitive for a swarm of N drones as
a tuple

MPN =
(
t0, tf , {rn}Nn=1, Td(r, t)

)
, (1)

which consists of the start time t0 ∈ R and end time tf ∈ R
of the motion primitive, a unique characteristic configuration
vector rn ∈ R3 for each drone n = 1, . . . , N , and a desired
position trajectory generator Td(r, t) : R3 × [t0, tf] → R3.
Then, the desired position evolution for the n-th drone over
the interval t ∈ [t0, tf] is given as xnd (t) = Td(rn, t).

As in [2], we parameterize the trajectory generator Td as a
finite sum of periodic functions to encode rhythmic motions.
Moreover, we use the configuration vectors rn to emphasize
how each drone’s motion is related to the overall display.
Specifically, trajectory function is defined as

Td(r, t) = C(r)+
M∑
m=1

(Am(r) sin(ωmt) + Bm(r) cos(ωmt)) ,

(2)
with frequencies ωm ∈ R as well as parameter functions C,
Am and Bm : R3 → R3 that define the centre and amplitude
of the sinusoidal functions in 3D. Here m indexes motions
with different frequencies and parameter functions.

The parameters in (2) reflect desired rhythmic and visual
effects. The temporal components ωm describe intervals
of repeated patterns. The spatial components C, Am, Bm,

2

0

1
2.521.51

0.2

0 0.50

0.4

-0.2

4

0

4

0.2

2 2
0 0

0 2 4
0

1

2

3

4

0 2 4
0

1

2

3

4

0 2 4
0

1

2

3

4

(a) (b)

(c)

Fig. 2. This figure shows an example of a wave pattern on a bounded
elastic surface represented by 49 drones positioned in a grid configuration.
In (a), we show a schematic of a 1D wave motion over a quarter of a period
where hollow circles and solid circles indicate the equilibrium and peak
position, respectively. The color of the trajectories shifts from yellow to blue
indicating the passage of time. In (b), the amplitude function Am(r) in the
x direction is aµ1µ2,1 sin(2πr1) sin(πr2) where m = (µ1, µ2) = (8, 4).
Red dots are the amplitude evaluated at each characteristic vector rn. The
wave motion with this amplitude function is demonstrated in the bottom
left diagram in this figure. In (c), we illustrate the role of the index µ1
(while keeping µ2 fixed) in determining the wave motion’s periodicity and
symmetry.

and {rn} are responsible for the spatial pattern collectively
demonstrated by the swarm. In particular, the parameter
functions determine the overall picture presented to the
audience, where each drone’s contribution is reflected by
their unique characteristic configuration vector.

Some possible choices for spatial patterns are given as
below. In our experiments, we demonstrate two specific
representations of (2), where vehicles represent the particle
movement seen in waves and rigid body rotations.

B. Wave Patterns

Wave motions are ubiquitous in nature. Typical examples
include surface water waves, sound traveling through air,
and electromagnetic field propagation. They can be modeled
by the wave propagation equation [7]. Consider a two-
dimensional rectangular elastic surface with bounded edges
as shown in Fig. 2a. Suppose the equilibrium location of each
point P on the surface is parameterized by s = (s1, s2) ∈
[0, a] × [0, b] ⊂ R2. The disturbance to a point at time
t, u(s, t) ∈ R3, by a three-dimensional wave propagating
through the surface at speed c > 0 is governed by

c2∇2u(s, t) =
∂2u(s, t)

∂t2
, (3)

where ∇2 is the spatial Laplacian. Its solution can be
expressed as a product of spatial and temporal components:

u =
∑

(µ1,µ2)

aµ1µ2 sin
(µ1

a
πs1

)
sin
(µ2

b
πs2

)
sin(ωµ1µ2t)+

bµ1µ2 sin
(µ1

a
πs1

)
sin
(µ2

b
πs2

)
cos(ωµ1µ2t),

(4)

0

0.5

1

1.5

1.5

2

-1 1
-0.5 0.5

00
-0.5

Fig. 3. An example of a rigid body rotation of which the characteristic
vectors {rn}Nn=1 are designed to form a helix on the surface of a tilted cone.
Desired trajectories of each drone Td(r, t) over a time interval t ∈ [t1, t2]
are shown, where hollow circles and solid circles mark the start and end
position, Td(r, t1), Td(r, t2), respectively. Color changes from yellow to
blue along each trajectory to indicate the passage of time.

where the amplitudes aµ1µ2 ,bµ1µ2 ∈ R3 can be determined
from the surface’s initial position and velocity, and frequen-
cies ωµ1µ2

∈ R for µ1, µ2 = 1, 2, 3... are dictated by the
dispersion relation ω2

µ1µ2
= c2π2(

µ2
1

a2 +
µ2
2

b2).
Finally, we can use a finite approximation to this solution

to generate reference trajectories for N drones situated on
the surface. Suppose that we select M pairs of (µ1, µ2) terms
in the finite approximation and assign a unique point rn ∈
[0, a]×[0, b]×{h} to each drone n = 1, . . . , N on the surface
at some desired height h > 0. Then the desired reference is
xnd (t) = rn + u((rn1 , r

n
2), t) for n = 1, . . . , N . Comparing

to (2), we can design a swarm motion primitive, where the
indices m = 1, . . . ,M correspond to a pair (µ1, µ2), the
frequencies are ωm = ωµ1µ2 , and parameters are C(r) =
r, Am(r) = aµ1µ2

sin
(
µ1

a πr1
)
sin
(
µ2

b πr2
)

and Bm(r) =
bµ1µ2

sin
(
µ1

a πr1
)
sin
(
µ2

b πr2
)
.

The surface wave (4) has desirable geometric properties,
such as symmetry and periodicity in its spatial components
Am, Bm. However, the parameters rn, µ1, µ2, am and bm
must be carefully selected when representing a pattern on
the continuous rectangular surface with a finite number of
drones. To be specific, µ1 and µ2 determine the spatial fre-
quency of the oscillation amplitude and thus, the symmetry
and periodicity in the overall wave pattern. The pattern gets
more interesting as the axes or points of symmetry increase
until their spacing is smaller than that between drones.
Although any distribution of the drones within the surface is
valid and should not influence the overall pattern, a selection
of the vectors {rn}Nn=1 that shares similar symmetry as Am,
Bm may offer a better visual experience to the audience,
such as a radial or rectangular mesh. Examples illustrating
the role of each parameter are shown in Fig. 2b and Fig. 2c.

C. Rigid Body Rotation

A rigid body rotation can also be expressed in the form
(2). Consider a rigid body V rotating in an inertial frame FI
at a constant angular velocity, for example, the tilted cone
in Fig. 3. First we attach a body frame FB with origin ρo
relative to the inertial frame FI . Next, we define an inertially
fixed frame FBo which overlaps with FB at time to = 0.

Let r ∈ R3 be the position of a point expressed in FB.
Then this point is expressed in the inertial frame FI as

rI = ρo +RIBo
RBoB r, (5)

where RIBo
= [e1 e2 e3] is the rotation matrix from FBo

to FI and, without loss of generality, RBoB is a principle
rotation along the z axis of FBo given by RBoB = RZ(ωzt).
Expanding (5), we obtain the trajectory generator of a rigid
body rotation:

Td(r, t) = ρo + e3r3+(e2r1 − e1r2) sin(ωzt)+

(e1r1 + e2r2) cos(ωzt).
(6)

This may now be compared with (2) to obtain the parameters
and frequencies.

Since ωz determines the periodicity and (ρo,RIBo) simply
denotes the pose of the rotating object, the characteristic
vectors {rn}Nn=1 are the only parameters to be designed.
Given the availability of only N drones as well as the
constraints on the minimum distance among them, {rn}Nn=1

should be strategically chosen in order to have the audience
recognize the shape of the body. For instance, it is easier
to identify a cone if the drones outline a helix lying on the
surface of the cone, as opposed to spacing them uniformly.

III. TRANSITION TRAJECTORY PLANNING

This section presents our transition trajectory planner that
coordinates the swarm to make smooth and safe transitions
and preserves geometric features in this process. We for-
mulate the problem in Sec. III-A followed by our proposed
method in Sec. III-B and III-C and justification in Sec. III-D.

A. Problem Statement

Consider two consecutive motion primitives MPN1 and
MPN2 defined as

MPN1 =
(
t0,1, tf,1, {rn1}

N
n=1, Td,1(r, t)

)
,

MPN2 =
(
t0,2, tf,2, {rn2}

N
n=1, Td,2(r, t)

)
.

We aim to compute:
• A common start time ts and end time te for all drone

actors that satisfy |ts − tf,1| 6 ε1 and |te − t0,2| 6 ε2
for some small numbers ε1 and ε2.

• An assignment M : {rn1}Nn=1 → {rn2}Nn=1 that assigns
each drone identified by rn1 in MP1 a unique charac-
teristic configuration vector rn2 in MP2.

• For each drone identified as rn1 in MP1, a smooth
trajectory T ns (t) from MP1 to MP2 that respects
the quadrotors’ motion constraints, the flight space
boundary and inter-agent collision constraints.

Our preliminary results showed that it is possible to optimize
ts and te for energy consumption. In this work, however, we
assume ts and te are given and focus on the goal assignment
and trajectory generation problem.

B. Goal Assignment

We formulated the goal assignment problem as a combina-
torial optimization problem. In our application, the assign-
ment M aims to maximize the smoothness of trajectories
generated in the next step. More complicated swarm transi-
tion objectives can be defined, such as minimizing the likeli-
hood of collisions. However, in this case, the cost function of
one assignment depends on how other assignments are made,
making it a challenging nonlinear optimization problem.

If we denote the cost of assigning rα1 to rβ2 as Ja(rα1 , r
β
2),

the mapping M can be found by solving the linear assign-
ment problem

M = argmin
M(·)

N∑
n=1

Ja(rn1 ,M(rn1)) (7)

using the Hungarian algorithm [8]. To obtain the assignment
cost Ja(rn1 ,M(rn1)), we solve a simplified minimum snap
trajectory generation problem as in [9], for which only state
continuity constraints are enforced. We then take the optimal
cost function value of that problem as the assignment cost,
namely,

Ja(rα1 , r
β
2) = min

Tα,β(·)

∫ te

ts

(T α,β(4)(τ))2dτ

s.t. T α,β(p)(ts) = T d,1(p)(rα1 , ts),
T α,β(p)(te) = T d,2(p)(rβ2 , te),

(8)
with p = 0, 1, 2, 3, 4. Note that T α,β(t) : [ts, te]→ R3 is the
transition trajectory assigning rα1 to rβ2 parametrized with a
single polynomial curve of P th order in each direction

Tα,β(t;xα,β) =
[∑P

p=0ap,xt
n∑P

p=0ap,yt
n∑P

p=0ap,zt
n
]T
,
(9)

where xα,β = [a0,x . . . aP,x a0,y . . . aP,y a0,z . . . aP,z] ∈
R3(P+1) is the coefficient vector.

Following [10], the optimization problem in (7) can be
written in quadratic form, given as

min
xnα,β

1

2
xnα,β

T Hxnα,β

s.t. H(xnα,β , rα1 , r
β
2) = 0,

(10)

where H ∈ R3(P+1)×3(P+1) is the hessian of the minimum
snap cost function with respect to the decision variable xnα,β
and H denotes the state continuity constraints in (7). Note
that this problem is fast to solve, making it a suitable cost
function for the linear assignment problem.

C. Collision-Free Smooth Trajectory Generation

Given MPN1 , MPN2 and the assignment M, we aim
to find a smooth and collision-free trajectory T ns for each

drone. Inspired by [11], we decouple the problem into N sub-
problems to avoid accounting for the collision constraints in
a large joint space. However, our proposed algorithm con-
sists of two steps: (i) find a dynamically feasible candidate
trajectory for each drone denoted as T nc and (ii) iteratively
resolve collisions in {T nc }Nn=1 (if any) in a sequential manner
to obtain {T ns }Nn=1. In what follows, we parametrize both
candidate and collision-free trajectory as in (9) denoted as
T nc (t;xnc) and T ns (t;xns) respectively.

1) Generating Candidate Trajectories: To generate can-
didate trajectories {T nc }

N
n=1 for the assignmentM, we solve

the full minimum snap problem in [9] for each drone.
This problem is the same as (10) if we let rα1 = rn1 and
rβ1 =M(rn1) but with an additional set of state constraints
Fk(xnc)6 0, k = 1, 2, . . . ,K, that bound each drone’s po-
sition and higher order states at each discrete time step
tk = ts + k(te − ts)/K.

2) Iterative Collision Resolution: Given the candidate
trajectories {T nc }Nn=1, we construct a directed collision graph
G = {V,E}. A vertex vn ∈ V represents the drone identified
by rn1 , and an edge enm ∈ E, n > m points from vn to
vm, indicating a collision between T nc and T mc . For any
edge enm, we force the collision avoidance maneuver to
be executed solely by drone n, while drone m follows its
intended path. Our goal is to remove all edges enm ∈ E by
finding a collision-free trajectory T ns for drone n.

In particular, we find T ns by penalizing its difference from
T nc with additional ellipsoid collision constraints, given as

min
xns

K∑
k=1

enk
TWenk

s.t. H(xns , rn1 ,M(rn1)) = 0,

Fk(xns) 6 0, k = 1, 2, . . . ,K.,

||E−1(T ns (tk)− T mc (tk))||22 > 2,

(11)

where m = 1, 2, . . . , n−1, n+1, . . . , N , E ∈ R3×3 specifies
the ellipsoid collision boundary as in [12], and (H, Fk) are
as previously defined. The deviation of drone n at time tk
is given by enk = T ns (tk;x

n
s) − T nc (tk;x

n
c). The weighting

matrix W ∈ R3×3 is a positive definite diagonal matrix
trading off the deviation in each direction. Note that we can
write T (tk) = Akx for any polynomial trajectory T (t;x)
with a suitable matrix Ak that depends only on tk. Therefore,
the cost function and collision constraints in (11) can be
written in quadratic form in xns .

We solve (11) sequentially for drones in V in decreasing
order of the amount of outbound edges. If an optimal
solution is found for vn, we remove all of its outbound
edges; otherwise, in cases where the problem is temporarily
infeasible or hard to find a solution (e.g., other drones are
not in favourable positions), we skip to the next drone. This
procedure is repeated until either E is empty or the maximum
iteration is exceeded.

D. Design Considerations

In order to generate smooth transition trajectories, a few
key design decisions were made that differentiate our method

0.8

1

1.2

1 1

1.4

1.6

1.8

2

0.5 0.5
0 0

-0.5 -0.5
-1 -1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

0.8

1

1.2

1.4

1.6

1.8

2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

0.5

1

1.5

2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

To
p

Vi
ew

Fr
on

t V
ie

w

Equally Weighted XY Focused Min Snap Min Euclidean Distance

Human Designed

(a) (b) (c)

Fig. 4. An example of collision-free smooth trajectory generation for 9 drones from a wave pattern to a rigid body rotation similar to the ones in Fig. 2
and Fig. 3, respectively. Hollow circles and solid circles mark the start and end of the transition trajectories, Td,1(ts) and Td,2(te). In (a), results of
the trajectory generation involving four colliding candidate trajectories Tc (yellow) were adapted sequentially until we obtain the collision-free Ts (blue).
Collision-free candidate trajectories are shown in grey. In (b), we illustrate the role of weighting factor W in (11) towards the objective of coordinated
transitioning. Trajectories are colored in the same way as in (a). Finally, (c) shows comparisons between different goal assignment methods in facilitating
the generation of trajectory candidates.

from those in previous work. First, the vehicle dynamics
and transition time are incorporated into the assignment
cost function Ja to facilitate smooth trajectory generation in
the following steps. Second, trajectories are parameterized
with a single polynomial curve instead of concatenated
polynomials to minimize unnecessary curvature. Finally, in
contrast to [4], [5], continuity in trajectories at ts and te is
guaranteed in the collision resolution step. We illustrate the
first design feature in the top two figures of Fig. 4c, which
highlights the difference between two different choice of Ja,
the minimum snap function proposed in this work and the
Euclidean distance used in [3]. The former assignment cost
function induces smooth, fluid, and energy-saving candidate
trajectories as compared to the latter.

Our choice of the cost function in (11) allows us to
preserve geometric features in the transition process. As an
example, the bottom figure in Fig. 4c shows a human-
designed goal assignment M, where rotational symmetry
of the initial and final motion primitives were incorporated.
Consequently, it introduces nice geometric properties, for
example rotation symmetry in this particular example, in
the candidate trajectories {T nc }Nn=1 that enable a coordinated
transition process. However, incorporating these strategic
assignments into our framework is non-trivial and would
result in a nonlinear assignment problem. Nonetheless, if we
do have particular features in the candidate trajectories, we
are able to preserve them during the collision resolution step
by penalizing the difference between the final and candidate
trajectories in (11). Moreover, we introduced the weighting
matrix W to optionally preserve the swarm transition pat-
terns in some dimensions while relaxing them in the others.
An example is shown in Fig. 4b, where patterns in the
x − y plane are preserved during collision avoidance by
encouraging motion in the z direction.

IV. MOTION SYNCHRONIZATION

To execute the proposed highly-dynamic motion patterns
in tight formations and in sync with the desired periodic mo-
tion pattern, a high-accuracy controller for periodic motions
is required. In practice, one major issue that was observed is
the phase shift and amplitude amplification or attenuation [6]
due to the delay in communicating vehicle commands, the
inherent delay in dynamical systems, as well as the delay in
sensor measurements. Although it is possible to reduce delay
and amplitude error by adding feed-forward terms to the
drones’ position and attitude controllers, the communication
overhead it incurs is undesirable for a large swarm. Similarly
to [6], we actively adjust the desired trajectories Td(r, t) in
(2) by scaling their amplitude and shifting them in time to
obtain a new reference trajectory.

If we approximate the quadrotor as a linear system in each
spatial direction with transfer functions Hi(s), i = 1, 2, 3,
we can estimate the amplitude attenuation and phase shift at
each oscillating frequency ωm from the system’s frequency
response to sinusoidal reference signals. The compensated
reference trajectory in the ith direction is given as

Tr,i(r, t) = Ci(r) +
M∑
m=1

κm,iAm,i(r) sin(ωmt+ φm,i)

+

M∑
m=1

κm,iBm,i(r) cos(ωmt+ φm,i),

(12)

where the amplitude scalings κm ∈ R3 and phase shifts
φm ∈ R3 can be determined from the closed-loop system’s
transfer function observed in experiments, Hi(s). That is, we
compute κm,i = |Hi(jωm)|−1, φm,i = −arg Hi(jωm). We
only compensate for the motion primitives but not for the
transition trajectories since the latter has an infinitely wide
frequency spectrum while the former’s is finite.

1 2 3 4 5
-20

-10

0

10
x
z

1 2 3 4 5
-200

-100

0
x
z

Fig. 5. The empirical Bode Plot for a Crazyflie 2.0 quadrotor.

V. EXPERIMENTAL RESULTS

We demonstrate our algorithms using the small-sized
quadrotor platform Crazyflie 2.0 in a multi-agent testbed
at the Dynamic Systems Lab (inspired by the Crazyswarm
[13]). From a central computer, we gathered position data
from all the drones in the fleet using an overhead motion
capture system. The state information was sent via radios to
each drone’s onboard computer, along with the desired posi-
tion, which is tracked using an onboard position controller.

A. Motion Synchronization

We empirically determined the Crazyflie’s closed-loop
transfer functions Hi(jω), i = 1, 2, 3, by commanding
sinusoidal position trajectories at different frequencies ω in
the x and z directions. Based on the phase shift and ampli-
tude attenuation between the desired and actual trajectories,
we found the system’s frequency response characterized by
amplitude attenuation |Hi(jω)| and phase shift arg Hi(jω)
as shown in Fig. 5. Based on the data, we constructed a look-
up table from which the scaling factors for motion primitives,
κm and φm, are determined by linearly interpolating points
in the magnitude and phase mapping, respectively. We con-
structed the look-up table using data from one drone but
evaluated it on another 8 drones. As shown in Fig. 6, the
tracking performance was greatly improved with negligible
variances among the 8 drones being tested.

B. Transition Trajectory Planning

The optimization problems in trajectory planner are solved
using the nonlinear optimizer IPOPT [14]. We used P =
14 as the polynomial order and K = 10 as a starting
point for partition intervals, which may be doubled in the
next iteration if a feasible solution is found but a collision
occurs in between two time steps tk and tk+1. To avoid
numerical issues, we nondimensionalized the minimum snap
cost function as in [9].

We evaluated the transition trajectory planner in both
simulation and experiments. In simulation, we tested with 25
drones transitioning in a 5×5×2 m3 volume with a collision
radius of 0.14m in the x-y plane and 0.35m in the z direction.
Our algorithm found a feasible solution in 85% of 1800

10 12 14 16 18 20 22 24

-0.5

0

0.5

10 12 14 16 18 20 22 24
0.6

0.8

1

1.2

Fig. 6. Evaluation of the proposed motion synchronization algorithm on
8 drones. The desired trajectory (yellow) is adjusted in its amplitude and
phase to obtain the reference trajectory (green). On average, the tracking
response (blue) of the drones being tested is improved compared to the
cases without compensation (red) with small variances (grey).

randomly generated motion primitive pairs. The main reason
for failure are numerical difficulties in solving (11) when the
transition time is long. One repair strategy is to parameterize
the trajectories with a few concatenated polynomials, instead
of just one polynomial.

C. Choreographed Drone Performance

The video at http://tiny.cc/fast-periodic
presents a one-minute drone performance where 25 drones
are choreographed to fly in tight formations and perform fast
and dynamic motions. We seamlessly concatenate five wave
motions and one rigid body rotation to create a cohesive
performance. The peak velocity and pitch angle reached
2.65m/s and 32 degrees, respectively. Since the motion
primitives are aggressive, we used a larger collision ellipsoid
than in [12], with 0.28m in x − y and 0.85m in z, which
are the radii of the smallest ellipse in x-z plane that two
drones can trace at a moderate angular velocity with π phase
shift. These parameters were coarsely estimated and worked
well in our experiments. However, to fully exploit the spatial
and the vehicles’ physical limits, more sophisticated methods
should be used to explicitly model the rotors’ aerodynamics.

VI. CONCLUSIONS

In this paper, we provide guidelines for creating per-
formances with quadrotor swarms that fully leverage their
motion capabilities to create appealing visual effects. The
swarm motion primitives are formulated as coupled periodic
motions, which are described by a single equation indicating
the overall motion pattern and the relationship between the
individual actors of the swarm. The geometric properties
of parameter functions in this formulation were discussed.
Moreover, we provided a hierarchical transition trajectory
planner to seamlessly connect motion primitives together
and preserve geometric characteristics. Lastly, a correction
algorithm is proposed to improve the quadrotors’ tracking
performance of the periodic motions, which allows the
swarm to perform synchronously and in close proximity to
each other. The method is validated with a swarm perfor-
mance of 25 drones in a compact space.

http://tiny.cc/fast-periodic
http://tiny.cc/fast-periodic

REFERENCES

[1] Intel. (2018) Intel breaks guinness world records title for drone
light shows in celebration of 50th anniversary. [Online]. Available:
https://newsroom.intel.com/news/intel-breaks-guinness-world-records-
title-drone-light-shows-celebration-50th-anniversary/.

[2] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Methods for
designing and executing an aerial dance choreography,” IEEE Robot.
Autom. Mag, vol. 20, no. 4, pp. 96–104, 2013.

[3] E. A. Cappo, A. Desai, M. Collins, and N. Michael, “Online plan-
ning for human–multi-robot interactive theatrical performance,” Au-
tonomous Robots, pp. 1–16, 2018.

[4] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal assignment
and trajectory planning for large teams of interchangeable robots,”
Autonomous Robots, vol. 37, no. 4, pp. 401–415, 2014.

[5] A. Desai, E. A. Cappo, and N. Michael, “Dynamically feasible
and safe shape transitions for teams of aerial robots,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016, pp. 5489–5494.

[6] A. Schöllig, F. Augugliaro, S. Lupashin, and R. D’Andrea, “Synchro-
nizing the motion of a quadrocopter to music,” in IEEE International
Conference on Robotics and Automation (ICRA), 2010, pp. 3355–
3360.

[7] H. Georgi, The physics of waves. Prentice Hall Englewood Cliffs,
NJ, 1993.

[8] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[9] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE International Conference on Robotics
and Automation (ICRA), 2011, pp. 2520–2525.

[10] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

[11] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path
planning via incremental sequential convex programming,” in IEEE
International Conference on Robotics and Automation (ICRA), 2015,
pp. 5954–5961.

[12] J. A. Preiss, W. Hönig, N. Ayanian, and G. S. Sukhatme, “Downwash-
aware trajectory planning for large quadrotor teams,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 250–257.

[13] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 3299–3304.

[14] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

	INTRODUCTION
	DYNAMIC, PERIODIC MOTION PATTERNS
	Generic Formulation
	Wave Patterns
	Rigid Body Rotation

	TRANSITION TRAJECTORY PLANNING
	Problem Statement
	Goal Assignment
	Collision-Free Smooth Trajectory Generation
	Generating Candidate Trajectories
	Iterative Collision Resolution

	Design Considerations

	Motion Synchronization
	EXPERIMENTAL RESULTS
	Motion Synchronization
	Transition Trajectory Planning
	Choreographed Drone Performance

	CONCLUSIONS
	References

