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Abstract— We present an extensive comparison between three
topometric localization systems: radar-only, lidar-only, and
a cross-modal radar-to-lidar system across varying seasonal
and weather conditions using the Boreas dataset. Contrary to
our expectations, our experiments showed that our lidar-only
pipeline achieved the best localization accuracy even during
a snowstorm. Our results seem to suggest that the sensitivity
of lidar localization to moderate precipitation has been ex-
aggerated in prior works. However, our radar-only pipeline
was able to achieve competitive accuracy with a much smaller
map. Furthermore, radar localization and radar sensors still
have room to improve and may yet prove valuable in extreme
weather or as a redundant backup system. Code for this project
can be found at: https://github.com/utiasASRL/vtr3

I. INTRODUCTION

Many autonomous driving companies leverage detailed
semantic maps to drive safely. These maps may include the
locations of lanes, pedestrian crossings, traffic lights, and
more. In this case, the vehicle no longer has to detect each
of these features from scratch in real-time. Instead, given
the vehicle’s current position, the semantic map can be used
as a prior to simplify the perception task. However, it then
becomes critical to know the pose of the robot within the
map with sufficient accuracy and reliability.

Dense lidar maps can be built using offline batch optimiza-
tion while incorporating IMU measurements for improved
local alignment and GPS for improved global alignment [1].
Highly accurate localization can be subsequently performed
by aligning a live lidar scan with a pre-built map with
reasonable robustness to weather conditions [2], [3]. Vision-
based mapping and localization is an alternative that can be
advantageous in the absence of environment geometry. How-
ever, robustness to large appearance change (e.g., lighting) is
a difficult and on-going research problem [4]. Radar-based
systems present another compelling alternative.

Models of atmospheric attenuation show that radar can
operate under certain adverse weather conditions where
lidar cannot [5], [6]. These conditions may include heavy
rain (>25mm/hr), dense fog (>0.1g/m3), or a dust cloud
(>10g/m3). Existing literature does not describe the op-
erational envelope of current lidar or radar sensors for
the task of localization. Prior works have assumed that
lidar localization is susceptible to moderate rain or snow
necessitating the use of radar. In this paper, we attempt to
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Fig. 1. Our platform, Boreas, includes a Velodyne Alpha-Prime (128-
beam) lidar, a FLIR Blackfly S camera, a Navtech CIR304-H radar, and an
Applanix POS LV GNSS-INS.

shed some light on this topic by comparing the performance
of three topometric localization systems: radar-only, lidar-
only, and a cross-modal radar-to-lidar system. We compare
these systems across varying seasonal and weather conditions
using our own publicly available dataset collected using
the vehicle shown in Figure 1 [7]. Such a comparison of
topometric localization methods has not been shown in the
literature before and forms our primary contribution.

II. RELATED WORK

Automotive radar sensors now offer range and azimuth
resolutions approximately on par with mechanically actuated
radar. It is possible to replace a single 360 degree rotating
radar with several automotive radar panelled around a vehicle
[8]. Each target will then enjoy a relative (Doppler) velocity
measurement, which can be used to estimate ego-motion
[9]. However, recent work [10], [11] seems to indicate that
the target extraction algorithms built into automotive radar
may not necessarily be optimal for mapping and localization.
Thus, sensors that expose the underlying signal data offer
greater flexibility since the feature extraction algorithm can
be tuned for the desired application.

Extracting keypoints from radar data and subsequently
performing data association has proven to be challenging.
The first works to perform radar-based localization relied on
highly reflective objects installed within a demonstration area
[12] [13]. These reflective objects were thus easy to discrim-
inate from background noise. Traditional radar filtering tech-
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niques such as Constant False Alarm Rate (CFAR) [14] have
proven to be difficult to tune for radar-based localization.
Setting the threshold too high results in insufficient features,
which can cause localization to fail. Setting the threshold
too low results in a noisy radar pointcloud and a registration
process that is susceptible to local minima.

Several promising methods have been proposed to improve
radar-based localization. Jose and Adams [15] demonstrated
a feature detector that estimates the probability of target
presence while augmenting their Simultaneous Localization
and Mapping (SLAM) formulation to include radar cross
section as an additional discriminating feature. Chandran
and Newman [16] maximized an estimate of map quality
to recover both the vehicle motion and radar map. Rou-
veure et al. [17] and Checchin et al. [18] eschewed sparse
feature extraction entirely by matching dense radar scans
using 3D cross-correlation and the Fourier-Mellin transform.
Callmer et al. [19] demonstrated large-scale radar SLAM
by leveraging vision-based feature descriptors. Mullane et
al. [20] proposed to use a random-finite-set formulation of
SLAM in situations of high clutter and data association
ambiguity. Vivet et al. [21] and Kellner et al. [9] proposed to
use relative Doppler velocity measurements to estimate the
instantaneous motion. Schuster et al. [22] demonstrated a
landmark-based radar SLAM that uses their Binary Annular
Statistics Descriptor to match keypoints. Rapp et al. [23]
used Normalized Distributions Transform (NDT) to perform
probabilistic ego-motion estimation with radar.

Cen and Newman [24] demonstrated low-drift radar odom-
etry over a large distance that inspired a resurgence of
research into radar-based localization. Several datasets have
been created to accelerate research in this area including
the Oxford Radar RobotCar dataset [25], MulRan [26], and
RADIATE [27]. We have recently released our own dataset,
the Boreas dataset1, which includes over 350km of data
collected on a repeated route over the course of 1 year.

More recent work in radar-based localization has fo-
cused on either improving aspects of radar odometry [10],
[28]–[37], developing better SLAM pipelines [38]–[40],
or performing place recognition [41]–[43]. Barnes et al.
[31] trained an end-to-end correlation-based radar odometry
pipeline. Barnes and Posner [32] demonstrated radar odom-
etry using deep learned features and a differentiable singular
value decomposition (SVD)-based estimator. In [34], we
quantified the importance of motion distortion in radar odom-
etry and showed that Doppler effects should be removed
during mapping and localization. Subsequently, in [35], we
demonstrated unsupervised radar odometry, which combined
a learned front-end with a classic probabilistic back-end.

Alhashimi et al. [37] present the current state of the art
in radar odometry. Their method builds on prior work by
Adolfsson et al. [36] by using a feature extraction algorithm
called Bounded False Alarm Rate (BFAR) to add a constant
offset b to the usual CFAR threshold: T = a · Z + b.

1https://www.boreas.utias.utoronto.ca/
3https://youtu.be/Cay6rSzeo1E/

Fig. 2. The 8km Glen Shields route3 in Toronto. The yellow stars
correspond to UTIAS, Dufferin, and Glen Shields (left to right) as in
Figure 5.

The resulting radar pointclouds are registered to a sliding
window of keyframes using an Iterative Closest Point (ICP)-
like optimizer while accounting for motion distortion.

Other related work has focused on localizing radar scans
to satellite imagery [44]–[46], or to pre-built lidar maps [47],
[48]. Localizing live radar scans to existing lidar maps built
in ideal conditions is a desirable option as we still benefit
from the robustness of radar without incurring the expense of
building brand new maps. However, the global localization
errors reported in these works are in the range of 1m or
greater. We demonstrate that we can successfully localize live
radar scans to a pre-built lidar map with a relative localization
error of around 0.1m.

In this work, we implement topometric localization that
follows the Teach and Repeat paradigm [49], [50] without
using GPS or IMU measurements. Hong et al. [40] recently
compared the performance of their radar SLAM to SuMa,
surfel-based lidar SLAM [3]. On the Oxford RobotCar
dataset [25], they show that SuMa outperforms their radar
SLAM. However, in their experiments, SuMa often fails
partway through a route. Our interpretation is that SuMa
losing track is more likely due to an implementation detail
inherent to SuMa itself rather than a shortcoming of all
lidar-based SLAM systems. It should be noted that Hong
et al. did not tune SuMa beyond the original implementation
which was tested on a different dataset. In addition, Hong
et al. tested SuMa using 32-beam lidar whereas the original
implementation used a 64-beam lidar. Furthermore, Hong et
al. only provide a qualitative comparison between their radar
SLAM and SuMA in rain, fog, and snow whereas our work
provides a quantitative comparison across varying weather
conditions. In some of the qualitative results they presented,
it is unclear whether SuMa failed due to adverse weather or
due to geometric degeneracy in the environment which is a
separate problem. Importantly, our results seem to conflict
with theirs by showing that lidar localization can operate
successfully in even moderate to heavy snowfall. Although,
it is possible that topometric localization is more robust to
adverse weather since it uses both odometry and localization
to a pre-built map constructed in nominal weather.
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III. METHODOLOGY
A. Lidar/Radar Teach and Repeat Overview

Teach and Repeat is an autonomous route following frame-
work that manually teaches a robot a network of traversable
paths [49], [51], [52]. A key enabling idea is the construction
of a topometric map [53] of the taught paths, represented
as a pose graph in Figure 3. In the teach pass, a sequence
of sensor data (i.e., lidar or radar) from a driven route is
processed into local submaps stored along the path (vertices),
and are connected together by relative pose estimates (edges).
In the repeat pass, a new sequence of sensor data following
the same route is processed into a new branch of the
pose graph while simultaneously being localized against the
vertices of the previous sequence to account for odometric
drift. By localizing against local submaps along the taught
paths, the robot can accurately localize and route-follow
without the need for an accurate global reconstruction. In
this paper, we focus on the estimation pipeline of Teach and
Repeat (Figure 4). We divide the pipeline into: Preprocess-
ing, Odometry and Mapping, and Localization

1) Preprocessing: This module performs feature extrac-
tion and filtering on raw sensor data, which in our work
is from either lidar or radar sensors. More sensor-specific
information is provided in III-B.

2) Odometry and Mapping: During both teach and repeat
passes, this module estimates the transformation between the
submap of the latest (local) vertex frame, Fk, and the latest
live sensor scan at the current moving robot frame, Fr (i.e.,
T̂rk in Figure 3(a)). If the translation or rotation of T̂rk

exceeds a predefined threshold (10m / 30 degrees), we add a
new vertex Fk+1 connected with a new edge Tk+1,k = T̂rk.
Each edge consists of both the mean relative pose and its
covariance (uncertainty) estimate. The new submap stored at
Fk+1 is an accumulation of the last n = 3 processed sensor
scans. All submaps are motion compensated and stored in
their respective (local) vertex frame. The live scan is also
motion compensated and sent as input to the Localization
module. We present the details of our motion-compensated
odometry algorithm, Continuous-Time Iterative Closest Point
(CT-ICP), in Section III-C.

3) Localization: During the repeat pass, this module
localizes the motion-compensated live scan of the robot
frame, Fr, against the submap of the spatially closest vertex
frame, Fm, of the previous sequence (i.e., T̂rm as shown
in Figure 3(b)). Vertex frame Fm is chosen by leveraging
our latest odometry estimate and traversing through the pose
graph edges. Given the pose graph in Figure 3(b), the initial
estimate to Fm is

Ťrm = TrkTkk′Tk′m′Tm′m. (1)

We localize using ICP with Ťrm as a prior, resulting in
T̂rm. If ICP alignment is successful, we add a new edge
between the vertex of Fm and the latest vertex of the current
sequence, Fk, by compounding the mean localization result
with the latest odometry result,

T̂km = T̂−1
rk T̂rm, (2)

Fk=0 Fk Fr
... ...

T̂rk

(a) Teach Pass

Fk=0 Fk′ Fk Fr
... ...

Fm=0 Fm′ Fm
... ...

T̂rk

T̂rmŤrm

(b) Repeat Pass

Fig. 3. The structure of the pose graph during (a) the teach pass and
(b) the repeat pass. Fr is the moving robot frame and others are vertex
frames. We use subscript k for vertex frames from the current pass (teach
or repeat) and m for vertex frames from the reference pass (always teach).
During both teach and repeat passes, we estimate the transformation from
the latest vertex frame Fk to the robot frame Fr , T̂rk , using odometry.
For repeat passes only, we define Fk′ to be the latest vertex frame that has
been successfully localized to the reference pass, Fm′ the corresponding
map vertex of Fk′ , and Fm the spatially closest map vertex to Fr . A
prior estimate of the transform from Fm to Fr , Ťrm, is generated by
compounding transformations through Fm′ , Fk′ , and Fk , which is then
used to compute the posterior T̂rm.

as well as their covariances. We present the details of the
ICP optimization in Section III-D.

B. Raw Data Preprocessing

1) Lidar: For each incoming lidar scan, we first perform
voxel downsampling with voxel size dl = 0.3m. Only one
point that is closest to the voxel center is kept. Next, we
extract plane features from the downsampled pointcloud by
applying Principle Component Analysis (PCA) to each point
and its neighbors from the raw scan. We define a feature
score from PCA to be

s = 1− λmin/λmax, (3)

where λmin and λmax are the minimum and maximum eigen-
values, respectively. The downsampled pointcloud is then
filtered by this score, keeping no more than 20,000 points
with scores above 0.95. We associate each point with its
eigenvector of λmin from PCA as the underlying normal.

2) Radar: For each radar scan, we first extract point
targets from each azimuth using the Bounded False Alarm
Rate (BFAR) detector as described in [37]. BFAR adds a con-
stant offset b to the usual Cell-Averaging CFAR threshold:
T = a ·Z+b. We use the same (a, b) parameters as [37]. For
each azimuth, we also perform peak detection by calculating
the centroid of contiguous groups of detections as is done
in [24]. We obtained a modest performance improvement by
retaining the maximum of the left and right sub-windows
relative to the cell under test as in (greatest-of) GO-CFAR
[14]. These polar targets are then transformed into Cartesian
coordinates and are passed to the Odometry and Mapping
module without further filtering.
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Fig. 4. The data processing pipeline of our Teach and Repeat implementation, divided into three modules: Preprocessing, Odometry and Mapping, and
Localization. See III-A for a detailed description of each module.

C. Continuous-Time ICP

Our odometry algorithm, CT-ICP, combines the iterative
data association of ICP with a continuous-time trajectory
represented as exactly sparse Gaussian Process regression
[54]. Our trajectory is x(t) = {T(t),ϖ(t)}, where T(t) ∈
SE(3) is our robot pose and ϖ(t) ∈ R6 is the body-
centric velocity. Following Anderson and Barfoot [54], our
GP motion prior is

Ṫ(t) = ϖ(t)∧T(t),

ϖ̇ = w(t), w(t) ∼ GP(0,Qcδ(t− τ)),
(4)

where w(t) ∈ R6 is a zero-mean, white-noise Gaussian
process, and the operator, ∧, transforms an element of R6

into a member of Lie algebra, se(3) [55].
The prior (4) is applied in a piecewise fashion between

an underlying discrete trajectory of pose-velocity state pairs,
xi = {Ti,ϖi}, that each correspond to the representative
timestamp of the ith sensor scan. Each pose, Ti, is the
relative transform from the latest vertex, Fk, to the robot
frame, Fr, that corresponds to the ith sensor scan (i.e., Trk).
Likewise, ϖi is the corresponding body-centric velocity. We
seek to align the latest sensor scan i to the latest vertex
submap in frame Fk (see Figure 3).

We define a nonlinear optimization for the latest state xi,
locking all previous states. The cost function is

Jodom = ϕmotion +

M∑
j=1

(
1

2
eTodom,jR

−1
j eodom,j

)
︸ ︷︷ ︸

measurements

. (5)

In the interest of space, we refer readers to Anderson and
Barfoot [54] for the squared-error cost expression of the
motion prior, ϕmotion. Each measurement error term is

eodom,j = D
(
pj
k −T(tj)

−1Trsqj

)
, (6)

where qj is a homogeneous point with corresponding times-
tamp tj from the ith sensor scan, Trs is the extrinsic
calibration from the sensor frame Fs to the robot frame Fr,
T(tj) is a pose from our trajectory queried at tj4, pj

k is a
homogeneous point from the kth submap associated to qj

4Through interpolation, T(tj) depends on the state variables xi =
{Ti,ϖi} and xi−1 = {Ti−1,ϖi−1} since tj > ti−1 [54].

and expressed in Fk, and D is a constant projection that
removes the 4th homogeneous element. We define R−1

j as
either a constant diagonal matrix for radar data (point-to-
point) or by using the outer product of the corresponding
surface normal estimate for lidar data (point-to-plane).

We optimize for xi = {Ti,ϖi} iteratively using Gauss-
Newton, but with nearest-neighbours data association af-
ter every Gauss-Newton iteration. CT-ICP is therefore per-
formed with the following steps:

1) Temporarily transform all points qj to frame Fk using
the latest trajectory estimate (motion undistortion).

2) Associate each point to its nearest neighbour in the
map to identify its corresponding map point pjk in Fk.

3) Formulate the cost function J in (5) and perform a
single Gauss-Newton iteration to update Ti and ϖi.

4) Repeat steps 1 to 3 until convergence.
The output of CT-ICP at the timestamp of the latest sensor
scan is then the odometry output T̂r,k.

D. Localization ICP
We use ICP to localize the motion-compensated live

scan of the robot frame, Fr, against the submap of the
spatially closest vertex frame, Fm, of the previous sequence.
The resulting relative transformation is T̂rm, as shown in
Figure 3(b). The nonlinear cost function is

Jloc = ϕpose +
M∑
j=1

(
1

2
eTloc,jR

−1
j eloc,j

)
, (7)

where we use Ťrm from (1) as an initial guess and a prior:

ϕpose =
1

2
ln(ŤrmT−1

rm)∨
T
Q−1

rm ln(ŤrmT−1
rm)∨, (8)

where ln (·) is the logarithm map and the operator ∨ is the
inverse of ∧ [55]. The covariance Qrm can be computed
by compounding the edge covariances corresponding to the
relative transformations in (1). Since all pointclouds are
already motion-compensated, the measurement error term is
simply

eloc,j = D
(
pj
m −T−1

rmTrsqj

)
, (9)

where qj is a homogeneous point from the motion-
compensated live scan, and pj

m is the nearest neighbour
submap point to qj . See Section III-C for how we define
Trs, D, and R−1

j .
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Fig. 5. Our test sequences were collected by driving a repeated route over the source of one year. In our experiments, we use 2020-11-26 as our reference
sequence for building maps. The remaining six sequences, which include sequences with rain and snow, are used to benchmark localization performance,
which amounts to 48km of test driving. These camera images are provided for context.
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Fig. 6. These histograms show the spread of the localization error for lidar-
to-lidar, radar-to-radar, and radar-to-lidar, during the snowstorm sequence
2021-01-26.

E. Doppler-Compensated ICP

In our prior work [34], we showed that current Navtech
radar sensors are susceptible to Doppler distortion and that
this effect becomes significant during mapping and local-
ization. A relative velocity between the sensor and the
surrounding environment causes the received frequency to
be altered according to the Doppler effect. If the velocity in
the sensor frame is known, this effect can be compensated
for using a simple additive correction factor ∆qj . In this
work, we include this correction factor, which depends on a
continuous-time interpolation of the estimated body-centric
velocity ϖ(t) at the measurement time of each target tj , in
the measurement error term for radar CT-ICP:

0 200 400 600 800 1000 1200

−0.5

0.0

0.5

L
id

ar
-t

o-
L

id
ar

0 200 400 600 800 1000 1200

−0.5

0.0

0.5

R
ad

ar
-t

o-
R

ad
ar

0 200 400 600 800 1000 1200
Time (s)

−0.5

0.0

0.5

R
ad

ar
-t

o-
L

id
ar

Lateral Error (m) Longitudinal Error (m)

Fig. 7. Here we plot metric localization errors during the snowstorm
sequence 2021-01-26. Note that the lidar localization estimates remain
accurate even with 1/4 of its field of view being blocked by a layer of
ice as shown in Figure 9.

eodom,j = D
(
pj
k −T(tj)

−1Trs(qj +∆qj)
)

(10)

where ∆qj = DTβaja
T
j Dq⊙

j Ad(Tsr)ϖ(tj), (11)

β is Doppler distortion constant inherent to the sensor [34],
and aj is a 3 × 1 unit vector in the direction of qj . The
⊙ operator allows one to swap the order of the operands
associated with the ∧ operator [55]. Ad(·) represents the
adjoint of an element of SE(3) [55].

IV. EXPERIMENTAL RESULTS

In this section, we compare the performance of radar-
only, lidar-only, and radar-to-lidar topometric localization.
Our experimental platform, depicted in Figure 1, includes
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Fig. 8. This figure shows the live radar pointcloud (blue) registered to a
submap (red) built during the teach pass. In (a) we are performing radar-to-
radar localization and so the submap is made up of radar points. In (b) we
are localizing a radar pointcloud (blue) to a previously built lidar submap.

a 128-beam Velodyne Alpha-Prime lidar, a FLIR Blakfly
S monocular camera, a Navtech radar, and an Applanix
POS LV GNSS-INS. Our lidar has a 40◦ vertical field of
view, 0.1◦ vertical angular resolution, 0.2◦ horizontal angular
resolution, and produces roughly 220k points per revolution
at 10Hz up to 300m. The Navtech is a frequency modulated
continuous wave (FMCW) radar with a 0.9◦ horizontal angu-
lar resolution and 5.96cm range resolution, which provides
measurements up to 200m at 4Hz. The test sequences used in
this paper are part of our new Boreas dataset, which contains
over 350km of driving data collected by driving a repeated
route over the course of one year [7]. Ground truth poses are
obtained by post-processing GNSS, IMU, and wheel encoder
measurements. An RTX subscription was used to achieve
cm-level accuracy without a base station. RTX uses data from
a global network of tracking stations to calculate corrections.
The residual error of the post-processed poses reported by
Applanix is typically 2-4cm in nominal conditions.

In this experiment, we used seven sequences of the Glen
Shields route (shown in Figure 2) chosen for their distinct
weather conditions.. These sequences are depicted in Fig-
ure 5. During the teach pass, a map is constructed using the
reference sequence 2020-11-26. The radar-only and lidar-
only pipelines use their respective sensor types to construct

snow

(a) Lidar with snow detections

(b) Lidar with outliers removed

Fig. 9. This figure illustrates the noisy lidar data that was used to localize
during the 2021-01-26 sequence. Points are colored by their z-height. In (a)
the ground plane has been removed and the pointcloud has been randomly
downsampled by 50% to highlight the snowflake detections. Note that a
large forward section of the lidar’s field of view is blocked by a layer of
ice. However, as the results in Table I and Figure 7 show, lidar localization
remains quite robust under these adverse conditions. (b) shows the lidar
pointcloud after filtering points by their normal score as in Equation 3 and
only retaining the inliers of truncated least squares. Note that the snowflake
detections seem to disappear, illustrating the robustness of our lidar pipeline.

the map. No GPS or IMU information is required during the
map-building process. Note that our test sequences include
a significant amount of seasonal variation with ten months
separating the initial teach pass and the final repeat pass.
Sequences 2021-06-29 and 2021-09-08 include trees with
full foliage while the remaining sequences lack this. 2021-
01-26 was collected during a snowstorm, 2021-06-29 was
collected in the rain, and 2021-09-08 was collected at night.

During each of the repeat traversals, our topometric lo-
calization outputs a relative localization estimate between
the live sensor frame s2 and a sensor frame in the map s1:
T̂s1,s2 . We then compute root mean squared error (RMSE)
values for the relative translation and rotation error as in [7].
We separate translational error into lateral and longitudinal
components. Since the Navtech radar is a 2D sensor, we
restrict our comparison to SE(2) by omitting z errors and
reporting heading error as the rotation error.

Figure 6 depicts the spread of localization error during
sequence 2021-01-26. Note that, although lidar-to-lidar lo-
calization is the most accurate, radar-to-radar localization
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remains reasonably competitive. When localizing radar scans
to lidar maps, both the longitudinal error and heading error
incur a bias. The longitudinal bias could be due to some
residual Doppler distortion effects, and the heading bias
could be the result of an error in the radar-to-lidar extrinsic
calibration. A video showcasing radar mapping and localiza-
tion can be found at this link5.

Figure 7 shows the localization errors as a function of time
during the snowstorm sequence 2021-01-26. Surprisingly,
lidar localization appears to be unperturbed by the adverse
weather conditions. During the snowstorm sequence, the
lidar pointcloud becomes littered with detections associated
with snowflakes and a large section of the horizontal field
of view becomes blocked by a layer of ice as shown in
Figure 9 (a). However, in Figure 9 (b), we show that in
actuality, these snowflake detections have little impact on
ICP registration after filtering by normal score and only
retaining the inliers of truncated least squares. Charron et
al. [56] previously demonstrated that snowflake detections
can be removed from lidar pointclouds, although we do not
use their method here. The robustness of our lidar pipeline
to both weather and seasonal variations is reflected in the
RMSE results displayed in Table I.

Our results show that, contrary to the assertions made
by prior works, lidar localization can be robust to moderate
levels of precipitation and seasonal variation. Clearly, more
work is required by the community to identify operational
conditions where radar localization has a clear advantage.
These conditions may include very heavy precipitation, dense
fog, or dust clouds. Nevertheless, we demonstrated that
our radar localization is reasonably competitive with lidar.
Furthermore, radar localization may still be important as a
redundant backup system in autonomous vehicles. Figure 8
illustrates the live scan and submap during radar-to-radar and
radar-to-lidar localization.

It is important to recognize that the results reported in this
work are taken at a snapshot in time. Radar localization is
not as mature of a field as lidar localization and radar sensors
themselves still have room to improve. Note that incorporat-
ing IMU or wheel encoder measurements would improve the
performance of all three compared systems. The detector we
used, BFAR [37], did not immediately work when applied
to a new radar with different noise characteristics. It is
possible that a learning-based approach to feature extraction
and matching may improve performance. Switching to a
landmark-based pipeline or one based on image correlation
may also be interesting avenues for comparison.

Radar-to-lidar localization is attractive because it allows
us to use existing lidar maps, which many autonomous
driving companies already have, while taking advantage of
the robustness of radar sensing. Radar-based maps are not
as useful as lidar maps since they lack sufficient detail to be
used to create semantic maps.

In Table II, we show the computational and storage
requirements of the different pipelines discussed in this work.

5https://youtu.be/okS7pF6xX7A

TABLE I
METRIC LOCALIZATION RMSE RESULTS

REFERENCE SEQUENCE: 2020-11-26

Lidar-to-Lidar
lateral (m) longitudinal (m) heading (deg)

2020-12-04 0.057 0.082 0.025
2021-01-26 0.047 0.034 0.034
2021-02-09 0.044 0.037 0.029
2021-03-09 0.049 0.040 0.022
2021-06-29 0.052 0.058 0.042
2021-09-08 0.060 0.041 0.030

mean 0.052 0.049 0.030
Radar-to-Radar

lateral (m) longitudinal (m) heading (deg)
2020-12-04 0.130 0.127 0.223
2021-01-26 0.118 0.098 0.201
2021-02-09 0.111 0.089 0.203
2021-03-09 0.129 0.093 0.213
2021-06-29 0.163 0.155 0.241
2021-09-08 0.155 0.148 0.231

mean 0.134 0.118 0.219
Radar-to-Lidar

lateral (m) longitudinal (m) heading (deg)
2020-12-04 0.132 0.179 0.384
2021-01-26 0.130 0.153 0.360
2021-02-09 0.126 0.152 0.389
2021-03-09 0.140 0.152 0.360
2021-06-29 0.159 0.161 0.415
2021-09-08 0.169 0.165 0.401

mean 0.143 0.161 0.385

TABLE II
COMPUTATIONAL AND STORAGE REQUIREMENTS

Odom.
(FPS)

Loc.
(FPS)

Storage
(MB/km)

Lidar-to-Lidar 3.6 3.0 86.4
Radar-to-Radar 5.3 5.1 5.6
Radar-to-Lidar N/A 5.1 86.4

We used a Lenovo P53 laptop with Intel(R) Core(TM) i7-
9750H CPU @ 2.60GHz and 32GB of memory. A GPU was
not used. Our radar-based maps use significantly less storage
(5.6MB/km) than our lidar-based maps (86.4MB/km).

V. CONCLUSIONS
In this work, we compared the performance of lidar-to-

lidar, radar-to-radar, and radar-to-lidar topometric localiza-
tion. Our results showed that radar-based pipelines are a
viable alternative to lidar localization but lidar continues to
yield the best results. Surprisingly, our experiments showed
that lidar-only mapping and localization is quite robust to
adverse weather such as a snowstorm with a partial sensor
blockage due to ice. We identified several areas for future
work and noted that more experiments are needed to identify
conditions where the performance of radar-based pipelines
exceeds that of lidar.
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