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Continuous-Time Radar-Inertial and Lidar-Inertial
Odometry using a Gaussian Process Motion Prior
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Timothy D. Barfoot, Fellow, IEEE

Abstract—In this work, we demonstrate continuous-time
radar-inertial and lidar-inertial odometry using a Gaussian
process motion prior. Using a sparse prior, we demonstrate
improved computational complexity during preintegration and
interpolation. We use a white-noise-on-acceleration motion prior
and treat the gyroscope as a direct measurement of the state
while preintegrating accelerometer measurements to form rela-
tive velocity factors. Our odometry is implemented using sliding-
window batch trajectory estimation. To our knowledge, our work
is the first to demonstrate radar-inertial odometry with a spinning
mechanical radar using both gyroscope and accelerometer mea-
surements. We improve the performance of our radar odometry
by 43% by incorporating an IMU. Our approach is efficient and
we demonstrate real-time performance. Code for this paper can
be found at: https://github.com/utiasASRL/steam icp

Index Terms—Localization, Range Sensing, Mapping,
Continuous-Time

I. INTRODUCTION

IN large-scale outdoor mapping and localization, focus has
shifted towards improving robustness and reliability under

challenging conditions such as sparse or degenerate geometry,
aggressive motion, and adverse weather. Radar is a promising
alternative to lidar as its longer wavelength enables it to be
robust to dust, fog, rain, and snow. Although it has been shown
in prior work that lidar localization can still function under
moderate levels of precipitation [1], it is possible that radar
will perform better than lidar under more extreme weather
conditions. Furthermore, radar-based localization may still
prove valuable as a redundant backup system in safety-critical
applications. Our goal in this work is to tackle the problem
of aggressive motion using continuous-time state estimation
and an inertial measurement unit (IMU). In addition, we
apply our approach to radar-inertial odometry so as to address
adverse weather conditions. Our secondary goal is to reduce
the performance gap between radar and lidar odometry through
the incorporation of an IMU.

Inertial measurement units play an important role in many
robotic estimation systems and are often fused with low-rate
exteroceptive measurements from sensors such as a camera.
The addition of an IMU encourages the estimated trajectory
to be locally smooth and helps the overall pipeline to be
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Fig. 1. A lidar map generated of the University of Toronto obtained during
a sequence of the Boreas dataset. This high-quality map is generated as a
byproduct of our odometry pipeline. The pointcloud is colored by intensity.

more robust to temporary failures of the exteroceptive mea-
surements. Ordinarily, in discrete-time batch state estimation,
one would need to estimate the state at each measurement
time. However, due the high rate of IMUs, the number of
measurement times can become quite large and consequently
the computational requirements can become too expensive for
real-time operation.

In order to address this problem, Lupton and Sukkarieh [2]
proposed to preintegrate IMU measurements between pairs of
consecutive camera measurements in order to combine them
into a single relative motion factor. This significantly improves
runtime since we now only need to estimate the state at each
camera measurement. Forster et al. [3] then showed how to
perform on-manifold preintegration within the space of 3D
rotations, SO(3). Recently, Brossard et al. [4] demonstrated
how to perform on-manifold preintegration within the space
of extended poses, SE2(3), which captures the uncertainty
resulting from IMU measurements more consistently.

Classical preintegration was designed to address the prob-
lem of combining a low-rate sensor with a high-rate inertial
sensor. However, in some cases we must work with multiple
high-rate sensors such as a lidar or radar and an IMU.
While lidar sensors typically spin at around 10Hz, the laser
measurements are acquired at a much higher rate, on the
order of 10kHz. At this rotational rate (10Hz), the motion
of the robot causes the pointclouds to become distorted due
to the scanning-while-moving nature of the sensor. In our
previous work, we addressed this motion-distortion effect
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using continuous-time point-to-point factors and a Gaussian
process motion prior [1]. This allowed us to estimate the
pose and body-centric velocity of the sensor while simulta-
neously undistorting the data. Given this previously demon-
strated success, we are motivated to apply our continuous-
time techniques to radar-inertial and lidar-inertial odometry. It
is possible to employ a constant-velocity assumption [5] when
the motion of a robot is relatively smooth, such as in the case
of heavy ground robots. However, when working with highly
dynamic motions, such as in the case of drones or walking
robots, continuous-time approaches present considerable ad-
vantages. We will demonstrate this in the experimental results
section using the Newer College Dataset.

Our aim is to treat the lidar, radar, and IMU all as high-rate
measurements using continuous-time estimation. We are thus
faced with the choice of picking a suitable Gaussian process
motion prior. In this work, we choose to use a white-noise-on-
acceleration motion prior [6]. In this setup, angular velocity
and body-centric linear velocity are a part of our state. As
such, we treat the gyroscope as a direct measurement of the
state rather than preintegrating it. However, since acceleration
is not a part of the state, we still need to preintegrate the
accelerometer measurements to form relative velocity factors.
We only need to integrate the accelerometer measurements
once as we rely on the Gaussian process estimation framework
to do the remaining integration into position. Other motion
prior factors are also possible such as white-noise-on-jerk [7]
or the Singer prior [8], both of which include body-centric
acceleration in the state. In our experiments, we observed that
including these higher-order derivatives in the state sometimes
improved performance. However, the effect was not consistent
across datasets. Furthermore, we observed that including ac-
celeration in the state made the overall pipeline less reliable
and thus we opted to not include it.

Another work that employed Gaussian processes in
continuous-time state estimation is that of Le Gentil and
Vidal-Calleja [9]. They proposed to model the state using six
independent Gaussian processes, three for angular velocity,
and three for linear acceleration. They estimate the state of
the Gaussian processes at several inducing points given the
measurements and then analytically integrate these Gaussian
processes to form relative motion factors on position, velocity,
and rotation in a manner similar to classical preintegration.
They use a squared exponential kernel, which misses out on
the potential benefits of using a sparse kernel. As a result, the
computational complexity of their approach is O(J3 + J2N)
while ours is only O(J+N) where J is the number of inducing
points and N is the number of query times. In our approach,
all six degrees of freedom are coupled through the motion
prior. Consequently, our approach has the potential to provide
better calibrated covariance estimates. Their exponential kernel
results in a fully-connected factor graph, and so dividing a
longer trajectory into a sequence of local chunks effectively
drops connections from the graph. In our approach, dividing
a longer trajectory into a sequence of local GPs is less of an
approximation due to the Markovian nature of the state that
results from a sparse kernel. In addition, our approach can
still perform continuous-time lidar odometry during a period

of IMU measurement dropout by falling back on the Gaussian
process motion prior. We consider our approach to be tightly
coupled since we include IMU measurements in the pointcloud
alignment optimization directly whereas their approach uses
the IMU to first undistort the scans prior to the alignment
optimization. Another important difference is how we com-
pensate for motion distortion. [9] undistorts pointclouds using
the upsampled preintegrated IMU measurements whereas our
approach uses the posterior of our continuous-time trajectory,
which includes both IMU and lidar measurements. In Figure 1,
we provide an example of a map generated using our approach.

Finally, it should be noted that our work focuses on the
back-end continuous-time state estimation and is compatible
with other works that focus on the front-end pointcloud prepro-
cessing, submap keyframing strategy, and efficient map storage
improvements [10], [11]. Also, our framework supports adding
additional continuous-time measurement factors such as wheel
odometry and Doppler velocity measurements [12]. We pro-
vide experimental results in the autonomous driving domain
and using a hand-held sensor mast demonstrating that our
approach is generalizable to different domains. To summarize,
our contributions are as follows:

• We demonstrate continuous-time lidar-inertial and radar-
inertial odometry using a Gaussian process motion prior
where the preintegration cost is linear in the number of
estimation times.

• We provide experimental results of our real-time ap-
proach on three datasets: KITTI-raw [13], Boreas [14]
and the Newer College Dataset [15].

• We demonstrate radar-inertial odometry with a spinning
mechanical radar using both gyroscope and accelerometer
measurements. To our knowledge, this has not been
previously demonstrated in the literature.

• We provide a detailed comparison of the performance of
lidar-inertial and radar-inertial odometry across varying
seasonal and weather conditions.

II. RELATED WORK

For a detailed literature review on lidar odometry and lidar-
inertial odometry, we refer readers to the recent survey by Lee
et al. [16].

A. Lidar Odometry

Lidar odometry methods can be broadly classified into
feature-based approaches, which seek to extract and match
sparse geometric features, and direct methods, which work
directly with raw lidar pointclouds. Direct methods usually
rely on a variation of iterative closest point (ICP) to match
pairs of pointclouds [17]. Due to the large number of points
produced by modern lidar sensors (∼100k points per scan),
these methods incur a heavy computational load. In order
to enable real-time operation, recent methods rely on coarse
voxelization and efficient data structures for map storage and
retrieval [5], [10], [11], [18]. Care must also be taken to tune
ICP parameters such as the maximum point-to-point matching
distance to ensure reliable and fast convergence. There are also
several ICP variants to choose from such as point-to-point,
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Fig. 2. This figure illustrates the differences in camera, lidar, and radar data
during a sunny day and during a snowstorm. The lidar data here is colored
by elevation. During snowfall, the lidar data becomes corrupted with noise
and a section becomes blocked by ice but the radar data appears unaffected.

point-to-plane, and Generalized ICP [17], [19]. Our work can
be considered a direct method since we do not make use of
feature extraction and matching.

Examples of feature-based methods include LOAM [20],
which matches edge and plane features, and SuMa++ [21],
which matches surfels using ICP aided by semantic segmenta-
tion labels from a neural network. Feature-based methods tend
to work well in structured environments but may experience
a drop in performance in unstructured environments.

B. Lidar-Inertial Odometry

Prior works have leveraged inertial measurement units
(IMUs) to address several shortcomings of lidar-only odome-
try. Firstly, IMU measurements can be used to compensate for
the motion-distortion effect of lidar sensors [20]. Furthermore,
IMUs can enable lidar-inertial odometry to tackle trajectories
with more aggressive motion and potentially degenerate ge-
ometry. Previous lidar-inertial odometry literature can then be
sorted based on the degree of integration between the lidar
and IMU modalities ranging from loosely coupled to tightly
coupled. Tightly coupled methods incorporate IMU data into
the pointcloud alignment optimization directly.

LOAM [20] is an example of a loosely coupled approach
where an IMU is used to undistort lidar pointclouds for use in

ICP within a discrete-time state estimation framework where
the IMU preintegration may be used as an initial guess for
ICP. LIO-SAM [22] and LION [23] are examples of loosely
coupled approaches that undistort lidar data using an IMU
and then include both relative pose estimates from ICP and
preintegrated IMU measurements in a factor graph. DLIO [11]
is a recent example of a loosely coupled approach where an
IMU is used to undistort lidar data. Preintegrated IMU mea-
surements are then subsequently combined with pose estimates
from ICP using a hierarchical geometric observer. LIOM [24]
is an example of a tightly coupled lidar-inertial odometry using
a factor graph. FAST-LIO2 [10] is another tightly coupled
approach that uses an iterated extended Kalman filter. In our
tightly coupled approach, we combine continuous-time point-
to-plane factors with direct gyroscope factors and preintegrated
velocity factors using a fixed-lag smoother and a Gaussian
process motion prior.

Even after incorporating an IMU, some challenges remain
such as handling harsh enviromental conditions such as dust,
fog, rain, and snow that can adversely affect lidar data.
Figure 2 depicts an example where lidar data is affected by
snow and ice build-up. In order to tackle these problems, radar
is being investigated as a potential alternative to lidar.

C. Radar Odometry
Radar mapping and localization is a long-standing research

area in robotics. The first methods to demonstrate radar-
based localization relied on reflective beacons installed in the
environment in order to boost the signal-to-noise ratio between
the detected target power and background clutter power [25],
[26]. Due to the noise inherent to radar, it is challenging to
directly apply methods designed for lidar.

Several methods have been proposed to deal with the high
amount of noise in radar measurements. Jose and Adams [27]
proposed to estimate the probability of target presence and to
include radar cross section in their simultaneous localization
and mapping (SLAM) setup. Checchin et al. [28] proposed to
densely match radar scans using the Fourier-Mellin transform,
a correlative scan-matching approach. Vivet et al. [29] and
Kellner et al. [30] proposed to use the relative Doppler ve-
locity measurements to estimate the instantaneous egomotion.
Callmer et al. [31] proposed to leverage features originally
designed for vision to enable landmark-based SLAM. Schuster
et al. [32] subsequently refined this approach by designing
bespoke radar feature descriptors. Cen and Newman demon-
strated accurate large-scale radar odometry using a spinning
mechanical radar [33]. Hong et al. [34] demonstrated large-
scale radar SLAM in all weather conditions. Recently, there
has been a resurgence of research into improving and refining
radar-based localization. Currently, the state of the art for
radar odometry with a spinning mechanical radar is CFEAR,
which extracts only the k strongest detections on each scanned
azimuth and subsequently matches the live radar scan to a
sliding window of keyframes in a manner similar to ICP [35].
For a more detailed review of radar-based localization, we
refer readers to the survey by Harlow et al. [36].

Recent works have benefited from advancements in radar
sensors where frequency modulated continuous wave (FMCW)
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radar sensors now possess improved range resolution, azimuth
resolution, and some even provide target elevation in 3D. Fur-
thermore, many FMCW radar sensors also provide a relative
Doppler velocity measurement for each target. However, these
new radar sensors still produce sparse and noisy pointclouds.
As such, there has been a concerted effort to develop and
improve radar-inertial odometry to address these challenges.

D. Radar-Inertial Odometry

Radar-inertial odometry literature tends to focus on either
low-cost consumer-grade radar for resource-constrained appli-
cations such as UAVs or automotive-grade radar for large-scale
outdoor applications. Examples of prior work using consumer-
grade radar include [37]–[44]. Examples of prior work using
automotive radar include [45]–[47]. The work that is closest to
ours is that of Ng et al. [45], which demonstrated continuous-
time radar-inertial odometry using four automotive radars.
In our approach, we use a Gaussian process motion prior
to enable continuous-time trajectory estimation whereas their
approach uses cubic B-splines. Another important difference
is that our approach uses continuous-time point-to-plane fac-
tors whereas their approach uses only the Doppler velocity
measurements from each sensor in conjunction with an IMU.
The radar that we use in this work does not currently support
Doppler velocity measurements. However, we have previously
shown that our continuous-time motion prior supports incorpo-
rating these measurement factors when they are available [12].
To our knowledge, our work is the first to demonstrate radar-
inertial odometry using a spinning mechanical radar. Previous
works have used a combination of wheel odometry and single-
axis gyroscopes [48]–[50] to compensate for motion distortion
and as a prediction step in a filter while our work fuses
both gyroscope and accelerometer measurements with point-
to-point radar factors using our continuous-time framework.

The radar and lidar sensors used in this work both rely
on mechanical actuation to cover the entire field of view
around the robot. As a consequence, these sensors suffer
from a motion-distortion effect while moving. In addition,
it is difficult to combine these sensors with asynchronous
IMU measurements without resorting to ad-hoc interpolation
schemes. These challenges motivate the use of continuous-
time trajectory estimation. Figure 3 illustrates the high-rate
and asynchronous nature of the sensor measurements.

E. Continuous-Time State Estimation

There are two main classes of continuous-time approaches,
parametric approaches relying on temporal basis functions
and non-parametric approaches such as Gaussian processes.
Two popular examples of parametric approaches are linear
interpolation and cubic B-splines.

Linear interpolation is often performed in the Lie algebra
between pairs of discrete samples of the trajectory. This
approach assumes a constant velocity between pairs of poses
and relies on sampling the trajectory at a sufficiently high
rate to support dynamic motions. These approaches sometimes
upsample the estimated trajectory using splines to remove
motion distortion from pointclouds. Smoothness factors may

t

Radar

IMU

State

Fig. 3. This figure illustrates our asynchronous sensor timing where states are
estimated for each scan obtained by the radar. Our radar outputs measurements
at 1600Hz while our lidar outputs unique timestamps at roughly 40kHz and
our IMU outputs measurements at 200Hz.

be included to penalize acceleration between pairs of poses.
Examples of linear interpolation approaches include [51]–[53].
CT-ICP [54] is another example of linear interpolation where
their innovation was to parametrize each lidar scan as a pair of
poses at the start and end of the scan and to model the motion
during a scan with constant velocity while allowing trajectory
discontinuities between scans.

Parametric approaches seek to represent the trajectory using
a finite set of temporal basis functions. Previous examples of
parametric approaches include [55], [56]. Recent examples of
parametric approaches applied to lidar odometry and lidar-
inertial odometry include [57]–[61] all of which use B-splines.

Non-parametric approaches such as Gaussian processes
(GPs) seek to model a continuous-time trajectory implicitly
given a set of measurements of the state. The state at a set
of estimation times can then be determined by performing
Gaussian process regression. These estimation times may be
chosen independently of the measurement times. The posterior
GP may then be queried at any time of interest. In prior
work, it was shown that for vector spaces, a linear time-
varying stochastic differential equation can be interpreted
as a Gaussian process and batch continuous-time trajectory
estimation can be performed efficiently thanks to the exact
sparsity of the inverse kernel matrix owing to the Markovian
nature of the state [62]. Instead of the usual cubic time
complexity for Gaussian process regression, this approach
enables linear time complexity. Furthermore, this work showed
that posterior interpolation could be performed as an O(1)
operation. Subsequently, Anderson and Barfoot extended this
approach to work with SE(3) where the trajectory is divided
into a sequence of local GPs [6]. Recently, Le Gentil and
Vidal-Calleja employed Gaussian processes in order to model
the linear acceleration and angular velocities in continuous-
time given a set of IMU measurements [9], [63]. They then
used their estimated GP to upsample IMU measurements
towards undistorting pointclouds and to provide improved
preintegration measurements for inertial-aided state estima-
tion. One appealing aspect of our approach is that we start
from a physically motivated prior: white noise on acceleration
or constant velocity. Furthermore, compared to the linear
interpolation approaches, the Gaussian process prior provides
a principled manner to construct motion priors and perform
interpolation. In addition, the hyper-parameters of the GP can
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Fig. 4. This figure illustrates the local variable ξk(t) which is defined in the
tangent space of the pose at time tk . The larger triangles denote the estimated
states while the smaller triangle denotes the interpolated state at time t.

be learned from a training set using maximum likelihood,
enabling a data-driven approach to fine-tune the GP to each
application. Determining the spacing of control points is an
important engineering challenge in the use of B-splines which
can be avoided by using Gaussian processes instead. For a
comparison of splines and Gaussian processes, we refer to
Johnson et al. [64]. For a survey on continuous-time state
estimation, we refer to Talbot et al. [65].

III. CONTINUOUS-TIME TRAJECTORY ESTIMATION

In this section, we review relevant prior work [6], [62]
on continuous-time trajectory estimation using Gaussian pro-
cesses. We begin with the following nonlinear time-varying
stochastic differential equation,

Ṫ(t) = ϖ(t)∧T(t) (1a)
ϖ̇(t) = w′(t), w′(t) ∼ GP(0,Q′δ(t− t′)) (1b)

where T(t) ∈ SE(3) is the pose, ϖ(t) = [νT ωT ]T ∈ R6

is the body-centric velocity consisting of a linear ν(t) and
angular ω(t) component, and w′(t) is a white-noise Gaussian
process where Q′ is the symmetric positive-definite power-
spectral density matrix. We refer to this as white-noise-on-
acceleration due to white noise being injected on the body-
centric acceleration ϖ̇(t). The above nonlinear time-varying
stochastic differential equation is then approximated using a
sequence of local linear time-invariant stochastic differential
equations [6]. Between pairs of estimation times, tk and
tk+1, k = 0 . . .K − 1, local pose variables are defined in the
Lie algebra ξk(t) ∈ se(3) such that

T(t) = exp(ξk(t)
∧)T(tk). (2)

The local kinematic equations are then defined as

ξ̈k(t) = wk(t), wk(t) ∼ GP(0,Qδ(t− t′)). (3)

This approximation of (1) holds so long as the process noise
is small and the rotational motion between pairs of estimation
times is also small. The local Markovian state variables are
defined as

γk(t) =

[
ξk(t)

ξ̇k(t)

]
. (4)

The local LTI SDE defined by (3), (4) is then stochastically
integrated to arrive at the following local GP:

γk(t) ∼ GP(Φ(t, tk)γ̌k(tk)), (5)

Φ(t, tk)P̌(tk)Φ(t, tk)
T +Qk),

where

Φ(t, tk) =

[
1 (t− tk)1
0 1

]
(6)

is the transition function,

Qk =

[
1
3 (t− tk)

3Q 1
2 (t− tk)

2Q
1
2 (t− tk)

2Q (t− tk)Q

]
(7)

is the covariance between two times, t, tk, and γ̌k(tk), P̌(tk)
are the initial mean and covariance at t = tk, the starting point
of the local variable. Over a sequence of estimation times,
t0 < t1 < · · · < tK , the kernel matrix can be written as

P̌ = cov(δx) = AQAT , (8)

where

A−1 =


1

−Φ(t1, t0)
. . .
. . . 1

−Φ(tK , tK−1) 1

 (9)

is the inverse of the lifted transition matrix and Q =
diag(P̌0,Q1, · · · ,QK). Even though the kernel matrix is
dense, the inverse kernel matrix P̌−1 = A−TQ−1A−1 is
block-tridiagonal. The exact sparsity of the inverse kernel
matrix is what allows us to perform batch trajectory estimation
as exactly sparse Gaussian process regression. As a result, the
computation for batch trajectory estimation scales linearly with
the number of estimation times.

In order to convert our continuous-time formulation into a
factor graph, we construct a sequence of motion prior factors
between pairs of estimation times,

Jv,k =
1

2
eTv,kQ

−1
k ev,k, (10a)

ev,k = γk(tk+1)− γ̌k(tk+1)

−Φ(tk+1, tk)(γk(tk)− γ̌k(tk)), (10b)

where J denotes a cost factor, e denotes an error function,
and γ̌k(t) = E[γk(t)] is the prior mean. In the absence
of exogenous control inputs, γ̌k(t) = Φ(t, tk)γ̌k(tk) and so
(10b) simplifies to

ev,k = γk(tk+1)−Φ(tk+1, tk)γk(tk). (11)

Now, to translate this prior factor, which is defined in
terms of the local variables, into the global variables, we first
rearrange (2) as

ξk(t) = ln(T(t)T(tk)
−1)∨. (12)

We then convert from body-centric velocity using:

ξ̇k(t) = J (ξk(t))
−1ϖ(t), (13)

where J is the left-hand Jacobian of SE(3). From (12), (13),
we can then define the local Markovian variable in terms of
the global variables with

γ(t) =

[
ln(T(t)T(tk)

−1)∨

J
(
ln(T(t)T(tk)

−1)∨
)−1

ϖ(t)

]
. (14)
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xk−2 xk

xk−1

Estimated State Local Map Point Interpolated State

Motion Prior JvICP Factor Jp2p Gyro Factor Jω Preintegrated Velocity Factor Ja

Fig. 5. This figure depicts a factor graph of our sliding window lidar-inertial odometry using a continuous-time motion prior. The larger triangles represent the
estimation times that form our sliding window. The state x(t) = {T(t),ϖ(t),b(t)} includes the pose T(t), the body-centric velocity ϖ(t), and the IMU
biases b(t). The grey-shaded state xk−2 is next to be marginalized and is held fixed during the optimization of the current window. The smaller triangles
are interpolated states that we do not directly estimate during the optimization process. Instead, we construct continuous-time measurement factors using the
posterior Gaussian process interpolation formula in Equation 16. The ICP measurement times and gyroscope measurement times may be asynchronous. The
preintegrated velocity factors do not need to align with the estimated state times and could be between two interpolated states instead. We include a unary
prior on xk−2 to denote the prior information from the sliding window filter.

The motion prior factors can then be written in terms of the
global variables,

ev,k =

[
ln(Tk+1T

−1
k )∨ − (tk+1 − tk)ϖk

J
(
ln(Tk+1T

−1
k )∨

)−1
ϖk+1 −ϖk

]
, (15)

where we observe that the motion prior is penalizing the state
estimates from deviating from a constant velocity.

After performing batch trajectory estimation using these
motion prior factors, the sparsity of the prior allows Gaussian
process interpolation to be performed as an O(1) operation
where

T̂(τ) = exp ((Λ1(τ)γ̂k(tk) +Ψ1(τ)γ̂k(tk+1))
∧) T̂k,

ϖ̂(τ) = J (ln(T̂(τ)T̂−1
k )∨)

× (Λ2(τ)γ̂k(tk) +Ψ2(τ)γ̂k(tk+1)) (16)

are the interpolation equations involving only the two states
bracketing the desired interpolation time: tk < τ < tk+1.
The interpolation matrices that result from the standard GP
interpolation formula are

Ψ(τ) = QτΦ(tk+1, τ)
TQ−1

k+1, (17a)

Λ(τ) = Φ(τ, tk)−Ψ(τ)Φ(tk+1, tk). (17b)

where Ψ(τ) = [Ψ1(τ)
T Ψ2(τ)

T ]T and Λ(τ) =
[Λ1(τ)

T Λ2(τ)
T ]T . When performing continuous-time trajec-

tory estimation, we use the posterior interpolation formulas
to build measurement factors at times between our desired
estimation times.

IV. RADAR-INERTIAL AND LIDAR-INERTIAL ODOMETRY

In this section, we describe our lidar-inertial odometry,
which is implemented as sliding-window batch trajectory
estimation. The factor graph corresponding to our approach
is depicted in Figure 5. The state x(t) = {T(t),ϖ(t),b(t)}
consists of the SE(3) pose Tvi(t), the body-centric velocity
ϖvi

v (t), and the IMU biases b(t). In our notation, ϖvi
v is a

6×1 vector containing the body-centric linear velocity νvi
v and

angular velocity ωvi
v . We use a white-noise-on-acceleration

prior, as defined in (1). Our IMU measurement model is[
ã
ω̃

]
=

[
aviv −Cvigi

ωvi
v

]
+

[
ba

bω

]
+

[
wa

wω

]
(18)

where ba and bω are the accelerometer and gyroscope biases,
wa ∼ N (0,Ra) and wω ∼ N (0,Rω) are zero-mean Gaus-
sian noise. Due to angular velocity being a part of the state,
the associated gyroscope error function is straightforward:

Jω,ℓ =
1

2
eTω,ℓR

−1
ω eω,ℓ, (19a)

eω,ℓ = ω̃ℓ − ω(τℓ)− bω(τℓ). (19b)

We preintegrate accelerometer measurements over a short
temporal window tk ≤ τ1 < · · · < τN < tk+1 to form a
relative velocity factor,

∆ν(tk+1, τ1) =

N∑
n=1

(
ãn +Cvi(τn)gi − ba(τn)

)
∆tn, (20)

where the associated factor is given by

Ja,k =
1

2
eTa,kRa(tk+1, τ1)

−1ea,k, (21a)

ea,k = ν(tk+1)− ν(τ1)−∆ν(tk+1, τ1). (21b)

The covariance associated with the preintegrated velocity
factor is Ra(tk+1, τ1) =

∑
n Ra∆t2n. In error functions

(19b) (21b), we use a continuous-time interpolation of the
state. In order to interpolate for the measurement times, we
use the posterior GP interpolation formula (16). Interpolating
the state at a given measurement time effectively converts a
unary measurement factor into a binary factor between the
two bracketing estimation times. For example, a first-order
linearization of the gyroscope error is given by

eω,ℓ ≈ ēω,ℓ +
∂eω,ℓ

∂δω(τℓ)

(
∂δω(τℓ)

∂δxk
δxk +

∂δω(τℓ)

∂δxk+1
δxk+1

)
,

(22)
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where we have included the Jacobians of the perturbation at
the interpolated time τℓ with respect to the perturbations at
the bracketing estimation times (tk, tk+1). We provide these
interpolation Jacobians in the appendix. Using the posterior
interpolation formula in this way is an approximation as this
is not equivalent to marginalizing out the measurement times.
However, we have found this approximation to be fast and to
work well in practice. The computational cost of our approach
scales linearly with both the number estimation times and
the number of measurement times. This is different from
the approach of Le Gentil and Vidal-Calleja [9] where the
computational cost of preintegration scales with the cube of
the number of estimation times in the preintegration window.

We use point-to-plane factors similar to iterative closest
point (ICP). The associated error function is

Jp2p,j = eTp2p,jR
−1
p2p,jep2p,j , (23a)

ep2p,j = αjn
T
j D(pj −Tvi(τj)

−1Tvsqj), (23b)

where qj is the query point, pj is the matched point in the
local map, nj is an estimate of the surface normal at pj

given neighboring points in the map, D is a constant matrix
removing the homogeneous component, Tvs is an extrinsic
calibration between the lidar frame and the vehicle frame, and
α = (σ2 − σ3)/σ1 [18], [54] is a heuristic weight to favour
planar neighborhoods. Query points are matched to a sliding
local voxel map centered on the current estimate of the robot’s
position. Once a voxel has reached its maximum number of
allocated points, new points are not added to it. This helps to
keep the state estimate from exhibiting a random walk while
stationary by keeping the map fixed. Depending on the dataset,
we clear voxels in the map if they have not been observed for
approximately one second. We found this to be important in
the Boreas dataset, especially for sequences with snowstorms
where erroneous snow detections would accumulate in the map
and eventually cause ICP to fail by drastically increasing the
number of outlier points. Interestingly, the addition of IMU
measurements made our lidar-inertial pipeline more robust to
this accumulation of noise.

Our Gaussian process prior introduces a set of motion prior
factors between estimation times, which penalize the state for
deviating from a constant velocity. These motion prior factors
are defined in (10a) (10b). We also include motion prior factors
for the IMU biases,

Jv,b,k =
1

2
eTv,b,kQ

−1
b,kev,b,k, (24a)

ev,b,k = b(tk+1)− b(tk), (24b)

where Qb,k = Qb∆tk is the covariance resulting from a white-
noise-on-velocity motion prior, and Qb is the associated power
spectral density matrix. The objective function that we seek
to minimize is then

J =
∑
k

Jv,k +
∑
j

Jp2p,j +
∑
ℓ

Jω,ℓ +
∑
k

Ja,k. (25)

We solve this nonlinear least-squares problem for the opti-
mal perturbation to the state using Gauss-Newton. Once the
solver has converged, we update the pointcloud correspon-
dences and iterate this two-step process to convergence. In

Algorithm 1 STEAM-LIO
Input: map: {pi}, new frame: {qj , τj}, IMU: {ω̃ℓ, ãℓ},

x̂(t),A, c from previous iteration
Output: x̂(t) = {T̂(t), ϖ̂(t), b̂(t)} where t ∈ [tk−2, tk]

1: T(tk)← exp(∆tkϖ(tk−1)
∧)T(tk−1)

2: ϖ(tk)←ϖ(tk−1), b(tk)← b(tk−1)
3: x̂(t),A, c← SlideWindow(x̂(t),A, c,xk)
4: {qj , τj} ← Downsample({qj , τj})
5: x ← 0, ||∆x|| ← ∞
6: while ||∆x|| > Touter ∧ x < Nouter do
7: {q̄j} ← Undistort({qj , τj}, x̂(t))
8: {pj ,nj} ← Matching({pi}, {q̄j})
9: J ← Jv(xk−1,xk) + Jω(x(t), {ω̃ℓ})

+ Ja(x(t), {ãℓ}) + Jp2p(x(t), {pj ,nj ,qj , τj})
10: y ← 0, ||δx|| ← ∞,∆J ←∞,xprev ← x̂(t)
11: while ||δx|| > Tinner ∧∆J > δJ ∧ y < Ninner do
12: A, c← buildAndUpdateGN(A, c, J, x̂(t))
13: δx← CholeskySolve(A, c)
14: x̂(t)← UpdateState(x̂(t), δx)
15: J,∆J ← UpdateCost(x̂(t), J)
16: y ← y + 1
17: end while
18: ||∆x|| ← Dist(xprev, x̂(t))
19: x← x+ 1
20: end while
21: {pi} ← UpdateMap({pi}, {qj , τj}, x̂(t))

practice, we typically limit the maximum number of inner-loop
Gauss-Newton iterations to 5, and the number of outer-loop
iterations to 10 in order to enable real-time operation.

A. Implementation Details

Algorithm 1 provides pseudocode for STEAM-LIO at a
high level and Figure 6 depicts the software architecture
for our approach. For a new lidar frame, we first initialize
the new state using constant velocity. We then slide the
estimation window forward and marginalize out states that are
no longer involved in the current optimization problem. For
lidar odometry, a coarse voxelization of the input pointcloud
is then performed where the default is 1.5m. At each iteration
of the outer loop, we first undistort the lidar frame using the
posterior trajectory estimate of the previous iteration in order
to obtain correspondences between the live frame and the local
map. We then build the optimization problem given the set
of lidar factors, IMU measurements, and motion prior factors
derived from the Gaussian process motion. This optimization
problem is then minimized using Gauss-Newton. Finally, the
undistorted points are added to the sliding local map. The local
map also has a coarse discretization of 1.0m but we allow up
to 20 points in each voxel with a minimum point distance of
0.1m. This voxelization strategy is inspired by CT-ICP [18].

In order to achieve real-time performance, we found it
necessary to implement timestamp binning where the original
timestamp frequency is downsampled to reduce the number of
state interpolations and associated Jacobians that need to be
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Radar/Lidar Keypoint
Extraction

Downsample Optimization

mapIMU

x̂(t)

Map
Maintenance

Fig. 6. This figure depicts the simple architecture diagram for STEAM-LIO. In the radar-based pipelines, keypoints are first extracted using a constant false
alarm rate (CFAR) detector. In the lidar-based pipelines, we randomly shuffle the order of the points and then downsample using a coarse voxel grid. At
the optimization stage, we alternate between finding correspondences between the live undistorted pointcloud and the sliding local map, and estimating the
trajectory using sliding window batch trajectory estimation. The inner loop of the optimization stage involves optimizing a nonlinear least-squares problem
with Gauss-Newton. At the map maintenance stage, we add registered points to the sliding local map, and optionally cull voxels that have been unobserved
for several consecutive frames.

computed. For the KITTI-raw and Newer College Dataset, we
downsample lidar timestamps to 5kHz. For the Boreas dataset,
we downsample lidar timestamps to 400Hz. We have found
that by reducing the timestamp frequency in this way, we can
retain most of the benefits of continuous-time state estimation
while still operating efficiently.

B. Gravity Vector Orientation

In our approach, we estimate the orientation of the gravity
vector relative to the initial map frame at startup. We do this
by first estimating the orientation of the gravity frame using
an initial set of accelerometer measurements,

J =
∑
n

eTa,nR
−1
a ea,n + ln(Cig)

∨T

P̌−1
g ln(Cig)

∨ (26a)

+ bT
a P̌

−1
b ba,

ea,n = ãn −Cigg − ba, (26b)

where we assume that the robot is stationary at startup and we
impose a weak prior on Cig to constrain the rotational degree
of freedom not observed by the accelerometer measurements.
This estimate of the gravity vector orientation then serves as a
prior for the gravity vector orientation included in the state at
t = 0. We hold our estimate of the gravity vector orientation
fixed once it has been marginalized from the sliding window.

We experimented with including the gravity vector orien-
tation in the state: x(t) = {T(t),ϖ(t),b(t),Cig(t)}. In this
case, we include a motion prior factor for the gravity vector
orientation,

Jv,g,k =
1

2
eTv,g,kQ

−1
g,kev,g,k, (27a)

ev,g,k = ln(Cig(tk)Cig(tk+1)
−1)∨, (27b)

In our experiments, we did not observe any benefit from
including the gravity vector orientation in the state. However,
some recent work by Nemiroff et al. [66] has shown that it can
be beneficial to mapping accuracy in challenging scenarios.

C. Sliding Window Marginalization

In our approach, we perform sliding window batch trajec-
tory estimation. The length of the sliding window is equivalent
to two lidar frames or roughly 200ms. We output the pose at

the middle of the newest lidar frame so that the latency is
equivalent to competing approaches. In Figure 5, the darkly
shaded state xk−2 is slated to be marginalized and is held
fixed during optimization. However, there are still several
continuous-time measurement factors between states xk−2

and xk−1. As such, at each iteration of our Gauss-Newton
solver, we first interpolate the state at each measurement
time and update the associated measurement Jacobians before
marginalizing xk−2. For example,Ak−2,k−2 AT

k−1,k−2

Ak−1,k−2 Ak−1,k−1 AT
k,k−1

Ak,k−1 Ak,k

δx⋆
k−2

δx⋆
k−1

δx⋆
k

 =

ck−2

ck−1

ck


(28)

becomes[
Ak−1,k−1 −Ak−1,k−2A

−1
k−2,k−2A

T
k−1,k−2

Ak,k−1
· · · (29)

AT
k,k−1

Ak,k

] [
δx⋆

k−1

δx⋆
k

]
=

[
ck−1 −Ak−1,k−2A

−1
k−2,k−2ck−2

ck

]
.

D. Radar-Inertial Odometry

The architecture of our radar-inertial odometry is largely
the same as our lidar-inertial odometry. We note the important
differences here. The radar that we use in this work is the
Navtech CIR304-H, a mechanical spinning radar that provides
a 360◦ horizontal field of view. This sensor is 2D only, as such
we do not estimate the orientation of the gravity vector and
we remove the gravity term from the preintegrated velocity
factor in (20). The Navtech sensor outputs a raw polar radar
image corresponding to a power vs. range spectrum for each
scanned azimuth. We use a constant false alarm rate (CFAR)
detector with an additional constant threshold tuned to the
noise floor of the sensor [67] where we retain the maximum
of the left and right subwindows, a variant known as GO-
CFAR [68]. The output of CFAR detection is a pointcloud
that we register to a sliding local map. When a voxel in the
map has not been observed for several consecutive frames
(one second), we delete the points in this voxel. Without this
map maintenance procedure, we have found that our radar
odometry has a tendency to fail due to the significant amount
of noise present in the radar pointclouds. The Navtech radar
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Fig. 7. Odometry results on the KITTI-raw dataset. Sequences shown from left to right are 00, 02, 07, 08. The ground-truth trajectory is shown as a solid
red line and the STEAM-LO trajectory estimate is shown as a blue dashed line. Note that the estimated trajectory was computed in an online fashion with a
sliding window of 200ms and does not make use of any loop closures.

scans each azimuth only once and as such range measurements
are corrupted by a Doppler distortion dependent on the robot’s
egomotion [69]. The Doppler-compensated point-to-point ICP
error for radar odometry is then

ep2p,j = ρ
(
D

(
pj −T(τj)

−1Tvs(qj +∆qj)
))

, (30a)

where ∆qj = βDTaja
T
j Dq⊙

j T svϖ(τj), (30b)

and where ρ(·) is a Cauchy robust cost function, D is constant
matrix that removes the homogeneous component, pj is a
reference point in the local map, T(τj) is the continuous-
time interpolation of the robot pose, Tvs is an extrinsic
transformation between the sensor and vehicle frame, qj is
the live query point, ∆qj is an additive correction factor to
compensate for the Doppler distortion, β is Doppler distortion
constant inherent to the sensor [69], aj is a 3× 1 unit vector
in the direction of qj , the ⊙ operator swaps the order of the
operands associated with the skew-symmetric ∧ operator [70],
and T sv = Ad(Tsv).

V. EXPERIMENTAL RESULTS

We provide experimental results on three datasets, KITTI-
raw [13], the Newer College Dataset (NCD) [15], and the
Boreas dataset [14]. KITTI-raw was chosen as it is a popular
dataset for benchmarking lidar odometry. The raw version of
the dataset contains the motion-distorted pointclouds whereas
the original version of the dataset is motion-compensated
using GPS poses. Since the purpose of this work is to
demonstrate continuous-time state estimation using motion-
distorted sensors, we present results for KITTI-raw and not the
original KITTI dataset. The Newer College dataset was chosen
as it has become a standard dataset for benchmarking lidar-
inertial odometry. The NCD dataset is somewhat unique in that
it features several sequences with aggressive high-frequency
motions obtained using a handheld sensor mast. These types
of trajectories are rarely observed when working with heavy
ground robots. Finally, we provide results using the Boreas
dataset in order to demonstrate continuous-time radar inertial
odometry and to provide a detailed comparison with lidar. In
all experiments, we provide average runtime estimates using
an Intel Xeon CPU E5-2698 v4 with 16 threads.

For the lidar-based pipelines, we use the same parameters
for the diagonal of Q, the power spectral density matrix,

diag(Q) = {50, 50, 50, 5, 5, 5}. These parameters were ob-
tained by tuning on a training split of the Boreas dataset
and were verified to work well on KITTI-raw and the Newer
College Dataset. The diagonal of Q−1 can be understood as
weighting cost terms on body-centric acceleration. We tune
the IMU measurement covariances and bias motion priors
for Boreas and the Newer College Dataset separately. We
downsample lidar timestamps to 400Hz on the Boreas dataset
in order to achieve real-time performance. However, we do not
downsample timestamps on KITTI-raw or the Newer College
Dataset as we were already able to run in real-time. On the
Boreas dataset, we clear voxels that have not been observed for
one second. On the Newer College Dataset, we incrementally
build a map to enable implicit loop closures by revisiting
previously mapped areas.

A. KITTI-Raw Results

The KITTI dataset was collected in Karlsruhe, Germany
using an autonomous driving platform equipped with a 64-
beam Velodyne lidar and an OXTS RTK GPS. The dataset
was primarily collected in an urban environment with some
sequences including a brief highway portion. Table I shows
our quantitative results. We compare ourselves against CT-
ICP and KISS-ICP, which represent the state of the art on
this dataset. We also compare ourselves against our previously
published work, STEAM-ICP [12]. We include two different
methods for aggregating the results across sequuences. In the
Overall column, we concatenate the subsequence errors of the
KITTI metric and average across these. In the Sequence Error
column, we simply average the results for each sequence. The
results show that our translational drift is slightly lower than
CT-ICP and KISS-ICP but not quite as good as STEAM-
ICP. However, our approach is demonstrably real-time whereas
STEAM-ICP is not. Figure 7 provides some qualitative ex-
amples of the trajectories estimated by our lidar odometry.
This dataset does not provide raw IMU measurements, as such
we cannot use it to benchmark our lidar-inertial odometry.
The main purpose of testing on this dataset is to show that,
without an IMU, our implementation of continuous-time lidar
odometry is competitive with the state of the art.
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TABLE I
KITTI-RAW RESULTS (22KM / 0.6H): KITTI RTE (%). THE AVERAGE IS COMPUTED OVER ALL SEGMENTS OF ALL SEQUENCES AS IN [18]. NOTE THAT
CT-ICP OPTIMIZES ONE LIDAR FRAME AT A TIME, WHILE OUR ALGORITHM OPTIMIZES TWO FRAMES IN A SLIDING WINDOW. FOR A FAIR COMPARISON,

WE EVALUATE OUR ALGORITHM USING THE ESTIMATED POSES AT THE FRONT OF THE WINDOW (I.E., NEWEST TIMESTAMP).

KITTI-raw 00 01 02 03 (N/A) 04 05 06 07 08 09 10 Overall Seq. Avg. ∆T

CT-ICP [18] 0.51 0.81 0.55 0.43 0.27 0.28 0.35 0.80 0.47 0.49 0.55 0.50 65ms [18]
KISS-ICP [5] 0.51 0.71 0.54 0.35 0.31 0.26 0.32 0.83 0.49 0.58 0.55 0.49 26ms [5]
STEAM-ICP [12] 0.49 0.65 0.50 0.38 0.26 0.28 0.32 0.81 0.46 0.53 0.52 0.47 138ms
Constant Velocity 0.60 1.62 0.60 0.36 0.30 0.27 0.37 0.92 0.52 0.90 0.66 0.65 44ms
STEAM-LO (Ours) 0.49 0.63 0.51 0.38 0.26 0.30 0.33 0.84 0.49 0.49 0.53 0.47 89ms

TABLE II
NEWER COLLEGE DATASET RESULTS (6KM / 1.3H): ROOT MEAN SQUARED ATE (M). TRAJECTORIES ARE ALIGNED WITH THE GROUND TRUTH USING

THE UMEYAMA ALGORITHM. ⋆ USES EXPLICIT LOOP CLOSURES, † RESULTS OBTAINED FROM [71], ‡ USES CAMERA.

Newer College Dataset 01-Short 02-Long 05-Quad w/ Dynamics 06-Dynamic Spinning 07-Parkland Mound ∆T

CT-ICP⋆ [18] 0.36 430ms [18]
KISS-ICP† [5] 0.6675 1.5311 0.1040 Failed 0.2027 167ms†

FAST-LIO2† [10] 0.3775 0.3324 0.0879 0.0771 0.1483 43ms†
DLIO [11] 0.3606 0.3268 0.0837 0.0612 0.1196 36ms [11]
SLICT⋆ [52] 0.3843 0.3496 0.1155 0.0844 0.1290
CLIO⋆‡ [60] 0.408 0.381 0.091
Constant Velocity 0.8558 2.5792 0.3575 Failed 0.5960 163ms
STEAM-LO (Ours) 0.3398 0.4546 0.1083 0.0802 0.1537 138ms
STEAM-LO + Gyro (Ours) 0.3055 0.3340 0.1090 0.0824 0.1444 76ms
STEAM-LIO (Ours) 0.3042 0.3372 0.1086 0.0821 0.1444 74ms

TABLE III
BOREAS ODOMETRY RESULTS (102KM / 4.3H): TRANSLATIONAL DRIFT (%) / ROTATIONAL DRIFT (DEG/100M). THE FIRST THREE COLUMNS ARE

EVALUATED IN SE(3) WHEREAS THE LAST FOUR COLUMNS ARE EVALUATED IN SE(2).

Boreas VTR3-Lidar [1] STEAM-LO STEAM-LIO STEAM-LO(SE2) VTR3-Radar [1] STEAM-RO STEAM-RIO

2020-12-04 0.49 / 0.14 0.41 / 0.13 0.39 / 0.13 0.13 / 0.05 1.92 / 0.53 1.43 / 0.41 0.93 / 0.26
2021-01-26 0.51 / 0.16 0.62 / 0.21 0.53 / 0.18 0.30 / 0.11 2.27 / 0.66 1.10 / 0.33 0.61 / 0.18
2021-02-09 0.49 / 0.14 0.38 / 0.13 0.38 / 0.13 0.14 / 0.06 1.94 / 0.59 1.27 / 0.38 0.63 / 0.20
2021-03-09 0.57 / 0.17 0.47 / 0.15 0.46 / 0.15 0.13 / 0.05 2.00 / 0.59 1.24 / 0.35 0.71 / 0.19
2020-04-22 0.49 / 0.15 0.39 / 0.13 0.39 / 0.13 0.13 / 0.05 2.56 / 0.63 1.48 / 0.41 0.99 / 0.27
2021-06-29-18 0.58 / 0.17 0.48 / 0.16 0.48 / 0.16 0.14 / 0.06 1.86 / 0.56 1.55 / 0.46 1.04 / 0.29
2021-06-29-20 0.62 / 0.18 0.52 / 0.17 0.52 / 0.17 0.16 / 0.06 1.94 / 0.59 1.70 / 0.48 0.96 / 0.26
2021-09-08 0.57 / 0.17 0.47 / 0.16 0.47 / 0.16 0.16 / 0.06 1.88 / 0.57 2.01 / 0.59 1.22 / 0.35
2021-09-09 0.63 / 0.19 0.52 / 0.18 0.55 / 0.19 0.20 / 0.06 1.98 / 0.60 2.16 / 0.64 1.19 / 0.33
2021-10-05 0.59 / 0.17 0.50 / 0.16 0.49 / 0.16 0.16 / 0.06 2.87 / 0.78 2.27 / 0.63 1.01 / 0.28
2021-10-26 0.48 / 0.14 0.40 / 0.14 0.38 / 0.13 0.14 / 0.06 1.89 / 0.53 1.88 / 0.53 0.97 / 0.27
2021-11-06 0.50 / 0.15 0.40 / 0.14 0.41 / 0.14 0.15 / 0.06 1.24 / 0.34 1.86 / 0.54 1.07 / 0.29
2021-11-28 0.46 / 0.14 0.41 / 0.14 0.37 / 0.13 0.15 / 0.06 1.24 / 0.38 1.95 / 0.57 1.04 / 0.29

Seq. Avg. 0.54 / 0.16 0.46 / 0.15 0.45 / 0.15 0.16 / 0.06 2.02 / 0.58 1.68 / 0.49 0.95 / 0.27

∆T 250ms 88ms 97ms 88ms 75ms 115ms 139ms

B. Newer College Dataset Results

The Newer College Dataset was collected using a handheld
sensor mast at the University of Oxford. The dataset includes
approximately 6km or 1.3h of data. The sensor suite includes
a 64-beam Ouster lidar and an Intel Realsense camera. Both
the Ouster lidar and the Intel camera have internal IMUs. We
use the 100Hz IMU measurements provided by the Ouster
so that we can avoid potential time synchronization problems
between the lidar and the IMU. Ground truth for this dataset
was obtained by registering lidar scans in the dataset to a
surveyed lidar map of the university campus. Table II shows
our quantitative results for this dataset. Again, we include CT-
ICP and KISS-ICP since they are well-known lidar odometry

approaches. DLIO [11] and FAST-LIO2 [10] are also included
as these approaches currently represent the state of the art
for lidar-inertial odometry. Finally, we include SLICT [52]
and CLIO [60] as these are continuous-time approaches that
use linear interpolation and B-splines, respectively. It is chal-
lenging to make a direct comparison to other methods due
to significant difference in front-end preprocessing and map
storage strategies. Nevertheless, we show that our approach
is competitive with the state of the art while still being
real-time capable. We note that, as of writing, ours is the
only continuous-time lidar-inertial odometry with confirmed
real-time performance on the Newer College Dataset. SLICT
quotes their average runtime as 205ms on the NTU Viral
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Fig. 8. This figure depicts the trajectory estimated by STEAM-LIO during
the long sequence of the Newer College Dataset. The trajectory is colored
according to the absolute trajectory error when compared against the ground
truth. The estimated trajectory was aligned with the ground truth using the
Umeyama algorithm [73].

dataset [72] using two 16-beam lidars and CLIO quotes their
runtime as being 218s for a 397s sequence using a single 16-
beam lidar. Note that Table II contains originally published
results, except for the results provided for FAST-LIO2 and
KISS-ICP where the results were obtained from [71].

Interestingly, the sequences with the most aggressive mo-
tions (05, 06) displayed the smallest differences between our
continuous-time lidar-only and lidar-inertial odometry. We
postulate that this was due to these sequences being collected
in a rectangular quad (shown in Figure 9) with plenty of
geometric features for point-to-plane ICP. In this dataset, the
addition of an IMU seems to have the most noticeable im-
provement in sequences where there are brief periods lacking
sufficient geometric features. The majority of the lidar-inertial
performance improvement seems to come from using the
gyroscope with only a minor additional improvement when
the accelerometer is included.

Our lidar-only approach, STEAM-LO achieves better re-
sults on sequence 01-Short than all of the previous lidar-
inertial methods. Furthermore, STEAM-LO performs the best
out of the lidar-only approaches on sequence 06-Dynamic
Spinning, where KISS-ICP and our constant-velocity baseline
fail due to the rapid rotations observed in this sequence. It
can be seen in Table IV that our continuous-time approach,
STEAM-LO, significantly outperforms KISS-ICP, which relies
on a constant-velocity assumption. Our lidar-inertial approach,
STEAM-LIO achieves the best performance on sequence 01-
Short by a significant margin while remaining competitive with
the other lidar-inertial approaches on the other sequences. In
fact, if we compute an overall absolute trajectory error for the
entire Newer College Dataset by concatenating the squared
errors across all timestamps of all sequences, our approach
(0.2946m) actually outperforms FAST-LIO2 (0.3152m) and
DLIO (0.3048m). The performance of our approach on the
Newer College Dataset highlights the value of our continuous-
time technique.

In Figure 8, we provide a qualitative example of the
trajectory estimated by our approach. In this case, the tra-
jectory is colored by the absolute trajectory error (ATE). The
estimated trajectory is first aligned with the ground truth using

(a) Panoramic image of the courtyard at New College, Oxford

(b) Lidar map of the courtyard colored by reflectivity

Fig. 9. In this figure, we provide a qualitative example of the map produced
by our lidar-inertial odometry using the first 150 seconds of the “quad with
dynamics” sequence from the Newer College Dataset [15]. In order to produce
this figure, we adjusted configuration parameters to produce a denser map.

the Umeyama algorithm [73] before computing the ATE as
described in [74]. Even though we do not make use of explicit
loop closure factors, we rely on implicitly closing the loop
when we revisit previously mapped areas. This allows us to
achieve a low ATE for an odometry method. Usually, ATE is
used to benchmark SLAM approaches and not odometry.

We provide another qualitative example of our lidar-inertial
odometry in Figure 9 where we plot the lidar map generated
by our approach alongside a panoramic image of the courtyard
of New College, Oxford. In this case, the pointcloud is colored
using the Ouster reflectivity. We used a finer voxelization to
produce a denser map here. This map was produced using
the Quad with Dynamics sequence from the Newer College
Dataset, which features dynamic swinging motions of the
sensor mast. Even with this dynamic motion, we are able to
produce a crisp high-quality map.

C. Ablation Study

In addition to the continuous-time odometry methods pre-
sented in this work, we also present baseline results using
a constant-velocity assumption. We approximate the body-
centric velocity using the following formula, which includes
the poses at the two previous timesteps,

ϖ̌k ≈
1

∆tk−1
ln

(
Tk−1T

−1
k−2

)∨
. (31)
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Fig. 10. Root mean squared error vs. the number of estimation times per lidar
scan for STEAM-LO for sequence 01-Short of the Newer College Dataset.
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Fig. 11. Root mean squared error vs. the number of estimation times per lidar
scan for STEAM-LIO for sequence 01-Short of the Newer College Dataset.

Using this prediction of the velocity, we can deskew the
pointcloud using the following formula,

q̃j := exp((tk − τj)ϖ̌
∧
k )Tvsqj . (32)

We then reformulate our point-to-plane error function as

ep2p,j = αjn
T
j D(pj −T−1

k q̃j), (33)

where we minimize a cost function including these point-to-
plane factors using our nonlinear least-squares solver without
including any explicit prior on Tk. We refer to this approach
as Constant Velocity in Table I and Table II. On the KITTI-raw
dataset, the constant-velocity approach achieves respectable
results but is not quite competitive with the state of the art.
However, the approach is computationally efficient. On the
Newer College Dataset, the gap between the constant-velocity
approach and our continuous-time approach is much more
apparent. Similar to KISS-ICP, our constant-velocity baseline
fails on the Dynamic Spinning sequence.

Here, we analyze the effect of varying the number of
additional evenly spaced estimation times for each lidar scan
where the default, zero, refers to having an estimation time
at the beginning and at the end of each scan. As shown
in Figure 10, STEAM-LO’s performance improves slightly
when increasing the number of extra estimation times to four.
However, the improvement does not continue when increasing
the number of estimation times further. In addition, the runtime
increases substantially by doing so. For STEAM-LIO, the
performance is relatively flat when increasing the number
of estimation times as can be seen in Figure 11. Similar
experiments varying the number of estimation times or basis
functions were previously presented in [55], [64].

We also analyze the effect of downsampling the number of
unique lidar timestamps. The number of points is unchanged,
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Fig. 12. Root mean squared error (RMSE) vs. the lidar timestamp frequency
for STEAM-LO for sequence 01-Short of the Newer College Dataset.
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Fig. 13. Root mean squared error (RMSE) vs. the lidar timestamp frequency
for STEAM-LIO for sequence 01-Short of the Newer College Dataset.

but the associated timestamps are rounded so that the effec-
tive timestamp frequency is reduced. This has the effect of
requiring less continuous-time interpolations of the state and
also less Jacobians need to be computed during optimization.
Overall, the effect is that the continuous-time deskewing is
made more coarse and the required runtime is reduced.

In Figure 12, STEAM-LO’s performance worsens notice-
ably as the lidar timestamp frequency is reduced. However, at
lower timestamp frequencies, STEAM-LO becomes real-time.
For STEAM-LIO, the performance worsens only modestly
as the timestamp frequency is reduced and the reduction in
runtime is also more modest as depicted in Figure 13.

Finally, we analyze the effect of varying the parameters of
the diagonal of Q, the power spectral density matrix, where
the default parameters are diag(Q) = {50, 50, 50, 5, 5, 5}.

In Table IV, we can see that STEAM-LO is more sen-
sitive to varying the parameters of Q than STEAM-LIO.
The performance of STEAM-LO improves substantially when
decreasing Q. The effect of this reduction is to increase the
weight of penalizing the state estimates from deviating from
a constant velocity. However, when increasing the parameters
of Q, STEAM-LO fails.

TABLE IV
ATE RESULTS (M) ON SEQUENCE 01-SHORT OF THE NEWER COLLEGE

DATASET WHEN VARYING DIAG(Q) = {50, 50, 50, 5, 5, 5}.

Q STEAM-LO STEAM-LIO

×1/4 0.3098 0.3080
×1/2 0.3287 0.3071
×1 0.3398 0.3042
×2 Failed 0.3057
×4 Failed 0.3083
×8 Failed 0.3056
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Radar

Lidar

IMU

Fig. 14. This figure depicts our data collection platform Boreas which includes
a Velodyne Alpha-Prime 128-beam lidar, a Navtech CIR304-H radar, an
Applanix GNSS/IMU, and a FLIR Blackfly S camera.

D. Boreas Results

The Boreas dataset was collected at the University of
Toronto by driving a repeated route over the course of one year.
The dataset features varying seasonal and weather conditions.
The sensor suite, depicted in Figure 14 includes a Navtech
CIR304-H radar, a 128-beam Velodyne lidar, and an Ap-
planix GNSS/INS. Ground-truth poses were obtained by post-
processing all GPS, IMU, and wheel encoder measurements
as well as using a subscription for GPS corrections. In total,
the test set features 102km or 4.3h of driving data. We
extract 200Hz raw IMU measurements from the Applanix logs
and take care to ensure that the IMU measurements are not
bias-corrected in any way by the GPS. Table III shows our
quantitative results for this experiment where we compare
several variations of our approach: lidar odometry, lidar-
inertial odometry, radar odometry, and radar-inertial odometry.
We also compare against our previously published work Visual
Teach & Repeat 3 (VTR3) [69].

It is somewhat surprising to see that our lidar-inertial
odometry does not do much better than our lidar odometry
here. Our hypothesis is that for relatively slow moving ground
vehicles as in the Boreas dataset, our continuous-time lidar
odometry is sufficient to compensate for the motion distortion
in the pointcloud. As such, the additional inertial inputs do
not significantly improve performance. On the other hand, we
can see that for radar odometry, including an IMU results
in a significant improvement of 43%. Our interpretation of
this result is that, due the sparsity and noisiness of the radar
data, there is more room for improvement by including an
IMU. We improve our results even further for our competition
submission, STEAM-RIO++, described in the appendix.

Another observation is that, when we evaluate our lidar
odometry in SE(2), we observe a significant gap in the
performance of lidar and radar odometry. This is somewhat
contrary to what has been shown in prior work where radar
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Fig. 15. In this figure we compare the performance of odometry approaches
presented in this work using the Boreas dataset. The depicted sequence is
2021-01-26-10-59 which was collected during a snowstorm.

odometry appeared to be getting close to the performance
of lidar [35]. One important caveat here is that the under-
lying ground truth is in SE(3) whereas radar odometry is
being estimated in SE(2). As such, we have to project the
ground truth from 3D to 2D before comparing it to the radar
odometry estimates. This projection becomes less accurate as
the trajectory length increases. The KITTI odometry metric
computes the average drift over all subsequences of lengths
{100m, 200m, · · · , 800m}. Thus, it is likely that a large part
of this apparent radar odometry error is due to this projection
error. It appears that we need an improved set of metrics to
better compare radar and lidar odometry in a fair manner. We
leave this as an area of future work.

Figure 15 shows a qualitative example of trajectories es-
timated by our approach on the Boreas dataset. We observe
that our lidar odometry remains close to the ground truth while
our lidar-inertial odometry achieves a similar result. It can also
be observed that our radar-inertial odometry is notably better
than our radar-only odometry. We also compare the odometry
metrics as a function of path length in Figure 16 where
we observe that including an IMU results in only a minor
improvement for lidar odometry but results in a significant
improvement for radar odometry. In Figure 17, we plot the
odometry errors vs. time where we compare frame-to-frame
odometry estimates vs. the ground truth. We also plot the
estimated 3σ uncertainty bounds in red. Note that our approach
is quite consistent, our estimated uncertainty does a good job
of capturing the actual spread of the error. For each new lidar
frame, our approach estimates the pose of the vehicle in a
drifting map frame T̂k = T̂v,i(tk) where tk corresponds to
the temporal middle of the scan. We first compose two of these
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(a) Lidar Odometry Drift vs. Path Length
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(b) Radar Odometry Drift vs. Path Length

Fig. 16. Here we compare odometric drift vs. path length for lidar and
radar odometry. Lidar-inertial odometry performs similarly to lidar odometry.
However, radar-inertial odometry improves noticeably over radar odometry.

estimates to obtain a relative odometry pose change,

T̂k,k−1 = T̂kT̂
−1
k−1. (34)

The error that we compute is

ξk,k−1 = ln
(
T̂k,k−1T

−1
k,k−1

)∨
, (35)

where Tk,k−1 is the ground-truth odometry pose. We esti-
mate a covariance P̂k,k for the pose of each lidar frame by
interpolating the covariance over the sliding window at time
tk. See [70, §11.3.2] for details. The covariance of T̂k,k−1,
cov(T̂k,k−1) = Σk,k−1, is obtained using [70]

Σk,k−1 ≈ P̂k,k + T k,k−1P̂k−1,k−1T T
k,k−1, (36)

where T k,k−1 = Ad(T̂k,k−1). 35 and 36 are then used to
produce the plots in Figure 17. We compute the normalized
estimation error squared (NEES) using

NEES =

K∑
k=1

ξTk,k−1Σ
−1
k,k−1ξk,k−1

dim(ξk,k−1)K
. (37)

For the lidar-inertial odometry shown in Figure 15 and Fig-
ure 17, we obtain a NEES of 1.04 where an ideal value is 1.0.
This means that our estimator is slightly overconfident here.

In Figure 18, we compare the maps generated using our
lidar-inertial odometry and our radar-inertial odometry. The
lidar map is colored by height and is displayed using a top-
down orthographic projection. Our lidar-inertial odometry has
minimal drift and so the map that it generates aligns quite well
with satellite imagery.

0 20 40 60 80 100
−0.25

0.00

0.25

ρ 1

0 20 40 60 80 100
−0.25

0.00
0.25

ρ 2

0 20 40 60 80 100
−0.1

0.0
0.1

ρ 3

0 20 40 60 80 100
−0.005

0.000
0.005

ψ 1

0 20 40 60 80 100
−0.005

0.000
0.005

ψ 2

0 20 40 60 80 100
time (s)

−0.01

0.00

0.01

ψ 3

Fig. 17. This figure plots error vs. time for our lidar-inertial odometry when
compared to ground truth on the first 100 seconds of sequence 2021-01-
26-10-59. The red lines denote the estimated 3σ uncertainty bounds. Each
row represents a dimension of the log map of the pose error where ρ is a
translational dimension and ψ is a rotational dimension.

(a) Satellite image of UTIAS

(b) Lidar map of UTIAS (colored by height)

(c) Radar map of UTIAS (colored by intensity)
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Fig. 18. This figure displays maps generated of the University of Toronto
Institute for Aerospace Studies (UTIAS). The data was obtained using the
first 134 seconds of the 2021-02-09 Boreas sequence.
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It is clear that a high level of detail is being captured by the
lidar map. In order to produce the radar map in the figure, we
took snapshots of the online radar map every 10m and aligned
these submaps using the estimated odometry. We then removed
noisy detections from the radar map by performing a radius
outlier removal of points with less than two neighbors within
a radius of 0.25m and a statistical outlier removal of points
greater than one standard deviation above the average point-
to-point distance. The radar map drifts slightly with respect to
the lidar map. Note that we did not use any loop closures to
generate these maps so there is room for improvement. Even
though these maps contain some drift, we showed in our prior
work that maps only need to be locally consistent to enable
accurate localization [1].

VI. CONCLUSIONS

In this work, we showed that our Gaussian process motion
prior is often sufficient to compensate for motion-distorted
lidar data when there is sufficient geometric features. How-
ever, in challenging scenarios such as in the Newer College
Dataset, we showed that our continuous-time lidar odometry
could be augmented with IMU measurements to handle these
conditions. Even in the presence of aggressive motion, the
majority of the improvement resulted from the inclusion of gy-
roscope measurements whereas the addition of accelerometer
measurements yielded only a minor additional improvement.
We showed that we could improve our radar odometry by
43% by including inertial measurements. Contrary to previous
work, we showed that there is still a significant gap between
the performance of radar and lidar odometry under nominal
conditions. Part of this gap may be explained by difficulties
comparing 3D and 2D odometry estimates. Improved metrics
for this purpose is an area of future work. Including body-
centric acceleration in the state is another area of future work.
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APPENDIX

A. Interpolation Jacobians

In this work, we build continuous-time measurement factors
by making use of the posterior Gaussian process interpolation
formula. In order to do this, we need to compute the Jacobians
of the perturbation to the interpolated state δx(τ) with respect
to the state perturbations at the bracketing estimation times
δxk, δxk+1. Perturbations to the state at estimation times are
defined as

Tk = exp(ϵ∧k )Top,k, (38a)
ϖk = ϖop,k + ηk. (38b)

In order to compute the interpolation Jacobians, we first
need to linearize some expressions contained in (16). When

we evaluate the local Markovian variable at the endpoints of
the local GP, we get the following results,

γ̂k(tk) =

[
0
ϖ̂k

]
, (39a)

γ̂k(tk+1) =

 ln
(
T̂k+1T̂

−1
k

)∨

J
(
ln

(
T̂k+1T̂

−1
k

)∨
)−1

ϖ̂k+1

 . (39b)

Next, we linearize

ln
(
Tk+1T

−1
k

)∨ ≈ ln
(
Top,k+1T

−1
op,k

)∨
(40)

+J −1
op,k+1,k(ϵk+1 − T op,k+1,kϵk),

where we have assumed that ϵk+1−T op,k+1,kϵk is small and
we have defined

T op,k+1,k = T op,k+1T −1
op,k, (41a)

J op,k+1,k = J
(
ln(T op,k+1T −1

op,k)
∨
)
, (41b)

and T op,k = Ad(Top,k). We also make the following lineariza-
tion

J
(
ln

(
T̂k+1T̂

−1
k

)∨)−1

≈ J −1
op,k+1,k (42)

− 1

2

(
J −1

op,k+1,k(ϵk+1 − T op,k+1,kϵk)
)⋏

,

where we have again assumed that ϵk+1 − T op,k+1,kϵk is
small and we have approximated the inverse left Jacobian with
J −1(x) ≈ 1− 1

2x
⋏. The interpolated local variables between

estimation times tk, tk+1 are defined as

ξk(τ) = Λ1(τ)γ̂k(tk) +Ψ1(τ)γ̂k(tk+1), (43a)

ξ̇k(τ) = Λ2(τ)γ̂k(tk) +Ψ2(τ)γ̂k(tk+1). (43b)

The general formula for obtaining the interpolation Jaco-
bians for perturbations to the pose and body-centric velocity
is as follows:

∂δT(τ)

∂x
= J op,τ,k

∂ξk(τ)

∂x
+ T op,τ,k

∂ϵk
∂x

, (44a)

∂δϖ(τ)

∂x
= J op,τ,k

∂ξ̇k(τ)

∂x
− 1

2
ξ̇⋏op,τ

∂ξk(τ)

∂x
, (44b)

where the Jacobians of the local variable ξk(τ) with respect
to state perturbations at the bracketing times are given by

∂ξk(τ)

∂ϵk+1
= Ψ11J −1

op,k+1,k +
1

2
Ψ12ϖ

⋏
op,k+1J

−1
op,k+1,k, (45a)

∂ξk(τ)

∂ϵk
= −

(
∂ξk(τ)

∂ϵk+1

)
T op,k+1,k, (45b)

∂ξk(τ)

∂ηk
= Λ12, (45c)

∂ξk(τ)

∂ηk+1
= Ψ12J −1

op,k+1,k. (45d)

The Jacobians of ξ̇k(τ) have the same form except that we
use the second row of the interpolation matrices, Ψ21 instead
of Ψ11, for example.
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B. 2024 Radar in Robotics Competition

At ICRA 2024 in Yokohama, Japan, we hosted a radar
odometry competition as part of the Radar in Robotics
workshop. In order to achieve our competition results, we
increased the length of the sliding window from two scans
to four. We also switched from a Cauchy loss to a Huber
loss with a more restrictive threshold to filter out outliers. We
increased the weight given to gyroscope measurements. We
also incorporated a version of keyframing where new radar
frames were not added to the sliding local map unless the
vehicle travelled at least one meter. Putting together all of
these changes, our competition submission, STEAM-RIO++,
achieved 0.62% translational drift, a 35% improvement over
STEAM-RIO as shown in Table V. In the competition, we
placed third, where the 2nd place submission was CFEAR
with 0.61% drift [75]. Notably, CFEAR did not use an IMU,
and their approach is computationally very efficient. In order
to achieve their competition results, they greatly increased the
length of their sliding window and employed a coarse-to-fine
registration approach. The first-place entry was CFEAR++,
achieving 0.51% drift [76]. CFEAR++ is based on CFEAR
where the authors also used gyroscope angle estimates as a
prior as well as semantic segmentation to retain only points
that correspond to buildings.

TABLE V
BOREAS ODOMETRY SUPPLEMENTARY RESULTS (102KM / 4.3H):

TRANSLATIONAL DRIFT (%) / ROTATIONAL DRIFT (DEG/100M).

Boreas STEAM-RO STEAM-RIO STEAM-RIO++

2020-12-04 1.43 / 0.41 0.93 / 0.26 0.76 / 0.20
2021-01-26 1.10 / 0.33 0.61 / 0.18 0.50 / 0.24
2021-02-09 1.27 / 0.38 0.63 / 0.20 0.40 / 0.13
2021-03-09 1.24 / 0.35 0.71 / 0.19 0.58 / 0.17
2020-04-22 1.48 / 0.41 0.99 / 0.27 0.67 / 0.18
2021-06-29-18 1.55 / 0.46 1.04 / 0.29 0.66 / 0.19
2021-06-29-20 1.70 / 0.48 0.96 / 0.26 0.75 / 0.20
2021-09-08 2.01 / 0.59 1.22 / 0.35 0.74 / 0.21
2021-09-09 2.16 / 0.64 1.19 / 0.33 0.56 / 0.15
2021-10-05 2.27 / 0.63 1.01 / 0.28 0.58 / 0.16
2021-10-26 1.88 / 0.53 0.97 / 0.27 0.63 / 0.18
2021-11-06 1.86 / 0.54 1.07 / 0.29 0.74 / 0.21
2021-11-28 1.95 / 0.57 1.04 / 0.29 0.56 / 0.16

Seq. Avg. 1.68 / 0.49 0.95 / 0.27 0.62 / 0.18

∆T 115ms 139ms 153ms
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