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Abstract—This paper presents a radar odometry method that
combines probabilistic trajectory estimation and deep learned
features without needing groundtruth pose information. The
feature network is trained unsupervised, using only the on-board
radar data. With its theoretical foundation based on a data likeli-
hood objective, our method leverages a deep network for process-
ing rich radar data, and a non-differentiable classic estimator for
probabilistic inference. We provide extensive experimental results
on both the publicly available Oxford Radar RobotCar Dataset
and an additional 100 km of driving collected in an urban setting.
Our sliding-window implementation of radar odometry outper-
forms most hand-crafted methods and approaches the current
state of the art without requiring a groundtruth trajectory for
training. We also demonstrate the effectiveness of radar odometry
under adverse weather conditions. Code for this project can be
found at: https://github.com/utiasASRL/hero radar odometry

I. INTRODUCTION

While the reliability of autonomous vehicles continues to
improve, operating in rain and snow remains a challenge. Most
autonomous driving systems rely primarily on a combination
of cameras and lidar for perception, with radar sensors taking
a back-seat role [13]. Cen and Newman [15] presented a
successful application of a scanning radar sensor to large-
scale outdoor ego-motion estimation. Their work has inspired
a resurgence of research into radar-based perception and
navigation systems. Compared to lidar, radar is more robust
to precipitation due to its longer wavelength. For this reason,
radar may be a key to enabling self-driving vehicles to operate
in adverse weather. The ultimate goal of this research is to
approach the performance of lidar-based algorithms in ideal
conditions and surpass them in adverse conditions.

Previous works in this area have made significant progress
towards radar-based odometry [2–4, 9, 11, 14–16, 26, 34, 39]
and place recognition [20, 22, 31, 43, 46]. However, previous
approaches to radar odometry have either relied on hand-
crafted feature extraction [2–4, 14–16, 26, 34], correlative scan
matching [11, 39], or a (self-)supervised learning algorithm
[9, 11] that relies on trajectory groundtruth. Barnes and Posner
[9] previously showed that learned features have the potential
to outperform hand-crafted features. On the other hand, it has
not yet been shown whether correlative scan matching systems
can be scaled up to large-scale mapping and localization. In
order to address these limitations, we propose a method that is
able to learn features directly from radar data without relying
on groundtruth pose information.

In this work, we present an unsupervised radar odometry
pipeline that approaches the state of the art as reported on the
Oxford Radar RobotCar Dataset [10]. Our network parameters
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Fig. 1. Our data-taking platform, Boreas, which includes a Velodyne Alpha-
Prime (128-beam) lidar, Navtech CIR204-H radar, FLIR Blackfly S monocular
camera, and Applanix POSLV GNSS.

are trained using only the on-board radar sensor, alleviating the
need for an accurate groundtruth trajectory. To our knowledge,
this is the first example of a totally unsupervised radar odom-
etry pipeline. We show additional experimental results on 100
km of radar data collected on the data-taking platform shown
in Figure 1. We also provide a comparison of radar odometry
performance in ideal and harsh weather conditions.

Our approach is based on the Exactly Sparse Gaussian
Variational Inference (ESGVI) parameter learning framework
of Barfoot et al. [8], a nonlinear batch state estimation
framework that provides a family of scalable estimators from
a variational objective. Model parameters can be optimized
jointly with the state using a data likelihood objective. Yoon
et al. [51] recently applied the framework to train a deep
network, demonstrating feature learning for lidar odometry
with only on-board lidar data. We extend their methodology
and apply it to radar odometry. Our approach is modular,
enabling the use of modern deep learning tools and classical
estimators with minimal interface requirements. Importantly,
our method does not require the estimator to be differentiable,
a limitation of some other learning-based methods [11].

The hybridization of deep learning and probabilistic state
estimation allows us to achieve the best of both worlds. Deep
learning can be leveraged to process rich sensor data, while
classical estimators can be used to deal with probabilities and
out-of-distribution samples through outlier rejection schemes,
motion priors, and other estimation tools. Furthermore, clas-
sical estimators make the incorporation of additional sensors
and constraints relatively straightforward.

https://github.com/utiasASRL/hero_radar_odometry


We review related work in Section II. An overview of
ESGVI parameter learning is presented in Section III, and
the methodology of our radar odometry is in Section IV.
Experimental results are presented in Section V. Concluding
remarks and future work are in Section VI.

II. RELATED WORK

Initially, radar-based navigation was reliant on hand-tuned
detectors specifically designed for radar [19, 29]. One such
detector is CFAR (Constant False Alarm Rate), which uses
a sliding window to find relative peaks in radar data [41].
Although CFAR works well for detecting aircraft against a
blank sky, it struggles to discriminate between clutter and
objects of interest on the ground where the relative differences
in radar cross section are low. These early methods relied
primarily on location information to match detections and were
thus limited by the accuracy of their data association.

Subsequent works have sought to improve feature detection
and matching. Checchin et al. [18] side-stepped this problem
by applying correlative scan matching between entire radar
scans via the Fourier-Mellin transform. Although correlation-
based techniques have been shown to achieve excellent odome-
try performance, it remains challenging to apply them to large-
scale mapping and localization due in part to their high data
storage requirements during mapping.

Recent works have taken advantage of improvements to
frequency-modulated continuous wave (FMCW) radar sensors.
The radar sensor produced by Navtech [1] is popular for
navigation research due to its combination of high range
resolution, angular resolution, range, and 360◦ field of view.

Cen and Newman [15] demonstrated large-scale outdoor
ego-motion estimation with a scanning radar. Their work
inspired a resurgence of research into radar-based perception
and navigation systems. Research in this area has also been
accelerated by the introduction of the Oxford Radar RobotCar
Dataset [10]. Other datasets that feature a scanning radar
include the MulRan Dataset [31] for multimodal place recog-
nition, and the RADIATE Dataset [44] for object detection
and tracking in adverse weather.

Cen and Newman [16] later provided an update to their
radar odometry pipeline with an improved gradient-based
feature detector along with a new graph matching strategy.
Aldera et al. [3] learn an attention policy to down-sample
the number of measurements provided to the data association
stage, thus speeding up the odometry pipeline. Aldera et al.
[4] train a classifier on the principal eigenvector of their
graph matching problem in order to predict and correct for
failures in radar odometry. Park et al. [39] applied the Fourier-
Mellin Transform to log-polar images computed from down-
sampled Cartesian images. Barnes et al. [11] demonstrated a
fully differentiable, correlation-based radar odometry pipeline.
Their approach learns a binary mask to remove distractor
features before using brute force search to find the pose
with the minimum cross correlation. Hong et al. [26] used
vision-based features and graph matching to demonstrate the
first radar-based SLAM system to operate in adverse weather.
Burnett et al. [14] demonstrated that motion distortion and

Doppler effects can have an adverse effect on radar-based
navigation, but that these effects can be compensated using
continuous-time estimation techniques.

These works represent significant steps towards radar-based
autonomy. However, each of these methods relies on either
hand-crafted feature detectors and descriptors or cumbersome
phase correlation techniques. Barnes and Posner [9] showed
that learned features can result in superior radar odometry
performance. Their work currently represents the state of
the art for point-based radar odometry. Despite these results,
their approach requires the estimator to be differentiable and
they require groundtruth poses as a supervisory signal. Our
approach does not suffer from either of these drawbacks.

Other works have focused on radar-based place recognition.
Săftescu et al. [43] perform place recognition by learning
rotationally invariant descriptors within a metric feature space.
Gadd et al. [22] improve on this work by incorporating
sequence-based place recognition based on SeqSLAM [37].
De Martini et al. [20] proposed a two-stage system to integrate
topological localization with metric pose estimation. A related
avenue of research has been to localize radar scans using ex-
isting satellite imagery [46] [47]. Further research has tackled
radar-based perception through occupancy [48], traversability
[12, 49], and semantic segmentation [30].

Barfoot et al. [8] presented the ESGVI framework and
showed that model parameters can be jointly optimized along
with the state using an Expectation-Maximization (EM) itera-
tive optimization scheme on a data likelihood objective. In
the E-step, model parameters are held fixed, and the state
is optimized. In the M-step, the state distribution is held
fixed, and the model parameters are optimized. This idea
originates from a line of work that applied EM for linear
system identification [24, 45]. Ghahramani and Roweis [25]
extended the idea to simple nonlinearities approximated with
Gaussian radial basis functions. Wong et al. [50] first applied
EM under the ESGVI framework to large-scale trajectory esti-
mation by learning noise models robust to outliers. Yoon et al.
[51] demonstrated the first application of ESGVI parameter
learning to a deep network, where lidar features for odometry
were learned without groundtruth. We apply their methodology
and adapt it for radar odometry.

Our framework shares similarities with the Variational Au-
toencoder (VAE) [33] framework, as both start from a data
likelihood objective and optimize the Evidence Lower Bound
(ELBO). In contrast to the VAE, which approximates latent
state inference with a network, our framework applies classic
state estimation (e.g., factor graph optimization). Extensions to
the VAE for problems with graphical structure exist [28], but
our method makes use of existing estimation tools familiar to
the robotics field. Most similar to our framework is the work
of DeTone et al. [21]. They present a self-supervised visual
odometry framework that has a deep network frontend trained
according to a bundle adjustment backend. Compared to their
framework, ours is based on a probabilistic objective and can
handle uncertainty in the posterior estimates.



III. EXACTLY SPARSE GAUSSIAN VARIATIONAL
INFERENCE PARAMETER LEARNING

This section summarizes parameter learning in the ESGVI
framework as presented in prior work [8, 50, 51]. The loss
function is the negative log-likelihood of the observed data,

L = − ln p(z|θ), (1)

where z is the data (e.g., radar measurements), and θ are
the parameters (e.g., network parameters). We apply the usual
EM1 decomposition after introducing the latent trajectory, x,
which is written as

L =
∫ ∞

−∞
q(x) ln

(
p(x|z,θ)
q(x)

)
dx︸ ︷︷ ︸

≤ 0

−
∫ ∞

−∞
q(x) ln

(
p(x, z|θ)
q(x)

)
dx︸ ︷︷ ︸

upper bound

,

(2)
where we define our posterior approximation as a multivariate
Gaussian distribution, q(x) = N (µ,Σ).

We work with the upper bound term, commonly referred to
as the (negative) ELBO. Applying the definition of entropy of
a Gaussian and dropping constants, we can rewrite the term
as the ESGVI loss functional,

V (q|θ) = Eq[ϕ(x, z|θ)] +
1

2
ln
(
|Σ−1|

)
, (3)

where E[·] is the expectation operator, |·| is the matrix determi-
nant, and we define the joint factor ϕ(x, z|θ) = − ln p(x, z|θ).

We apply Generalized EM (GEM) [38], a variation of EM
that does not run the M-step to completion (convergence), to
gradually optimize the data likelihood, L . In the E-step, we
hold θ fixed and optimize V (q|θ) for q(x). In the M-step,
we hold q(x) fixed and optimize V (q|θ) for θ. When the
expectation over the posterior, q(x), is approximated at the
mean of the Gaussian, the E-step is the familiar Maximum A
Posteriori (MAP) estimator [8].

IV. UNSUPERVISED DEEP LEARNING FOR RADAR
ODOMETRY

A. Problem Definition
In this subsection, we summarize the sliding-window odom-

etry formulation presented by Yoon et al. [51]. The state we
estimate at time tk is xk = {Tk,0,ϖk}, where the pose
Tk,0 ∈ SE(3) is a transformation between frames at tk and
t0, and ϖk ∈ R6 is the body-centric velocity2. We optimize a
sliding-window of w frames, tτ , . . . , tτ+w−1, where each state
has a corresponding radar scan. The first pose of the window,
Tτ,0, is locked (not optimized) and treated as the reference
frame for keypoint matching.

Our joint factor, ϕ(x, z|θ), splits into motion prior factors
and measurement factors. Figure 2 shows an example factor
graph illustration. We write ϕ(x, z|θ) as

τ+w−1∑
k=τ+1

(
ϕp(xk−1,xk) +

Lk∑
ℓ=1

ϕm(zℓk, r
ℓ
τ |xτ ,xk,θ)

)
, (4)

1While the acronym stays the same, we work with the negative log-
likelihood and are technically applying Expectation Minimization.

2Despite the radar being a 2D sensor, we formulate our problem in SE(3)
to be compatible with other 3D sensor modalities.
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Fig. 2. This figure depicts the factor graph of our radar odometry pipeline.
xk and zk are defined as the state of the vehicle and the radar scan at time tk ,
respectively. The vehicle trajectory is estimated over a sliding window of w
frames, where w = 3 in this figure. The deep network parameters are denoted
by θ. The output of the network is a set of feature locations (xi, yi), their
associated inverse covariance matrices, Wi, and their learned descriptors, di,
which are together represented by stars in the diagram. These features are then
matched between pairs of frames using a differentiable softmax matcher. The
matched features are then used to form measurement factors, ϕm. A white-
noise-on-acceleration motion prior is applied to create prior factors, ϕp.

where zℓk is the ℓth keypoint measurement in frame k, which
has a total of Lk keypoints, and rℓτ is its matched point from
frame τ .

For the motion prior factors, ϕp, we apply a white-noise-
on-acceleration prior as presented by Anderson and Barfoot
[5], which is defined by the following kinematic equations:

Ṫ(t) = ϖ(t)∧T(t),

ϖ̇ = w(t), w(t) ∼ GP(0,Qcδ(t− t′)),
(5)

where T(tk) = Tk,0, and w(t) ∈ R6 is a zero-mean,
white-noise Gaussian process. The operator, ∧, transforms an
element of R6 into a member of Lie algebra, se(3) [7]:[

u
v

]∧
=

[
v∧ u
0T 0

]
, v∧ =

v1v2
v3

∧

=

 0 −v3 v2
v3 0 −v1
−v2 v1 0

, (6)

where ∧ is also overloaded as the skew-symmetric operator
for elements of R3.

The measurement factors, ϕm, are of the form:

ϕm(zℓk, r
ℓ
τ |xτ ,xk,θ) =

1

2
eℓk

T
Wℓ

ke
ℓ
k − ln

∣∣Wℓ
k

∣∣ , (7)

eℓk = D
(
zℓk −Tk,0T0,τr

ℓk
τ

)
, (8)

where we use the log-likelihood of a Gaussian as the factor,
and D is a 3 × 4 constant projection matrix that removes
the homogeneous element. The homogenous keypoint, zℓk, its
point match, rℓkτ , and its inverse covariance (weight) matrix,
Wℓ

k, are quantities that depend on the network parameters, θ.
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Fig. 3. We based our network on the architecture presented by Barnes and Posner [9]. The network outputs detector scores for keypoint detection, weight
scores predicting keypoint uncertainty, and descriptors for matching. The weight scores are composed into 2 × 2 inverse covariance matrices (see (11), the
corresponding image is the log-determinant). Descriptors are the concatenation of all encoder layer outputs after resizing via bilinear interpolation. The encoder
and decoder layers are a double application of a 3× 3 convolution, batch normalization, and ReLU nonlinearity. The layer sizes vary by a factor of 2 through
max-pooling (encoder) and bilinear upsampling (decoder). Note that the output size is the same as the input, and are visually smaller in the interest of space.
An output 1×1 convolution is applied for the detector and weight scores. The detector score map is partitioned into uniform cells, where a spatial softmax and
weighted summation of coordinates are applied to yield a keypoint for each cell. Corresponding weights and descriptors are obtained via bilinear sampling.

B. Network

Our network is based on the architecture presented by
Barnes and Posner [9], which is a U-Net [42] style con-
volutional encoder-multi-decoder architecture to output radar
keypoints, weights, and descriptors. The input to the network
is a 2D Cartesian projection of the polar radar data. Example
radar scans are shown at the top of Figure 2.

An illustration of our network architecture is shown in
Figure 3. A dense descriptor map is created by resizing the
output of each encoder block before concatenation into a 248-
channel tensor. In our approach, the weight score is a 3-
channel tensor and the detector score is a 1-channel tensor.
The detector score tensor is then partitioned into (N = 400)
equally sized cells, with each producing a candidate 2D
keypoint. A spatial softmax within each cell, followed by a
weighted summation of pixel coordinates produces the image-
space keypoint coordinates of each cell. The corresponding
descriptor and weight score vectors are bilinearly sampled
using the keypoint coordinates. The image coordinates are
converted to metric coordinates using the known m/pixel res-
olution. Finally, we formulate the 3D homogenous keypoint,
zℓk, by appending a 0 as a third coordinate, and a 1 as the
fourth homogenous element.

Our detector produces a candidate keypoint for each square
cell in a uniformly partitioned radar image. This leads to
candidate keypoints in regions of the image that are void of
data (i.e., black regions of a radar image). As we are training
without groundtruth, we found it necessary in practice to mask
(reject) these keypoints. We threshold each azimuth of the
polar radar scan by a scalar multiple, β = 3, of its mean
intensity, where exceeding the threshold is considered valid.
Projecting the result into Cartesian space produces a binary
mask of valid pixels. We then threshold on the ratio of valid
pixels in each square cell for robustness to noise. Keypoints
belonging to cells with less than 5% valid pixels are rejected.

A dense match between each keypoint descriptor and the
reference descriptor tensor is applied with a softmax to pre-
serve differentiability. We compute the dot product between
each keypoint descriptor and all descriptors of the reference:

cℓ
T

k = dℓ T
k

[
d1
τ · · · dN

τ

]
, (9)

where dℓ
k is the descriptor vector of keypoint zℓk, and

d1
τ , . . . ,d

N
τ are the descriptor vectors of the reference. We

apply a softmax on cℓk and compute a weighted summation.
The reference match for keypoint zℓk is therefore

rℓkτ =
[
p1
τ · · · pN

τ

]
× softmax(Tcℓk), (10)

where T = 100 is a softmax temperature constant, p1
τ , . . . ,p

N
τ

are the homogeneous reference coordinates, and pn
τ ∈ R4.

The weight score vectors of each keypoint are assembled into
matrices with the following decomposition [35, 51]:

Wℓ
k =

[
R 0
0T c

]
, R =

[
1 0
d3 1

] [
exp d1 0

0 exp d2

] [
1 0
d3 1

]T
,

(11)
where (d1, d2, d3) is the weight score vector corresponding to
keypoint zℓk, and c = 104 is a constant corresponding to the
(inverse) variance of the third coordinate (which will always
be 0). Visualizations of the learned keypoint covariances, R−1,
are shown in Figure 4 as uncertainty ellipses.

C. Training and Inference

We follow the training methodology of Yoon et al. [51],
which blends the GEM iterative optimization scheme required
by ESGVI with Stochastic Gradient Descent (SGD) applied
in conventional network training. The E-step, which optimizes
for the current best posterior estimate, q(x), is simply included
as part of the forward propagation routine.



Fig. 4. A visualization of keypoints (red) on radar images with 5 standard
deviation uncertainty ellipses (yellow). Many keypoints have elongated uncer-
tainties consistent to the scene geometry, and as expected, keypoints further
away from the sensor (image center) are more uncertain.

Windows of radar scans are randomly sampled as a mini-
batch of data. Forward propagation is summarized as:

1) Traditional forward propagation of the network to output
radar features (see Section IV-B).

2) Construct the motion prior factors, ϕp, and measurement
factors, ϕm, (see Section IV-A and IV-B).

3) Batch inference for the current best posterior estimate
q(x) for each window (E-step).

We approximate the E-step with the Gauss-Newton algorithm,
which involves approximations to the Hessian and approximat-
ing the expectation in (3) at only the mean of the posterior.

The M-step is network backpropagation on the loss func-
tional (3), which only applies to the measurement factors
since the motion prior factors are constant with respect to
the parameters, θ. Similar to the E-step, we approximate the
expectation at only the mean of the posterior. Intuitively, we
are using our best-guess trajectory as a supervisory signal to
then carry out standard SGD to train the feature network.
D. Outlier Rejection

We apply the Geman-McClure robust cost function on the
measurement factors, ϕm, in the E-step for outlier rejection.
For the M-step, we follow Yoon et al. [51] and apply a constant
threshold, α, on the squared Mahalanobis distance of the
measurement factor with the current best posterior estimate,

eℓk
T
Wℓ

ke
ℓ
k > α, (12)

where eℓk is as defined in (8). We do not backpropagate
keypoint matches that are greater than α = 16.

After training, we improved odometry performance by
rejecting keypoints with inverse covariances that have a log
determinant, log|R|, less than a threshold (η = 4.0). We also
use RANSAC at test time and only estimate on the inliers.

TABLE I
Radar Odometry Results. (HC): Hand-crafted, (L): Learned.

Methods Supervision
Trans.

Error (%)
Rot. Error

(deg/1000m)
UnderTheRadar [9] Supervised (L) 2.0583 6.7

Cen RO [15] Unsupervised (HC) 3.7168 9.5
MC-RANSAC [14] Unsupervised (HC) 3.3190 10.93

CFEAR [2] Unsupervised (HC) 1.76 5.0
HERO (Ours) Unsupervised (L) 1.9879 6.524

V. EXPERIMENTAL RESULTS

A. Experiment Setup

We evaluate our approach, Hybrid-Estimate Radar Odome-
try (HERO), on the publicly available Oxford Radar RobotCar
Dataset [10] and on our own dataset, collected using the data-
taking platform in Figure 1. The Oxford dataset is divided into
32 sequences, each approximately 10 km in length. We follow
existing work [9] by training on 24 sequences, validating on
1 sequence, and testing on the same 7 sequences as [9].

Our implementation is a hybrid between Python and C++,
where network-related code is implemented in Python using
PyTorch [40], and estimation-related code is implemented
using STEAM3, an open-source C++ estimation library. When
training the network, we use a fixed random seed and the
Adam optimizer [32] with a learning rate of 1 × 10−5 and a
mini-batch size of 1 window (w = 4) for up to 100k iterations.
The Navtech radar sensor used in the Oxford dataset has
a range resolution of 0.0438 m/bin. To minimize projection
errors, we chose a Cartesian resolution of 0.2628 m/pixel to
be an integer multiple of the radar resolution. The Cartesian
radar images are made to be square with a width of 640 pixels.
For the spatial softmax operation, each cell is 32× 32 pixels,
resulting in 400 total keypoints. We use a softmax temperature
of 100. For the motion prior, Qc is made to be diagonal. The
entries of Q−1

c can be thought of as penalty terms on body-
centric linear and angular acceleration. It is possible to learn
Qc as is done [50]. However, in our implementation, the values
are hand-tuned. Similar to Barnes and Posner [9], we augment
our training data with random rotations of up to 0.26 radians.
Our sliding-window implementation4 takes on average 0.07
seconds, 0.13 seconds, and 0.18 seconds for window sizes of
2, 3, and 4, respectively. Since the radar sensor spins at 4
Hz, our current implementation is real-time capable. During
evaluation, we use the timestamp of each measurement to do
continuous-time estimation with STEAM to compensate for
motion distortion. For more information on this approach, we
refer readers to the work of Sean Anderson et al. [5] [6].

B. Oxford Radar RobotCar Dataset
Here, we compare our radar odometry results with other

point-based radar odometry methods including Cen and New-
man [15] (Cen RO), Barnes and Posner [9] (Under the
Radar), CFEAR [2], and Burnett et al. [14] (MC-RANSAC).
Following these previous works, we report our results using
the KITTI odometry metrics [23], which average the relative

3https://github.com/utiasASRL/steam
4On an Nvidia Tesla V100 GPU and 2.2 GHz Intel Xeon CPU.

https://github.com/utiasASRL/steam
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Fig. 5. This figure depicts the results of our unsupervised Hybrid-Estimate
Radar Odometry (HERO) in blue alongside the results of a hand-crafted radar
odometry pipeline based on motion compensated RANSAC (MC-RANSAC)
[14] in red. The groundtruth trajectory is plotted in black (GT). Sequence:
2019-01-10-14-02-34-radar-oxford-10k.

position and orientation errors over every sub-sequence of
length (100 m, 200 m, · · · , 800 m). The results in Table I
show that our method, HERO, is competitive with other
unsupervised radar odometry methods, surpassing the hand-
crafted algorithms Cen RO and MC-RANSAC. In addition,
our method exceeds the performance of Under the Radar, a
learned point-based radar odometry approach, without needing
any groundtruth supervision. This feature gives our method an
advantage for deployment in regions where a source of high-
quality groundtruth is unavailable. Sources of groundtruth,
such as a GPS/INS system, are not only costly, but require
a clear line of sight to the sky for GPS reception. Notably,
the authors of the Oxford Radar RobotCar Dataset [9] state
that the accuracy of their GPS/INS system varied significantly
due to poor GPS reception [36]. They addressed this issue by
including visual odometry and loop closures into a large scale
optimization [9]. Figure 5 illustrates an example sequence
comparing our odometry method to MC-RANSAC.

We provide an ablation study of our method in Table II. We
first compare our baseline to the following variations:
• Scalar Weight: Instead of learning a 2×2 weight (inverse

covariance) matrix (see (11)), we learn a scalar weight.
• No Mah. Threshold: We do not apply the outlier rejec-

tion threshold on the squared Mahalanobis distance 12.
• No Masking: We do not mask keypoints in void regions

of the radar images, as described in Section IV-B.
• No Augmentation: We do not augment our training data

with random rotations.
We also show the effect of varying the window size of
our sliding-window optimization and the resolution of the
projected radar images. Our baseline uses a window size of 4
and a resolution of 0.2628 m/pixel.

The results in Table II suggest that rotation augmentation,

TABLE II
Ablation study. Results for sequence 2019-01-10-14-02-34-radar-oxford-10k.

Configuration Translational
Error (%)

Rotational Error
(deg/1000m)

Baseline 2.262 7.601
Scalar Weight 2.484 7.997
No Mah. Threshold 3.083 9.300
No Masking 3.203 10.07
No Augmentation 5.054 16.60
Window Size 2 2.488 7.901
Window Size 3 2.393 7.657
Cart Res: 0.2160 2.396 7.602
Cart Res: 0.3024 2.407 7.927
Baseline + (log|R| < 4.0) 1.953 6.532

masking keypoints, and thresholding on Mahalanobis distance
were the most significant hyperparameters. We theorize that
because a large fraction of the Oxford dataset consists of
either driving straight or waiting at a red light, training without
rotation augmentation makes it less likely that the network will
learn to properly match features across large frame-to-frame
rotations. Putting a hard threshold on the Mahalanobis distance
before backpropagation allows us to only backpropagate the
errors from likely inliers. The masking of keypoints from
empty regions of the input radar scan was necessary to achieve
good odometry results. Our interpretation is that adding this
additional structure to the learning problem is needed for the
unsupervised model to succeed.
C. Additional Experiments on the Boreas Dataset

In this section, we provide additional experimental results
for our radar odometry using 100 km of driving obtained
in an urban environment5. The dataset was collected using
the platform shown in Figure 1, which includes a Velo-
dyne Alpha-Prime (128-beam) lidar, Navtech CIR204-H radar,
FLIR Blackfly S monocular camera, and Applanix POSLV
GNSS. This Navtech sensor has a range resolution of 0.0596 m
and a total range of 200 m, compared to the 0.0438 m
resolution and 163 m range of the Navtech sensor used in the
Oxford dataset. We do not require groundtruth position data
to train our network, but obtain it for the test sequences in
order to calculate KITTI odometry drift metrics. Groundtruth
positioning is obtained from the post-processed GNSS results
and is accurate to within 12 cm.

The 100 km of total driving data is divided into 11 indi-
vidual sequences, each approximately 9 km in length. We use
7 sequences for training, 1 for validation, and 3 for testing.
Of the 3 test sequences, two were taken during a snow storm,
and the other was taken on a sunny day.

Figure 6 illustrates the large differences in weather condi-
tions. Between the sunny and snowy days, there were signifi-
cant visual appearance changes. Most of the lane lines are not
visible during the snow storm. Even more stark is the contrast
between the lidar data taken on the two days (after the ground
plane is removed). During the snow storm, the lidar scan is
littered with a large number of detections associated with snow
flakes. Although we do not provide experimental results for
this, it seems probable that the accuracy of a lidar odometry

5We plan on making our dataset publicly available in the next year.
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Fig. 6. This figure illustrates the differences in camera, lidar, and radar data
between a sunny day and a snow storm. During snowfall, the lidar sensor
becomes littered with noisy snowflake detections but the radar data appears
unperturbed.

system would suffer under these conditions. However, Charron
et al. [17] have shown that it is possible for these effects to
be compensated. Unsurprisingly, it is difficult to discern the
difference between the radar scans, other than the movement
of large vehicles.

The robustness of radar to inclement weather is also exem-
plified in the odometry drift results reported in Table III. In
fact, the drift rates on the snowy days were lower than on the
sunny day. We postulate that the error increases on the sunny
day due to the increase in the vehicle’s speed. It is interesting
to note that our rotation drift metrics here are lower than on the
Oxford dataset. While it is difficult to point to a single factor
as the reason for this difference in performance, we note that
our trajectory involves less turns and we use a different source
of groundtruth for testing. In Figure 7, we provide a plot of
our odometry results during a snowy sequence. Here, we have
plotted the results of training on the Oxford dataset and testing
on this sequence, as well as training on the Boreas dataset and
testing on this sequence. There is a noticeable increase in the
drift rate when transferring from the Oxford dataset to this
Boreas dataset. We hypothesize that this difference is mainly
due to the different range resolutions of the sensors.
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Fig. 7. Odometry results on the snowy sequence 2021-01-26-11-22.

TABLE III
Boreas test results.

Sequence Weather Trained On
Trans.

Error (%)
Rot. Error

(deg/1000m)
01-26-10-59 Snow Boreas 2.003 5.599
01-26-11-22 Snow Boreas 1.980 5.288
02-09-12-55 Sun Boreas 2.073 5.886
01-26-10-59 Snow Oxford 2.355 8.137
01-26-11-22 Snow Oxford 2.112 6.442
02-09-12-55 Sun Oxford 2.546 8.911

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we applied the ESGVI parameter learning

framework to learn radar features for odometry using only the
on-board radar data. Our odometry performance on the Oxford
Radar RobotCar Dataset approaches the current state of the art,
which is a hand-crafted method [2]. We provided additional
experimental results on 100 km of driving taken in an urban
setting. Within this dataset, we demonstrated the effectiveness
of radar odometry during heavy snowfall.

In recent years, robotics research has become increasingly
reliant on high-quality datasets for training deep learning
algorithms. The size and scope of these datasets is a limiting
factor in the performance of many robotic systems. However,
collecting and annotating these datasets is an expensive and
labour-intensive process. For this reason, it is important that
research in robotics trend towards solutions that are more data
efficient. By foregoing the need for groundtruth pose informa-
tion, our unsupervised architecture enables large quantities of
training data to be collected with relative ease.

Our framework is a hybrid of modern deep learning and
classic probabilistic state estimation. Deep learning can be
used to process rich sensor data while probabilistic esti-
mation can be used to handle out-of-distribution samples
through outlier rejection schemes. Furthermore, our modular
framework enables many future extensions and avenues of
research. For example, we plan on incorporating IMU factors
into our estimator, which should be straightforward with our
probabilistic estimator.
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APPENDIX

TABLE IV
Evaluation on 7 sequences from the Oxford Dataset. Performance is reported as translational drift (%) / rotational drift (deg/1000m) using the common

KITTI odometry metric. This table is restricted to algorithms that have been tested on similar sequences. Cen RO, Kung RO, and MC-RANSAC are
hand-crafted algorithms. Masking by Moving, Under the Radar, and HERO are all learning-based algorithms. HERO is currently the only unsupervised

learning-based radar odometry approach. *Tested on all 32 sequences. **Uses dense correlation between scans.

Method Evaluation Sequences Mean
10-14-02 11-12-26 11-14-02 14-12-05 15-13-06 16-11-53 17-11-46

Cen RO [15] [9] N/A N/A N/A N/A N/A N/A N/A 3.72/9.5
Kung RO* [34] [34] N/A N/A N/A N/A N/A N/A N/A 1.96/6.0
Masking by Moving** [11] [11] N/A N/A N/A N/A N/A N/A N/A 1.16/3.0
Under the Radar [9] [9] N/A N/A N/A N/A N/A N/A N/A 2.05/6.7
MC-RANSAC [14] Ours 3.43/11.2 3.72/12.9 3.27/10.9 3.41/10.7 3.07/9.8 3.12/9.9 3.21/11.0 3.31/10.9
HERO (Ours) Ours 1.86/5.9 1.85/6.2 1.93/6.5 1.96/6.8 1.80/6.1 2.43/7.1 2.08/7.1 1.99/6.5

(a) 11-12-26 (b) 11-14-02 (c) 14-12-05

(d) 15-13-06 (e) 16-11-53 (f) 17-11-46
Fig. 8. These results illustrate the performance of HERO during each of the test sequences. See Figure 5 for HERO’s performance on 10-14-02.

TABLE V
An evaluation on 8 sequences from the Oxford Dataset. This experiment required a new train/validation/test split. 16-13-42 was used for validation.

Performance is reported as translational drift (%) / rotational drift (deg/100m) using the common KITTI odometry metric. *Uses loop closures.

Method Evaluation Sequences Mean
10-11-46 10-12-32 16-11-53 16-13-09 17-13-26 18-14-14 18-14-46 18-15-20

Hong RO [27] [27] 2.16/0.6 2.32/0.7 2.49/0.7 2.62/0.7 2.27/0.6 2.29/0.7 2.12/0.6 2.25/0.7 2.32/0.7
Hong SLAM* [27] [27] 1.96/0.7 1.98/0.6 1.81/0.6 1.48/0.5 1.71/0.5 2.22/0.7 1.68/0.5 1.77/0.6 1.83/0.6
CFEAR [2] [2] 1.65/0.48 1.64/0.48 1.99/0.53 1.86/0.52 1.66/0.48 1.71/0.49 1.79/0.5 1.75/0.51 1.76/0.50
HERO (Ours) Ours 2.14/0.71 1.77/0.62 2.01/0.61 1.75/0.59 2.04/0.73 1.83/0.61 1.97/0.65 2.20/0.77 1.96/0.66
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