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Abstract
The Boreas dataset was collected by driving a repeated route over the course of one year, resulting in stark seasonal
variations and adverse weather conditions such as rain and falling snow. In total, the Boreas dataset contains over
350km of driving data featuring a 128-channel Velodyne Alpha-Prime lidar, a 360◦ Navtech CIR304-H scanning radar,
a 5MP FLIR Blackfly S camera, and centimetre-accurate post-processed ground truth poses. At launch, our dataset will
support live leaderboards for odometry, metric localization, and 3D object detection. The dataset and development kit
are available at boreas.utias.utoronto.ca.
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1 Introduction

To date, autonomous vehicle research and development has
focused on achieving sufficient reliability in ideal conditions
such as the sunny climates observed in San Francisco,
California or Phoenix, Arizona. Adverse weather conditions
such as rain and snow remain outside the operational
envelope for many of these systems. Additionally, a majority
of self-driving vehicles are currently reliant on highly-
accurate maps for both localization and perception. These
maps are costly to maintain and may degrade as a result
of seasonal changes. In order for self-driving vehicles to be
deployed safely, these short-comings must be addressed.

To encourage research in this area, we have created the
Boreas dataset, a large multi-modal dataset collected by
driving a repeated route over the course of one year. The
dataset features over 350km of driving data with stark
seasonal variations and multiple sequences with adverse
weather such as rain and falling snow. Our data-taking
platform, shown in Figure 1, includes a 128-beam lidar, a 5
MP camera, and a 360◦ scanning radar. Globally-consistent
centimetre-accurate ground truth poses are obtained by post-
processing GNSS, IMU, and wheel encoder data along with
a secondary correction subscription. At launch, our dataset
will support benchmarks for odometry, metric localization,
and 3D object detection.

This dataset may be used to study the effects of
seasonal variation on long-term localization. Further, this
dataset enables comparisons of vision, lidar, and radar-
based mapping and localization pipelines. Comparisons may
include the robustness of individual sensing modalities to
adverse weather or the resistance to map degradation.

The main contributions of this dataset are as follows:

• Data collected on a repeated route over the course of
one year including multiple weather conditions.

360◦ Radar 360◦ Lidar

CameraGNSS/IMU

Figure 1. Our platform, Boreas, includes a Velodyne
Alpha-Prime (128-beam) lidar, a FLIR Blackfly S camera, a
Navtech CIR304-H radar, and an Applanix POS LV GNSS-INS.

• A unique, high-quality sensor configuration including
a 128-beam lidar and 360◦ radar.

• Post-processed GNSS/IMU data to provide accurate
ground truth pose information.

• A live and open leaderboard for odometry, metric
localization, and 3D object detection.

• 3D object labels collected in sunny weather.

1University of Toronto
2 Applanix, Trimble

Corresponding author:
Keenan Burnett, University of Toronto, 4925 Dufferin Street, Toronto,
Ontario, Canada.
Email: keenan.burnett@robotics.utias.utoronto.ca

ar
X

iv
:2

20
3.

10
16

8v
1 

 [
cs

.R
O

] 
 1

8 
M

ar
 2

02
2

https://www.boreas.utias.utoronto.ca


2

Table 1. Related datasets. Lead: public leaderboard. Size: For perception datasets, size is given as the number of annotated
frames and the number of annotations (3d boxes). GT: ground truth pose source. (A): automotive radar. (N): 360◦ Navtech radar.
RTK (Real-Time Kinematic) uses a GPS base station and differential measurements to improve GPS accuracy. RTX uses data from
a global network of tracking stations to calculate corrections. This can be used to achieve cm-level accuracy without a base station
(Applanix 2022). †Waymo’s Mid-Range, Short-Range proprietary 3D lidar. ‡The Oxford Robotcar dataset contains one sequence
with snow on the ground but that sequence has no falling snow.

Name Lead Size Camera Lidar Radar GT Night Rain Snow Seasons

Perception
ApolloScape

Huang et al. (2018)
3

144k
70k boxes

2x9.2MP 1x64C 7 GPS/IMU 3 3 7 7

Argoverse
Chang et al. (2019)

3
22k

993k boxes
7x2.3MP
+2x5MP

2x32C 7 GPS/IMU 3 7 7 7

CADC
Pitropov et al. (2021)

7
7.5k

372k boxes
8x1.3MP 1x32C 7 GPS/IMU + RTK 7 7 3 7

KITTI (Object)
Geiger et al. (2013)

3
15k

200k boxes
4x1.4MP 1x64C 7 GPS/IMU + RTK 7 7 7 7

nuScenes
Caesar et al. (2020)

3
40k

1.4M boxes
6x1.4MP 1x32C 3(A)

GPS/IMU
+ Lidar Loc

3 3 7 7

RADIATE
Sheeny et al. (2021)

7
44k

200k boxes
2x0.25MP 1x32C 3(N) GPS/IMU 3 3 3 7

Waymo OD
Sun et al. (2020)

3
230k

12M boxes
5x2.5MP

1(MR†)
4(SR†)

7 GPS/IMU 3 3 7 7

Boreas-Objects-V1 3
7.1k

320k boxes
1x5MP 1x128C 3(N) GPS/IMU 7 7 7 7

Localization
KITTI (Odometry)

Geiger et al. (2013)
3

39km
22 seqs

4x1.4MP 1x64C 7 GPS/IMU + RTK 7 7 7 7

Complex Urban
Jeong et al. (2019)

7
451km
40 seqs

2x1.9MP
2x16C
+ 2x1C

7 SLAM 7 7 7 7

Oxford RobotCar
Maddern et al. (2017)

7
1000km
100 seqs

3x1.2MP
+3x1MP

1x4C
+ 2x1C

7 GPS/IMU + RTK 3 3 7‡ 3

Oxford Radar
Barnes et al. (2020)

7
280km
32 seqs

3x1.2MP
+3x1MP

2x32C
+ 2x1C

3(N) GPS/IMU + VO 7 3 7 7

MulRan
Kim et al. (2020)

7
124km
12 seqs

7 1x64C 3(N) SLAM 7 7 7 7

Boreas 3
350km
44 seqs

1x5MP 1x128C 3(N) GPS/IMU + RTX 3 3 3 3

2 Related Work

Several datasets have been produced to meet the increasing
demand driven by autonomous driving research. Many of
the published datasets focus on perception, particularly 3D
object detection and semantic segmentation of images and
lidar pointclouds. However, these datasets tend to lack
variation in weather and season. Further, many of these
datasets do not provide radar data. Automotive radar sensors
are robust to precipitation, dust, and fog thanks to their
longer wavelength. For this reason, radar may play a key
role in enabling autonomous vehicles to operate in adverse
weather. The Boreas dataset addresses these shortcomings
by including a 360◦ scanning radar, and data taken during
various weather conditions (sun, cloud, rain, night, snow)
and seasons.

Another significant fraction of datasets focus on the
problem of localization, usually odometry. The Boreas
dataset includes both a high-density lidar (128-beam)
and a 360◦ scanning radar. The combination of these
sensors and the significant weather variation contained
in this dataset enables detailed comparisons between the
localization capabilities of these two sensing modalities.
This is something that previous datasets were not able to
support due to either not having a radar sensor or insufficient

weather variation. Furthermore, our post-processed ground
truth poses are sufficiently accurate to support a public
leaderboard for odometry and metric localization. To the
best of our knowledge, a public leaderboard for metric
localization is not offered elsewhere. For a detailed
comparison of related datasets, see Table 1.

3 Data Collection

The majority of the Boreas dataset was collected by driving
a repeated route near the University of Toronto Institute for
Aerospace Studies (UTIAS) over the course of one year.
Figure 2 illustrates the seasonal variations that were observed
over this time. Figure 3 compares camera, lidar, and radar
measurements in three distinct weather conditions: falling
snow, rain, and sun. The primary repeated route will be
referred to as the Glen Shields route and is depicted in
Figure 4. Additional routes were also collected as either a
single standalone sequence or a small number of repeated
traversals. The Glen Shields route can be used for research
related to long-term localization while the other routes allow
for experiments that test for generalization to previously
unseen environments. The frequency of different metadata
tags is displayed in Figure 5.
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Figure 2. This figure depicts one year of seasonal changes in the Boreas dataset. Each image represents a camera image that
was taken on a different day. The sequences are sorted in chronological order from left to right and top to bottom, starting in
November, 2020 and finishing in November, 2021. Note that the sequences are not evenly spaced in time.

4 Sensors

Table 2 provides detailed specifications for the sensors used
in this dataset. Figure 6 illustrates the placement of the
different sensors on Boreas.

5 Dataset Format

5.1 Data Organization

The Boreas dataset is divided into sequences, which
include all sensor data and ground truth poses from
a single drive. Sequences are identified by the date
and time at which they were collected with the for-
mat boreas-YYYY-MM-DD-HH-MM. The data for each
sequence is organized as shown in Figure 7.

5.2 Timestamps

The name of each file corresponds to its timestamp. These
timestamps are given as UNIX epoch times in microseconds.
All sensors were synchronized to the UTC time reported by
the Applanix POS LV. The Velodyne lidar was synchronized
using a standard hardwired connection to the Applanix
POS LV carrying a PPS signal and NMEA messages. The
camera was configured to emit a square-wave pulse where
the rising edge of each pulse corresponds with the start
of a new camera exposure event. The Applanix POS LV
was then configured to receive and timestamp these event
signals. Camera timestamps were then corrected in post
using the recorded event times and exposure values: tcamera =
tevent + (exposure(t))/2. The data-recording computer was
synchronized to UTC time in a fashion similar to the
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Figure 3. Weather variation in the Boreas dataset. Note that the lidar pointcloud becomes littered with detections associated with
snowflakes during falling snow and that the radar data remains relatively unperturbed across the weather conditions.

Velodyne, using an RS-232 serial cable carrying a PPS signal
and NMEA messages. The Navtech radar synchronizes its
local clock using NTP. Since the data-recording computer
publishing the NTP time is synchronized to UTC time, the
radar is thereby also synchronized to UTC time.

For lidar pointclouds, the timestamp corresponds to the
temporal middle of the scan. Each lidar point also has a
timestamp associated with it. These point times are given in
seconds relative to the middle of the scan. For radar scans,
the timestamp also corresponds to the the middle of the scan:
bM2 c − 1 where M is the number of azimuths. Each scanned
radar azimuth is also timestamped in the same format as the
filename.

5.3 File Formats
Camera images are rectified and anonymized by default. We
use Anonymizer to blur license plates and faces (Understand

2022). Images are stored in the commonly-used png format.
Lidar pointclouds are stored in a binary format to minimize
storage requirements. Our devkit provides methods for
working with these binary formats in both C++ and Python.
Each point has six fields: [x, y, z, i, r, t] where (x, y, z) is the
position of the point with respect to the lidar, i is the intensity
of the reflected infrared signal, r is the ID of the laser that
made the measurement, and t the point timestamp explained
in Section 5.2. Raw radar scans are stored as 2D polar
images: M azimuths x R range bins. We follow Oxford’s
convention and embed timestamp and encoder information
into the first eleven columns (bytes) of each polar radar
scan. The first eight columns represent a 64-bit integer, the
UNIX epoch timestamp of each azimuth in microseconds.
The next two columns represent a 16-bit unsigned integer,
the rotational encoder value. The next column is unused
but preserved for compatibility with the Oxford format. See
(Barnes et al. 2020) for further details on the Navtech sensor
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(a) OpenStreetMap data

(b) Mapbox satellite data

Figure 4. The Glen Shields route in Toronto, Ontario, Canada.
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Figure 5. Frequency of metadata tags in the Boreas dataset.

and this file format. The polar radar scans can be readily
converted into a top-down Cartesian representation, as shown
in Figure 3, using our devkit.

Note that measurements are not synchronous as in other
datasets (KITTI, CADC), which means that measurements
with the same index do not have the same timestamp. How-
ever, given the timestamps and relative pose information,
different sensor measurements can still be fused together.
Lidar pointclouds are not motion-corrected, but we do pro-
vide methods for removing motion distortion in our devkit.
Navtech radar scans suffer from both motion distortion and

Table 2. Sensor specifications. †Position accuracy changes
over time as a function of the number of visible satellites.
†These numbers represent expected accuracy in nominal
conditions. ‡Our Navtech radar’s firmware was upgraded
partway through the project, older sequences have a range
resolution of 0.0596m, and a range of 200m.

Sensor Specifications

Applanix • 2-4cm RTX accuracy (RMS)†

POS LV 220 • 200 Hz

Navtech CIR304-H • 0.0438m range solution‡

Radar • 0.9◦ horizontal resolution
• 250m range‡

• 4 Hz

FLIR Blackfly S • 2448x2048 (5 MP)
Camera • 81◦ HFOV x 71◦ VFOV
(BFS-U3-51S5C) • 10 Hz

Velodyne • 128 beams
Alpha-Prime • 0.1◦ vertical resolution (variable)
Lidar • 0.2◦ horizontal resolution

• 360◦ HFOV x 40◦ VFOV
• 300m range (10% reflectivity)
• ∼ 2.2M points/s
• 10 Hz

Camera
Lidar

Applanix
GPS Ant.0.

23

z

yx

1.
92

m

Radar

0.
21

0.64
GPS

Antenna0.38

LidarCamera 45°

0.
52

Figure 6. Boreas sensor placement. Distances are given in
metres. Measurements shown are approximate. Refer to the
calibrated extrinsics contained in the dataset for precise
measurements.

Dopler distortion, Burnett et al. (2021a) and Burnett et al.
(2021b) provide methods to compensate for these effects.

https://youtu.be/Cay6rSzeo1E
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boreas-YYYY-MM-DD-HH-MM

applanix
camera_poses.csv
imu.csv
gps_post_process.csv
lidar_poses.csv
radar_poses.csv

calib
camera0_intrinsics.yaml
P_camera.txt
T_sens1_sens2.txt

camera
<timestamp>.png

lidar
<timestamp>.bin

radar
<timestamp>.png

route.html
video.mp4

Figure 7. Data organization for a single Boreas sequence.

6 Ground Truth Poses

Ground truth poses are obtained by post-processing
GNSS, IMU, and wheel encoder measurements along
with corrections obtained from an RTX subscription
using Applanix’s POSPac software suite. Positions are
reported in metric UTM coordinates. For each sequence,
applanix/gps post process.csv contains the post-
processed ground truth in the Applanix frame at 200Hz.
Note that the Applanix frame is y-forwards, x-right, z-
up. For all poses, we use ENU (x-East, y-North, z-
Up) as the origin. We follow the convention used at
UTIAS for describing rotations, translations, and 4×
4 homogeneous transformation matrices (Barfoot 2017).
Each sensor frame’s ground truth is stored as a row in
applanix/<sensor> poses.csv with the following
format: [t, x, y, z, vx, vy, vz, r, p, y, ωz, ωy, ωx] where t is the
epoch timestamp in microseconds that matches the filename,
rsee = [x y z]T is the position of the sensor s with respect
to ENU as measured in ENU, vse

e = [vx vy vz]
T is the

velocity of the sensor with respect to ENU, (r, p, y) are the
roll, pitch, and yaw angles, which can be converted into a
rotation matrix between the sensor frame and ENU. ωse

s =
[ωx ωy ωz]

T are the angular velocities of the sensor with
respect to the ENU frame as measured in the sensor frame.

The pose of the sensor frame is then: Tes =

[
Ces rsee
0T 1

]
∈

SE(3) where Ces = C1(roll)C2(pitch)C3(yaw) (Barfoot
2017). We also provide post-processed IMU measurements
in applanix/imu.csv at 200Hz in the Applanix frame
that include linear acceleration and angular velocity.

The RMS position error reported by Applanix is typically
less than 5cm in nominal conditions but can be as high as
20-40cm in urban canyons. Figure 8 shows the RMS errors
estimated by the Applanix POSPac software. Accuracy can
change depending on the visibility of satellites. Note that
these values represent global accuracy and that relative pose
estimates are more accurate over short time horizons.
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Figure 8. Post-processed RMS position, velocity, and
orientation error vs. time reported by Applanix’s POSPac
software for a Glen Shields sequence collected on 2021-09-07.

7 Calibration

7.1 Camera Intrinsics
Camera intrinsics are calibrated using MATLAB’s cam-
era calibrator (Mathworks 2022a) and are recorded in
camera0 intrinsics.yaml. Images located under
camera/ have already been rectified. The rectified camera
matrix P is stored in P camera.txt. To project lidar
points onto a camera image, we use the pose of the camera
Tec at time tc and the pose of the lidar Tel at time tl to
compute a transform from the lidar frame to the camera
frame given by Tcl = T−1ec Tel. Each point in the lidar frame
is then transformed into the camera frame with xc = Tclxl,
where xl = [x y z 1]T . The projected image coordinates are
then obtained using: [

u

v

]
= D P

1

z
xc (1)

where D =

[
1 0 0 0

0 1 0 0

]
,P =


fu 0 cu 0

0 fv cv 0

0 0 1 0

0 0 0 1

 . (2)

7.2 Sensor Extrinsics
The extrinsic calibration between the camera and lidar
is obtained using MATLAB’s camera to lidar calibrator
(Mathworks 2022b). The results of this calibration are
illustrated in Figure 9. To calibrate the rotation between
the lidar and radar, we use correlative scan matching
via the Fourier Mellin transform (Checchin et al. 2010).
Several lidar-radar pairs were collected while the vehicle was
stationary at different locations. The final rotation estimate is
obtained by averaging the results from several measurement
pairs (Burnett 2020). The translation between the lidar and
radar is obtained from the CAD model of the roof rack.
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(a) Perspective View

(b) Colored Pointcloud

Figure 9. Lidar points projected onto a camera image using the
camera-lidar calibration. (a) Lidar points are colored based on
their longitudinal distance from the vehicle. (b) Lidar points are
given RGB color values based on their projected location on the
camera image.

The results of the radar-to-lidar calibration are shown in
Figure 10. The extrinsics between the lidar and the Applanix
reference frame were obtained using Applanix’s in-house
calibration tools. Their tool outputs this relative transform
as a by-product of a batch optimization aiming to estimate
the most likely vehicle path given a sequence of lidar
pointclouds and post-processed GNSS/IMU measurements.
All extrinsic calibrations are provided as 4x4 homogeneous
transformation matrices under the calib/ folder.

8 3D Annotations
We provide a set of 3D bounding box annotations for a
subset of the Boreas dataset, obtained in sunny weather. We
refer to this as the Boreas-Objects-V1 dataset. Annotations
were obtained using the Scale.ai data annotation service
(Scale 2022). In total, 7111 lidar frames were annotated
at 5Hz, resulting in 326,180 unique 3D box annotations.
Since the lidar data was collected at 10Hz, the annotations
may be interpolated between frames to double the number
of annotated frames at a slightly lower fidelity. The data is
divided into 53 continuous scenes where each scene is 20-
70 seconds in duration. The scenes are then divided into 37
training scenes and 16 test scenes where the ground truth
labels have been withheld for the benchmark. Figure 11
displays two statistics for our annotations.

We use the same folder structure as in Figure 7 but with an
additional folder, labels/. Similar to KITTI, annotations
for a particular frame are stored in a text file with the
same filename (timestamp) as the lidar frame. Each row of
a label file corresponds to a different 3D box annotation
with the format: [uuid, type, dx, dy, dz, x, y, z, yaw]. The
uuid is a unique ID for a particular object track that is
consistent across frames within a particular scene. The type
is the semantic class for an object that can be one of:

Figure 10. Lidar measurements are drawn in red using a bird’s
eye view projection with the ground plane removed. Radar
targets are first extracted from the raw radar data and then are
draw as blue pixels. The two sensors have been aligned using
the radar-to-lidar calibration.

{Car, Cyclist, Pedestrian, Misc}. The Car class includes
coupes, sedans, SUVs, vans, pick-up trucks, and ambulances.
The Cyclist class includes people riding motorcycles, but
excludes parked bicycles. The Misc class includes other
vehicle types such as buses, industrial trucks, streetcars,
and trains. Objects are labelled within a rectangular area
centered on the lidar +/- 75m in both dimensions. Bounding
box locations (x, y, z) and orientations (yaw) are given with
respect to the lidar frame. (dx, dy, dz) represent the bounding
box dimensions (length, width, and height). Figure 12 shows
an example of what our 3D object annotations look like for
lidar, camera, and radar.
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Figure 11. 3D annotation statistics for Boreas-Objects-V1.
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Figure 12. Examples of 3D annotations in the Boreas-Objects-V1 dataset.

9 Benchmark Metrics

At launch, we plan to support online leaderboards for
odometry, metric localization, and 3D object detection. For
odometry, we use the same metrics as the KITTI dataset
(Geiger et al. 2013). The KITTI odometry metrics average
the relative position and orientation errors over every sub-
sequence of length (100m, 200m, 300m, ..., 800m). This
results in two metrics, a translational drift reported as a
percentage of path length and a rotational drift reported as
degrees per metre travelled. For 3D object detection, we also
defer to the KITTI dataset by reporting the mean average
precision (mAP) on a per-class basis. For cars, a 70% overlap
counts as a true positive, and for pedestrians, 50%. We do not
divide our dataset based on difficulty levels.

The purpose of our metric localization leaderboard is
to benchmark mapping and localization pipelines. In this
scenario, we envision a situation where one or more repeated
traversals of the Glen Shields route are used to construct a
map offline. Any and all data from the training sequences
may be used to construct a map in any fashion.

Then, during a test sequence, the goal is to perform metric
localization between the live sensor data and the pre-built
map. Localization approaches may make use of temporal
filtering and can leverage the IMU if desired but GNSS
information will not be available. The goal of this benchmark
is to simulate localizing a vehicle in real-time and as such
methods may not use future sensor information in an acausal
manner.

Our goal is to support both global and relative
map structures. Only one of the training sequences
will be specified as the map sequence used by the
benchmark. For 3D localization, users must choose either
the lidar or camera as the reference sensor. For 2D
localization, only the radar frames are used as a reference.
For each (camera—lidar—radar) frame s2 in the test
sequence, users will specify the ID (timestamp) of the
(camera—lidar—radar) frame s1 in the map sequence that
they are providing a relative pose with respect to: T̂s1,s2 . We
then compute root-mean squared error (RMSE) values for
the translation and rotation as follows:

Te = Ta,s1Ts1,s2T̂
−1
s1,s2T

−1
a,s1 =

[
Ce re

0T 1

]
(3)

re =
[
xe ye ze

]T
(4)

φe = arccos

(
tr Ce − 1

2

)
(5)

where Ts1,s2 is the known ground truth pose, and Ta,s1

is the calibrated transform from the sensor frame to the
applanix frame (x-right, y-forwards, z-up). xe, ye, ze are then
the lateral, longitudinal, and vertical errors respectively. We
calculate RMSE values for xe, ye, ze, φe.

Users will also have the option of providing 6× 6
covariance matrices Σi for each localization estimate. A
pose with uncertainty is described as T = exp(ξ∧)T where
ξ ∼ N (0,Σ) (Barfoot 2017). Given T̂i = T̂s1,s2(ti), we
compute an average consistency score c for the localization
and covariance estimates:

ξi = ln
(
TiT̂

−1
i

)∨
=
[
ρ1 ρ2 ρ3 ψ1 ψ2 ψ3

]T
(6)

c =

(
N∑
i=1

ξTi Σ−1i ξi
Ndim(ξi)

)1/2

(7)

A consistency score close to 1 is ideal. c < 1 means that
the method is over-confident, c > 1 means that the method
is conservative. Note that the above metrics will be averaged
across the test sequences.

10 Development Kit
As part of this dataset, we provide a development kit to
make it easier for new users to get started. The primary
purpose of the devkit is to act as a wrapper around the entire
dataset to be used in Python. This allows users to query
frames and the associated ground truth for either odometry,
localization, or 3D object detection. We also provide
convenience methods for removing motion distortion from
pointclouds, working with polar radar scans, and converting
to and from Lie algebra and Lie group representations.
The devkit also provides many different ways to visualize
the sensor data. Finally, we provide several introductory
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tutorials as Jupyter notebooks that include projecting lidar
onto a camera frame and visualizing 3D boxes. Evaluation
scripts used by our benchmark will be stored in the devkit,
allowing users to validate their algorithms before submission
to the benchmark. The development kit can be found at
boreas.utias.utoronto.ca.

11 Conclusion
In this paper, we presented Boreas, a multi-season
autonomous driving dataset that includes over 350km
of driving data collected over the course of one year.
The dataset provides a unique high-quality sensor suite
including a Velodyne Alpha-prime (128-beam) lidar, a 5MP
camera, a 360◦ Navtech radar, and accurate ground truth
poses obtained from an Applanix POS LV with an RTX
subscription. We also provide 3D object labels for a subset
of the Boreas data obtained in sunny weather. The primary
purpose of this dataset is to enable further research into
long-term localization across seasons and adverse weather
conditions. Our website will provide an online leaderboard
for odometry, metric localization, and 3D object detection.
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