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Do We Need to Compensate for Motion Distortion
and Doppler Effects in Spinning Radar Navigation?

Keenan Burnett , Angela P. Schoellig , and Timothy D. Barfoot

Abstract—In order to tackle the challenge of unfavorable
weather conditions such as rain and snow, radar is being revisited
as a parallel sensing modality to vision and lidar. Recent works
have made tremendous progress in applying spinning radar to
odometry and place recognition. However, these works have so far
ignored the impact of motion distortion and Doppler effects on
spinning-radar-based navigation, which may be significant in the
self-driving car domain where speeds can be high. In this work,
we demonstrate the effect of these distortions on radar odometry
using the Oxford Radar RobotCar Dataset and metric localiza-
tion using our own data-taking platform. We revisit a lightweight
estimator that can recover the motion between a pair of radar
scans while accounting for both effects. Our conclusion is that
both motion distortion and the Doppler effect are significant in
different aspects of spinning radar navigation, with the former
more prominent than the latter. Code for this project can be found
at: https://github.com/keenan-burnett/yeti_radar_odometry

Index Terms—Localization, range sensing, intelligent
transportation systems.

I. INTRODUCTION

A S RESEARCHERS continue to advance the capabilities of
autonomous vehicles, attention has begun to shift towards

inclement weather conditions. Currently, most autonomous ve-
hicles rely primarily cameras and lidar for perception and lo-
calization. Although these sensors have been shown to achieve
sufficient performance under nominal conditions, rain and snow
remain an open problem. Radar sensors, such as the one pro-
duced by Navtech [1], may provide a solution.

Due to its longer wavelength, radar is robust to small particles
such as dust, fog, rain, or snow, which can negatively impact
cameras and lidar sensors. Furthermore, radar sensors tend to
have a longer detection range and can penetrate through some
materials allowing them to see beyond the line of sight of lidar.
These features make radar particularly well-suited for inclement
weather. However, radar sensors have coarser spatial resolution
than lidar and suffer from a higher noise floor making them
challenging to work with.
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Fig. 1. Our data-taking platform, Boreas, which includes a Velodyne Alpha-
Prime (128-beam) lidar, Navtech CIR204-H radar, FLIR Blackfly S monocular
camera, and Applanix POSLV GNSS.

Recent works have made tremendous progress in
applying the Navtech radar to odometry [2]–[7] and place
recognition [8]–[10]. However, all of these works make the
simplifying assumption that a radar scan is collected at a
single instant in time. In reality, the sensor is rotating while the
vehicle is moving causing the radar scan to be distorted in a
cork-screw fashion. Range measurements of the Navtech radar
are also impacted by Doppler frequency shifts resulting from
the relative velocity between the sensor and its surroundings.
Both distortion effects become more pronounced as the speed
of the ego-vehicle increases. Most automotive radar sensors are
not impacted by either distortion effect. However, the Navtech
provides 360◦ coverage with accurate range and azimuth
resolution, making it an appealing navigation sensor.

In this paper, we demonstrate the effect that motion distortion
can have on radar-based navigation. We also revisit a lightweight
estimator, Motion-Compensated RANSAC [11], which can re-
cover the motion between a pair of scans and remove the
distortion. The Doppler effect was briefly acknowledged in [2]
but our work is the first to demonstrate the impact on radar-based
navigation and to provide a method for its compensation.

As our primary experiment to demonstrate the effects of
motion distortion, we perform radar odometry on the Oxford
Radar RobotCar Dataset [12]. As an additional experiment, we
perform metric localization using our own data-taking platform,
shown in Fig. 1. Qualitative results of both distortion effects
are also provided. Rather than focusing on achieving state-of-
the-art navigation results, the goal of this paper is to show that
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motion distortion and Doppler effects are significant and can be
compensated for with relative ease.

The rest of this paper is organized as follows: Section II
discusses related work, III provides our methodology to match
two radar scans while compensating for motion distortion and
the Doppler effect, IV has experiments, and V concludes.

II. RELATED WORK

Self-driving vehicles designed to operate in ideal conditions
often relegate radar to a role as a secondary sensor as part of an
emergency braking system [13]. However, recent advances in
Frequency Modulated Continuous Wave (FMCW) radar indicate
that it is a promising sensor for navigation and other tasks
typically reserved for vision and lidar. Jose and Adams [14]
[15] were the first to research the application of spinning radar
to outdoor SLAM. In [16], Checchin et al. present one of the
first mapping and localization systems designed for a FMCW
scanning radar. Their approach finds the transformation between
pairs of scans using the Fourier Mellin transform. Vivet et al. [17]
were the first to address the motion distortion problem for
scanning radar. Our approach to motion distortion is simpler and
we offer a more up-to-date analysis on a dataset that is relevant
to current research. In [18], Kellner et al. present a method
that estimates the linear and angular velocity of the ego-vehicle
when the Doppler velocity of each target is known. The use of
single-chip FMCW radar has recently become a salient area of
research for robust indoor positioning systems under conditions
unfavorable to vision [19], [20].

In [2], Cen et al. present their seminal work that has rekindled
interest in applying FCMW radar to navigation. Their work
presented a new method to extract stable keypoints and perform
scan matching using graph matching. Further research in this
area has been spurred by the introduction of the Oxford Radar
RobotCar Dataset [12], which includes lidar, vision, and radar
data from a Navtech radar. Other radar-focused datasets include
the MulRan place recognition dataset [10] and the RADIATE
object detection dataset [21].

Odometry has recently been a central focus of radar-based
navigation research. Components of an odometry pipeline can
be repurposed for mapping and localization, which is an ultimate
goal of this research. In [3], Cen et al. present an update to
their radar odometry pipeline with improved keypoint detec-
tion, descriptors, and a new graph matching strategy. Aldera
et al. [4] train a focus of attention policy to downsample the
measurements given to data association, thus speeding up the
odometry pipeline. In [6], Barnes and Posner present a deep-
learning-based keypoint detector and descriptor that are learned
directly from radar data using differentiable point matching
and pose estimation. In [22], Hong et al. demonstrate the first
radar-SLAM pipeline capable of handling extreme weather.

Other approaches forego the feature extraction process and
instead use the entire radar scan for correlative scan matching.
Park et al. [7] use the Fourier Mellin Transform on Cartesian
and log-polar radar images to sequentially estimate rotation and
translation. In [5], Barnes et al. present a fully differentiable,
correlation-based radar odometry approach. In their system, a
binary mask is learned such that unwanted distractor features

are ignored by the scan matching. This approach currently
represents the state of the art for radar odometry performance.

Still others focus on topological localization that can be used
by downstream metric mapping and localization systems to
identify loop closures. Săftescu et al. [8] learn a metric space
embedding for radar scans using a convolutional neural network.
Nearest-neighbour matching is then used to recognize locations
at test time. Gadd et al. [9] improve this place recognition
performance by integrating a rotationally invariant metric space
embedding into a sequence-based trajectory matching system
previously applied to vision. In [23], Tang et al. focus on
localization between a radar on the ground and overhead satellite
imagery.

Other recent works using a spinning radar include the work
by Weston et al. [24] that learns to generate occupancy grids
from raw radar scans by using lidar data as ground truth. Kaul
et al. [25] train a semantic segmentation model for radar data
using labels derived from lidar- and vision-based semantic seg-
mentation.

Motion distortion has been treated in the literature through the
use of continuous-time trajectory estimation [11], [26]–[29] for
lidars [30] and rolling-shutter cameras [31], but these tools are
yet to be applied to spinning radar. TEASER [32] demonstrates
a robust registration algorithm with optimality guarantees. How-
ever, it assumes that pointclouds are collected at single instances
in time. Thus, TEASER is impacted by motion distortion in the
same manner as rigid RANSAC.

Our work focuses on the problem of motion distortion and
Doppler effects using the Navtech radar sensor which has not
received attention from these prior works. Ideally, our findings
will inform future research in this area looking to advance the
state of the art in radar-based navigation.

III. METHODOLOGY

Section III-A describes our approach to feature extraction
and data association. In Section III-B, we describe a motion-
compensated estimator and a rigid estimator for comparison.
Section III-C explains how the Doppler effect impacts radar
range measurements and how to compensate for it.

A. Feature Extraction

Feature detection in radar data is more challenging than in
lidar or vision due to its higher noise floor and lower spatial
resolution. Constant False Alarm Rate (CFAR) [33] is a simple
feature detector that is popular for use with radar. CFAR is
designed to estimate the local noise floor and capture relative
peaks in the radar data. One-dimensional CFAR can be applied to
Navtech data by convolving each azimuth with a sliding-window
detector.

As discussed in [2], CFAR is not the best detector for radar-
based navigation. CFAR produces many redundant keypoints,
is difficult to tune, and produces false positives due to the noise
artifacts present in radar. Instead, Cen et al. [2] proposed a
detector that estimates a signal’s noise statistics and then scales
the power at each range by the probability that it is a real
detection. In [3], Cen et al. proposed an alternative detector
that identifies continuous regions of the scan with high intensity
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Fig. 2. This figure illustrates our feature extraction and matching process.
(a) displays our raw extracted features. (b) displays the output of our ORB-
descriptor-based data association. (c) and (d) show the inlier set resulting from
motion-compensated RANSAC while driving straight and rotating.

and low gradients. Keypoints are then extracted by locating
the middle of each continuous region. We will refer to these
detectors as Cen2018 and Cen2019, respectively.

The original formulations of these detectors did not lend
themselves to real-time operation. As such, we made several
modifications to improve the runtime. For Cen2018, we use a
Gaussian filter instead of a binomial filter, and we calculate the
mean of each azimuth instead of using a median filter. We do
not remove multipath reflections.

Cen2019 was designed to be easier to tune and have less
redundant keypoints. However, we found that by adjusting the
probability threshold of detections, Cen2018 obtained better
odometry performance when combined with our RANSAC-
based scan matching. Based on these preliminary tests, we
concluded that Cen2018 was the best choice for our experiments.
Fig. 2(a) shows Cen2018 features plotted on top of a Cartesian
radar image.

We convert the raw radar scans output by the Navtech sensor,
which are in polar form, into Cartesian form. We then calculate
an ORB descriptor [34] for each keypoint on the Cartesian
image. There may be better keypoint descriptors for radar data,
such as the learned feature descriptors employed in [6]. However,
ORB descriptors are quick to implement, rotationally invariant,
and resistant to noise.

For data association, we perform brute-force matching of
ORB descriptors. We then apply a nearest-neighbor distance
ratio test [35] in order to remove false matches. The remaining
matches are sent to our RANSAC-based estimators. Fig. 2(b)

shows the result of the initial data association. Note that there
are several outliers. Fig. 2(c), (d) shows the remaining inliers
after performing RANSAC.

B. Motion Distortion

The output of data association is not perfect and often contains
outliers. As a result, it is common to employ an additional
outlier rejection scheme during estimation. In this paper, we use
RANSAC [36] to find an outlier-free set that can then be used to
estimate the desired transform. If we assume that two radar scans
are taken at times t̄1 and t̄2, then the transformation between
them can be estimated directly using the approach described
in [37].

During each iteration of RANSAC, a random subset of size
S is drawn from the initial matches and a candidate transform is
generated. If the number of inliers exceeds a desired threshold
or a maximum number of iterations is reached, the algorithm
terminates. Radar scans are 2D and as such we use S = 2. The
estimation process is repeated on the largest inlier set to obtain a
more accurate transform. We will refer to this approach as rigid
RANSAC.

Our derivation of motion-compensated RANSAC follows
closely from [11]. However, we are applying the algorithm to a
scanning radar in 2D instead of a two-axis scanning lidar in 3D.
Furthermore, our derivation is shorter and uses updated notation
from [38].

The principal idea behind motion-compensated RANSAC is
to estimate the velocity of the sensor instead of estimating a
transformation. We make the simplifying assumption that the
linear and angular velocity between a pair of scans is constant.
The combined velocity vector � is defined as

� =

[
ν

ω

]
, (1)

where ν and ω are the linear and angular velocity in the sensor
frame. To account for motion distortion, we remove the assump-
tion that radar scans are taken at a single instant in time. Data
association produces two sets of corresponding measurements,
ym,1 and ym,2, where m = 1. . .M . Each pair of features, m, is
extracted from sequential radar frames 1 and 2 at times tm,1 and
tm,2. The temporal difference between a pair of measurements is
Δtm := tm,2 − tm,1. The generative model for measurements
is given as

ym,1 := f(Ts(tm,1)pm) + nm,1,

ym,2 := f(Ts(tm,2)pm) + nm,2, (2)

where f(·) is a nonlinear transformation from Cartesian to
cylindrical coordinates and Ts(t) is a 4 x 4 homogeneous
transformation matrix representing the pose of the sensor frame
F
�
s with respect to the inertial frame F

�
i at time t. pm is the

original landmark location in the inertial frame. We assume
that each measurement is corrupted by zero-mean Gaussian
noise: nm,1 ∼ N (0,Rm,1). The transformation between a pair
of measurements is defined as

Tm := Ts(tm,2)Ts(tm,1)
−1. (3)
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To obtain our objective function, we convert feature locations
from polar coordinates into local Cartesian coordinates:

pm,2 = f−1(ym,2), (4)

pm,1 = f−1(ym,1). (5)

We then use the local transformationTm to create a pseudomea-
surement p̂m,2,

p̂m,2 = Tmpm,1. (6)

The error is then defined in the sensor coordinates and summed
over each pair of measurements to obtain our objective function:

em = pm,2 − p̂m,2, (7)

J(�) :=
1

2

M∑
m=1

eTmR−1
cart,mem. (8)

Here we introduce some notation for dealing with transforma-
tion matrices in SE(3). A transformation T ∈ SE(3) is related
to its associated Lie algebra ξ∧ ∈ se(3) through the exponential
map:

T =

[
C r

0T 1

]
= exp(ξ∧), (9)

where C is 3× 3 a rotation matrix, r is a 3× 1 translation
vector, and (·)∧ is an overloaded operator that converts a vector
of rotation angles φ into a member of so(3) and ξ into a member
of se(3):

φ∧ =

⎡
⎢⎣φ1

φ2

φ3

⎤
⎥⎦
∧

:=

⎡
⎢⎣ 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

⎤
⎥⎦ , (10)

ξ∧ =

[
ρ

φ

]∧
:=

[
φ∧ ρ

0T 1

]
. (11)

Given our constant-velocity assumption, we can convert from
a velocity vector � into a transformation matrix using the
following formula:

T = exp(Δt�∧). (12)

In order to optimize our objective function J(�), we first
need to derive the relationship betweenTm and�. The velocity
vector � can be written as the sum of a nominal velocity � and
a small perturbation δ�. This lets us rewrite the transformation
Tm as the product of a nominal transformation Tm and a small
perturbation δTm:

Tm = exp(Δtm(� + δ�)∧) = δTmTm. (13)

Let gm(�) := Tmpm,1, which is nonlinear due to the trans-
formation. Our goal is to linearize gm(�) about a nominal

Fig. 3. This diagram illustrates the relationship between the ego-motion (v, ω)
and the radial velocity u.

operating point. We can rewrite gm(�) as:

gm(�) = exp(Δtmδ�∧)Tmpm,1,

≈ (1+Δtmδ�∧)Tmpm,1, (14)

where we use an approximation for small pose changes. We
swap the order of operations using the (·)� operator [38]:

gm(�) = Tmpm,1 +Δtm(Tmpm,1)
�δ�

= gm +Gmδ�, (15)

p� =

[
ρ

η

]�
=

[
η1 −ρ∧

0T 0T

]
. (16)

We can now rewrite the error function from (7):

em ≈ pm,2 − gm −Gmδ�

= em −Gmδ�. (17)

By inserting this equation for the error function into the ob-
jective function from (8), and taking the derivative with respect
to the perturbation and setting it to zero, ∂J(�)

∂δ�T = 0, we obtain
the optimal update:

δ�� =

(∑
m

GT
mR−1

cart,mGm

)−1(∑
m

GT
mR−1

cart,mem

)
,

(18)

where Rcart,m = HmRm,2H
T
m is the covariance in the local

Cartesian frame, h(·) = f−1(·), and Hm = ∂h
∂x |gm

. The opti-
mal perturbation δ�� is used in a Gauss-Newton optimization
scheme and the process repeats until � converges.

This method allows us to estimate the linear and angular
velocity between a pair of radar scans directly while accounting
for motion distortion. These velocity estimates can then be used
to remove the motion distortion from a measurement relative
to a reference time using (12). MC-RANSAC is intended to
be a lightweight method for showcasing the effects of motion
distortion. A significant improvement to this pipeline would be to
use the inliers of MC-RANSAC as an input to another estimator,
such as [28]. The inliers could also be used for mapping and
localization or SLAM.

C. Doppler Correction

In order to compensate for Doppler effects, we need to know
the linear velocity of the sensor v. This can either be obtained
from a GPS/IMU or using one of the estimators described above.
As shown in Fig. 3, the motion of the sensor results in an apparent
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Fig. 4. This figure depicts the sawtooth modulation pattern of an FMCW radar.
The transmitted signal is blue and the received signal is red.

relative velocity between the sensor and its surrounding envi-
ronment. This relative velocity causes the received frequency
to be altered according to the Doppler effect. Note that only the
radial component of the velocityu = vx cos(φ) + vy sin(φ)will
result in a Doppler shift. The Radar Handbook by Skolnik [39]
provides an expression for the Doppler frequency:

fd =
2u
λ

, (19)

where λ is the wavelength of the signal. Note that for an object
moving towards the radar (u > 0) or vice versa, the Doppler fre-
quency will be positive resulting in a higher received frequency.
For FMCW radar such as the Navtech sensor, the distance to
a target is determined by measuring the change in frequency
between the received signal and the carrier wave Δf :

r =
cΔf

2(df/dt)
, (20)

where df/dt is the slope of the modulation pattern used by the
carrier wave and c is the speed of light. FMCW radar require
two measurements to disentangle the frequency shift resulting
from range and relative velocity. Since the Navtech sensor scans
each azimuth only once, the measured frequency shift is the
combination of both the range difference and Doppler frequency.
From Fig. 4, we can see that a positive Doppler frequency fd
will result in an increase in the received frequency and in turn
a reduction in the observed frequency difference Δf . Thus, a
positive Doppler frequency will decrease the apparent range of
a target.

The Navtech radar operates between 76 GHz and 77 GHz
resulting in a bandwidth of 1 GHz. Navtech states that they
use a sawtooth modulation pattern. Given 1600 measurements
per second and assuming the entire bandwidth is used for each
measurement, df/dt ≈ 1.6× 1012.

Hence, if the forward velocity of the sensor is 1 m/s, a
target positioned along the x-axis (forward) of the sensor would
experience a Doppler frequency shift of 510 Hz using (19). This
increase in the frequency of the received signal would decrease
the apparent range to the target by 4.8 cm using (20). Naturally,
this effect becomes more pronounced as the velocity increases.

Let β = ft/(df/dt) where ft is the transmission frequency
(ft ≈ 76.5 GHz). In order to correct for the Doppler distortion,
the range of each target needs to be corrected by the following

factor:

Δrcorr = β(vx cos(φ) + vy sin(φ)). (21)

We use this simple correction in all our experiments with the
velocity (vx, vy) coming from our motion estimator.

IV. EXPERIMENTAL RESULTS

In order to answer the question posed by this paper, we have
devised two experiments. The first is to compare the perfor-
mance of rigid RANSAC and MC-RANSAC (with or without
Doppler corrections) on radar odometry using the Oxford Radar
RobotCar Dataset [12]. The second experiment demonstrates
the impact of both distortion effects on localization using our
own data. We also provide qualitative results demonstrating both
distortion effects.

The Navtech radar is a frequency modulated continuous wave
(FMCW) radar. For each azimuth, the sensor outputs the re-
ceived signal power at each range bin. The sensor spins at 4 Hz
and provides 400 measurements per rotation with a 163 m range,
4.32 cm range resolution, 1.8◦ horizontal beamwidth, and 0.9◦

azimuth resolution.
The Oxford Radar RobotCar Dataset is an autonomous driv-

ing dataset that includes two 32-beam lidars, six cameras, a
GPS/IMU, and the Navtech sensor. The dataset includes thirty-
two traversals equating to 280 km of driving in total.

A. Odometry

Our goal is to make a fair comparison between two estimators
where the main difference is the compensation of distortion
effects. To do this, we use the same number of maximum
iterations (100), and the same inlier threshold (0.35 m) for both
rigid RANSAC and MC-RANSAC. We also fix the random seed
before running either estimator to ensure that the differences in
performance are not due to the random selection of subsets.

For feature extraction, we use the same setup parameters
for Cen2018 as in [2] except that we use a higher probability
threshold, zq = 3.0, and a Gaussian filter with σ = 17 range
bins. We convert polar radar scans into a Cartesian image with
0.2592 m per pixel and a width of 964 pixels (250 m). For
ORB descriptors, we use a patch size of 21 pixels (5.4 m).
For data association, we use a nearest-neighbor distance ratio
of 0.8. For Doppler corrections, we use β = 0.049. For each
radar scan, extracting Cen2018 features takes approximately
35 ms. Rigid RANSAC runs in 1-2 ms and MC-RANSAC in
20-50 ms. Calculating orb descriptors takes 5 ms and brute-force
matching takes 15 ms. These processing times were obtained on
a quad-core Intel Xeon E3-1505 M 3.0 GHz CPU with 32 GB
of RAM.

Odometry results are obtained by compounding the frame-to-
frame scan matching results. Note that we do not use a motion
prior or perform additional smoothing on the odometry. Three
sequences were used for parameter tuning. The remaining 29
sequences are used to provide test results.

Table I summarizes the results of the odometry experiment.
We use KITTI-style odometry metrics [40] to quantify the
translational and rotational drift as is done in [6]. The metrics
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TABLE I
RADAR ODOMETRY RESULTS. *ODOMETRY RESULTS FROM [6]

Fig. 5. This figure provides our KITTI-style odometry results on the Oxford
dataset. We provide our translational and rotational drift as a function of path
length and speed. MC-RANSAC: motion-compensated RANSAC, MC+DOPP:
motion and distortion compensated.

are obtained by averaging the translational and rotational drifts
for all subsequences of lengths (100, 200, … , 800) meters.
The table shows that motion-compensated RANSAC results in
a 9.4% reduction in translational drift and a 15.6% reduction
in rotational drift. This shows that compensating for motion
distortion has a modest impact on radar odometry. The table
also indicates that Doppler effects have a negligible impact on
odometry. Our interpretation is that Doppler distortion impacts
sequential radar scans similarly such that scan registration is
minimally impacted.

It should be noted that a large fraction of the Oxford dataset
was collected at low speeds (0–5 m/s). This causes the motion
distortion and Doppler effects to be less noticeable.

Fig. 5 depicts the translational and rotational drift of each
method as a function of path length and speed. It is clear that mo-
tion compensation improves the odometry performance across
most cases. Interestingly, MC-RANSAC does not increase in
error as much as rigid RANSAC as the path length increases.
Naturally, we would expect rigid RANSAC to become much
worse than MC-RANSAC at higher speeds. However, what we
observe is that as the speed of the vehicle increases, the motion
tends to become more linear. When the motion of the vehicle
is mostly linear, the motion distortion does not impact rigid
RANSAC as much. Fig. 6 compares the odometry output of both
estimators against ground truth. The results further illustrate that
compensating for motion distortion improves performance.

Fig. 6. This figure highlights the impact that motion distortion can have on
the accuracy of radar-based odometry. Note that motion-compensated RANSAC
(MC-RANSAC) is much closer to the ground truth.

B. Localization

The purpose of this experiment is to demonstrate the impact of
motion distortion and Doppler effects on metric localization. As
opposed to the previous experiment, we localize between scans
taken while driving in opposite directions. While the majority of
the Oxford Radar dataset was captured at low speeds (0–10 m/s),
in this experiment we only use radar frames where the ego-
vehicle’s speed was above 10 m/s. For this experiment, we use
our own data-taking platform, shown in Fig. 1, which includes a
Velodyne Alpha-Prime lidar, Navtech CIR204-H radar, Blackfly
S camera, and an Applanix POSLV GNSS. Individuals interested
in using this data can fill out a Google form to gain access.1

Ground truth for this experiment was obtained from a 10 km
drive using post-processed GNSS data provided by Applanix,
which has an accuracy of 12 cm in this case. Radar scans were
initially matched by identifying pairs of proximal scans on the
outgoing and return trips based on GPS data. The Navtech
timestamps were synchronized to GPS time to obtain an accurate
position estimate.

Our first observation was that localizing against a drive in
reverse is harder than odometry. When viewed from different
angles, objects have different radar cross sections, which causes
them to appear differently. As a consequence, radar scans may
lose or gain features when pointed in the opposite direction. This
change in the radar scan’s appearance was sufficient to prevent
ORB features from matching.

As a replacement for ORB descriptors, we turned to the Radial
Statistics Descriptor (RSD) described in [2], [3]. Instead of
calculating descriptors based on the Cartesian radar image, RSD
operates on a binary Cartesian grid derived from the detected
feature locations. This grid can be thought of as a radar target
occupancy grid. For each keypoint, RSD divides the binary grid
into M azimuth slices and N range bins centered around the
keypoint. The number of keypoints (pixels) in each azimuth slice
and range bin is counted to create two histograms. In [3], a fast
Fourier transform of the azimuth histogram is concatenated with
a normalized range histogram to form the final descriptor.

In our experiment, we found that the range histogram was
sufficient on its own, with the azimuth histogram offering only

1[Online]. Available: https://forms.gle/ZGtQhKRXkxmcAGih9
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TABLE II
METRIC LOCALIZATION RESULTS

Fig. 7. By compensating for motion distortion alone (MC) or both motion and
Doppler distortion (MC + DOPP), metric localization improves.

a minor improvement. It should be noted that these descriptors
are more expensive to compute (60 ms) and match (30 ms) than
ORB descriptors. These processing times were obtained using
the same hardware as in Section IV-A.

The results of our localization experiment are summarized in
Table II. In each case, we are using our RANSAC estimator from
Section III. The results in the table are obtained by calculating
the median translation and rotation error. Compensating for mo-
tion distortion results in a 41.7% reduction in translation error.
Compensating for Doppler effects results in a further 67.7%
reduction in translation error. Together, compensating for both
effects results in a 81.2% reduction in translation error. Note that
the scan-to-scan translation error is larger than in the odometry
experiment due to the increased difficulty of localizing against
a reverse drive. Fig. 7 depicts a histogram of the localization
errors in this experiment.

C. Qualitative Results

In this section, we present qualitative results of removing
motion distortion and Doppler effects from radar data. In Fig. 8,
we have plotted points from our Velodyne lidar in red and
extracted radar targets in green. In this example, the ego-vehicle
is driving at 15 m/s with vehicles approaching from the opposite
direction on the left-hand side of the road. In order to directly
compare lidar and radar measurements, we have aligned each
sensor’s output spatially and temporally using post-processed
GPS data and timestamps. Motion distortion is removed from
the lidar points before the comparison is made. We use the lidar
measurements to visualize the amount of distortion present in
the radar scan. Fig. 8(a) shows what the original alignment looks
like when the radar scan is distorted. Fig. 8(b) shows what the
alignment looks like after compensating for motion distortion
and Doppler effects. Note that static objects such as trees align
much better with the lidar data in Fig. 8(b). It interesting to

Fig. 8. Lidar points are shown in red, radar targets are shown in green, vehicles
are boxed in blue. (a) Both motion distortion and Doppler effects and present
in the radar scan. (b) Motion distortion and Doppler effects have been removed
from the radar data. Note that static objects (highlighted by yellow arrows) align
much better in (b). Some of the moving vehicles (boxed in blue) are less aligned
after removing distortion. Here we do not know the other vehicles’ velocities
and therefore the true relative velocity with respect to the ego-vehicle.

note that some of the moving vehicles (boxed in blue) are less
aligned after removing distortion. Here we do not know the other
vehicles’ velocities and therefore the true relative velocity with
respect to the ego-vehicle. These results indicate that additional
velocity information for each object is required in order to align
dynamic objects. We leave this problem for future work.

V. CONCLUSION

For the problem of odometry, compensating for motion dis-
tortion had a modest impact of reducing translational drift by
9.4%. Compensating for Doppler effects had a negligible effect
on odometry performance. We postulate that Doppler effects are
negligible for odometry because their effects are quite similar
from one frame to the next. In our localization experiment, we
observed that compensating for motion distortion and Doppler
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effects reduced translation error by 41.7% and 67.7% respec-
tively with a combined reduction of 81.2%. We also provided
qualitative results demonstrating the impact of both distortion
effects. We noted that the velocity of each dynamic object is
required in order to properly undistort points associated with
dynamic objects. In summary, the Doppler effect can be safely
ignored for the radar odometry problem but motion distortion
should be accounted for to achieve the best results. For metric
localization, especially for localizing in the opposite direction
from which the map was built, both motion distortion and
Doppler effects need to be compensated. Accounting for these
effects is computationally cheap, but requires an accurate esti-
mate of the linear and angular velocity of the sensor.

For future work, we will investigate applying more powerful
estimators such as [28] to odometry and the full mapping and
localization problem. We will also investigate learned features
and the impact of seasonal changes on radar maps.
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