aUToTrack: A Lightweight Object Detection and Tracking System
for the SAE AutoDrive Challenge

Keenan Burnett, Sepehr Samavi, Steven L. Waslander, Timothy D. Barfoot, Angela P. Schoellig
Institute for Aerospace Studies
University of Toronto
Toronto, Canada
{keenan.burnett, sepehr}@robotics.utias.utoronto.ca

Abstract—The University of Toronto is one of eight teams
competing in the SAE AutoDrive Challenge — a competition
to develop a self-driving car by 2020. After placing first at
the Year 1 challenge [1], we are headed to MCity in June
2019 for the second challenge. There, we will interact with
pedestrians, cyclists, and cars. For safe operation, it is critical
to have an accurate estimate of the position of all objects
surrounding the vehicle. The contributions of this work are
twofold: First, we present a new object detection and tracking
dataset (UofTPed50), which uses GPS to ground truth the
position and velocity of a pedestrian. To our knowledge, a
dataset of this type for pedestrians has not been shown in
the literature before. Second, we present a lightweight object
detection and tracking system (aUToTrack) that uses vision,
LIDAR, and GPS/IMU positioning to achieve state-of-the-
art performance on the KITTI Object Tracking benchmark.
We show that aUToTrack accurately estimates the position
and velocity of pedestrians, in real-time, using CPUs only.
aUToTrack has been tested in closed-loop experiments on a
real self-driving car (seen in Figure |I|), and we demonstrate its
performance on our dataset.

Keywords-Vision for Autonomous Vehicles, Real-Time Per-
ception, Object Recognition and Detection

I. INTRODUCTION

Standard object detection and tracking algorithms used
for video understanding use 2D bounding boxes to identify
objects of interest. For autonomous driving, 2D bounding
boxes are insufficient. A 3D position and velocity estimate is
required in order to localize objects in a map and anticipate
their motion. Existing object detection benchmarks compare
detector outputs against hand-generated labels either in 2D
image coordinates or in a 3D sensor frame [2]]. In both cases
the "ground truth" has been generated by a human with
some semi-automatic tools. For this reason, such datasets
are subject to human biases in the labelling process.

Current leading methods on these benchmarks do so
by replicating the labels observed in the training set [3].
Unfortunately, this does not necessarily mean that these
approaches are accurately localizing objects in 3D space,
which is the critical problem that we address here.

Existing datasets [2] lack a means for benchmarking
3D Object Detection and Tracking for pedestrians. To ad-
dress this shortcoming, we introduce UofTPed50, a new
dataset that we are making publicly available in June 2019.
UofTPed50 includes vision, LIDAR, and GPS/IMU data
collected on our self-driving car in 50 scenarios involving
interactions with a pedestrian. We use a separate GPS system
attached to the pedestrian to obtain ground truth positioning.
By using GPS ground truth instead of hand labels, we can

Monocular |

Camera

Figure 1. Our self-driving car Zeus at the University of Toronto Institute
for Aerospace Studies (UTIAS). https://youtu.be/FLCgcgzNo80

rigorously assess the the localization accuracy of our system.
To our knowledge, benchmarking pedestrian localization in
this manner has not been shown in the literature before.

As a secondary contribution, we describe our approach
to Object Detection and Tracking (aUToTrack), and demon-
strate its performance on UofTPed50 and KITTI. aUToTrack
consists of an off-the-shelf vision-based 2D object detector
paired with a LIDAR clustering algorithm to extract a depth
for each object. GPS/IMU data is then used to localize
objects in a metric reference frame. Given these 3D mea-
surements, we use greedy data association and an Extended
Kalman Filter (EKF) to track the position and velocity of
each object. Figure] illustrates the aUToTrack pipeline.
We demonstrate state-of-the-art performance on the KITTI
Object Tracking benchmark while using data association
and filtering techniques that are faster and much simpler
than many competing approaches [4]], [5]], (6], [7]. We also
demonstrate that we can accurately estimate the position and
velocity of pedestrians using our UofTPed50 dataset while
running our entire pipeline in less than 75 ms on CPUs only.

Estimating the velocity of objects is a difficult problem in
self-driving which we tackle in this work. Systems like
ours that are lightweight, and capable of running on CPUs
are uncommon in the literature but essential in practice.
Although aUToTrack was designed for the SAE AutoDrive
Challenge, it has utility for many robotic systems deployed
in human-centered domains.

https://youtu.be/FLCgcgzNo80

Clustering

Y

2D
Boxes

3D Centroids

Tracker

2D Detector

VISION

PERSPECTIVE

Figure 2. Our pipeline for 3D object detection and tracking. For UofTPed50 experiments, SqueezeDet is our 2D Detector. Clustering consists of Euclidean
clustering over the LIDAR points that fall within the bounding boxes when projected onto the image plane. Our tracker consists of gated nearest neighbor
data association and an Extended Kalman Filter for tracking position and velocity in 3D space.

II. RELATED WORK

A. Object Detection

Object detectors can be classified into 2D and 3D de-
tectors. Among 2D detectors, two-stage detectors have his-
torically achieved the top accuracy on public benchmarks
[9. Single-stage detectors such as YOLO [10] and SSD
[11] tend to be more computationally efficient, but typically
do not achieve the best performance. A recent work that
focuses on achieving a high framerate on limited hardware is
SqueezeDet [12]]. A work that focused on achieving the best
possible accuracy is Recurrent Rolling Convolutions (RRC).

3D detectors estimate the centroid and volume of objects
using a 3D bounding box. Recent works in this area include
Frustum PointNets [13]] and AVOD [14]. Frustum PointNets
uses a 2D detector to cut out a "frustum" from an incoming
pointcloud. They then use a specialized fully-connected
network to cluster points within the frustum and regress a
3D bounding box. AVOD fuses vision- and LIDAR-based
features together in both the region proposal and a bounding
box regression stage of their network.

For the purposes of self-driving, the question becomes: is
it better to use a 2D or a 3D detector? 2D object detection is
perceived to be a more mature field, with many approaches
exceeding 90% mean Average Precision (mAP) at acceptable
framerates [2]. On the other hand, 3D detections are more
useful for self-driving since they incorporate an accurate
centroid estimate which can be used directly to safely inter-
act with traffic participants. However, most of these detectors
are computationally very expensive. AVOD, which is one of
the faster 3D detectors, requires a TITAN X GPU to achieve
an inference time of 100ms. For this reason, the decision
to use a fast single-stage detector, in our case SqueezeDet,
becomes clear. Compared with other approaches in literature,
we are able to estimate accurate 3D centroids for pedestrians
using CPUs only. This is uncommon in literature and enables
our system to be used in a real self-driving car.

B. Object Tracking

Recent works in the area of 2D object tracking include
[41, 5], [6], [15]. In [4]], an aggregated local flow descriptor
is used to associate targets and detections over a temporal
window. In [5]], geometry, object shape, and pose costs are
used to augment data association. In [6], the authors formu-
late multi-object tracking using Markov Decision Processes.

The above approaches score high on KITTI, however each
of their runtimes exceeds 0.2s, preventing their use in a self-
driving car. Our approach is simpler and we are able to
achieve competitive performance with lower runtime.

In [[15]], the authors describe a fast 2D object tracker that
consists of a Kalman Filter and the Hungarian algorithm. For
2D tracking, they achieve competitive results on the MOT
benchmark [[16], while being much faster than competitors.

In 3D object detection and tracking, recent works include
[17], [18]. In [17], a model-free object detection scheme
based on convexity segmentation is used with a Kalman
filter and constant velocity motion model. In [18]], a model-
free 3D object detection and tracking method based on
motion cues is used. Both approaches use the same dataset,
which has a sensor vehicle equipped with a LIDAR and a
GPS/IMU as well as a separate GPS sensor used to ground
truth the target vehicle. These approaches both have several
drawbacks. First, LIDAR-based approaches are not able to
classify different objects easily. In addition, [18]] struggles
to detect pedestrians, partly because of their motion-based
detections. Neither approach presents results for pedestrian
detection. The dataset presented in this work has more
variation in target distance, velocities, and trajectories and
is organized for a rigorous evaluation of an object detection
and tracking system.

A recent work similar to ours is [[7]. In this work, the
authors employ a DNN trained to detect objects and estimate
depth from a single image. For tracking, they use a Poisson
Multi-Bernoulli Mixture filter. They achieve competitive
results on KITTT using only images. However, when LIDAR
is readily available, approaches such as ours perform better.

III. 2D OBJECT DETECTOR

We use squeezeDet [12] as our 2D detector for real-time
experiments on UofTPed50 due to its high accuracy on the
KITTI dataset for 2D Object Detection. SqueezeDet achieves
top-25 accuracy for pedestrians, and top-75 accuracy for
cars. However, it should be noted that among its competitors,
it is one of the fastest, achieving a framerate of 57.2 FPS
on a TITAN X GPU (1248x384 input images). SqueezeDet
is also fully-convolutional, which makes it an attractive
option for run-time optimization. Using Intel’s OpenVINO
Deep Learning Acceleration Tools [19], we are able to run
SqueezeDet at 22.2 FPS using only 12 CPU cores (1248x384
input images).

For experiments on the KITTI Tracking benchmark, we
use Recurrent Rolling Convolutions (RRC) [3]] due to the
fact that it is top ranked among published works on the 2D
Object Detection benchmark. RRC is substantially slower
than SqueezeDet, requiring over 1500 ms to process a single
frame on a GTX1080Ti, therefore precluding its usage in
real-time experiments. However, the increase in recall on
the training set is substantial: from 65% with SqueezeDet to
94% with RRC.

IV. CLUSTERING

In order to achieve real-time performance, we restrict our
attention to points in front of the vehicle up to 40m away,
and 15m to each side. Projected on to the ground, this results
in a Bird’s Eye View (BEV) pointcloud shape of 40m x 30m.
We subsequently segment and extract the ground plane, so
that only vertical objects remain. The remaining points are
transformed from the LIDAR frame into the camera frame.
A corresponding set of image plane locations, are obtained
by projecting LIDAR points onto the image plane using an
ideal perspective projection model and multiplying by the
intrinsic camera matrix.

Using the projected coordinates, we retrieve the LIDAR
points that lie inside each 2D bounding box. We then
use Euclidean clustering on the corresponding 3D LIDAR
points [20]. Several heuristics are used to choose the best
cluster from the clustering process. These heuristics include:
comparing the detected distance to the expected size of
the object, filtering based on cluster height, and counting
the number of points per cluster. Once the best cluster has
been chosen, the position of the object is computed as the
position of the centroid of points in the cluster. Although
this method for computing an object’s centroid works well
for pedestrians, it does not perform as well for cars. This
is because the clustered points only consist of the points
reflected from the face of the object facing the LIDAR,
which can be far from the true center for large objects such
as cars.

V. TRACKER SETUP

For each object, we keep a record of the state, X,
covariance, 13 class, confidence level, and counters for
track management. The state is defined in Equation (TJ),
where (z,y, z) is the position, (&,¢) is the velocity within
the ground plane, and (w,h) are the bounding box width
and height in the image plane. The position and velocity
are tracked in a static map frame external to the vehicle.
The class, which is output by SqueezeDet can be one of:
(car, pedestrian, cyclist, other). For track management,
we count the number of frames an objects has gone without
being observed, and a boolean for "trial" objects.

A. Constant Velocity Motion and Measurement Models

The following equations describe the constant velocity
motion model that is used for all detected objects:

X = [m Yy oz & oy w h}T (1)
y= [J; Yy oz w h]T)
X = AXp_1 +w 3)
Ve = Cx +n 4)
w ~ N(0,Q) &)
n ~ N(0,R) (6)
| 12 0y Tl 0
A= |:05><2 15] ™
| 13 03x4
€= [om 1,] ®)

In this setup, x is the state of the object, y is the measure-
ment, w is the system noise, 7 is the measurement noise,
A is the state matrix, and C is the observation matrix. We
assume that the object moves with constant velocity between
each clock cycle.

B. Linear Kalman Filter

The following equations describe the linear Kalman filter
used to track the state and covariance of each object:

Xp = AXp—1)
P, =AP,_1AT +Q (10)
K; = P,.CT(CP,.CT +R)™! (11)
P, = (1-K,C)P; (12)
X, = X + Ki(y, — Cxy) (13)

In this setup, Equations (9)-(I0) are the prediction, Equation
is the Kalman gain, and Equations (I2)-(I3) are the
corrector equations.

C. Tracking in World Frame

We require the position and velocity of objects in a
static map frame denoted o. Raw measurements are given
in a sensor frame attached to the vehicle, denoted c2. We

augment some of our vectors in order to track in the static
frame as follows:

X=[z y z 1 & 5 w " (14)

| 13 0343 0342
c= [02x3 025 1o } (15)
/ _ T020 04><4
Teo = [04x4 1] (16)
G, =CT,, (17)
y= C'T,, (x, + 1) as)
R =R (19)

Keeping our prediction equations the same, our update
equations become:

K;, = P,GI (G, P, G +R)! (20)
P, = (1 - KiGp)P, 1)
X, = X}, + Ki(y, — GpX},) (22)

~/
We then remove augmented components of P, X;_ at the
end before publishing our answer to other components of
the system.

VI. DATA ASSOCIATION

We use static gates in order to associate new detections
to existing tracks. The gates are constructed using the max-
imum possible inter-frame motion. For example, assuming
a maximum speed of 6 m/s for pedestrians and a maximum
speed of 20 m/s for vehicles and a 0.1s time step, we have
a gating region of 0.6 m and 2.0 m respectively. In order
to account for the highly variable speeds of cars, we use
the tracked velocity of each car to calculate the radius of its
gating region.

We use a greedy approach to associate measurements to
tracked objects. For each tracked object, we evaluate the
object’s distance to the observations that are within its gate
and find the nearest neighbour to the object among the gated
observations. We associate the measurement with the tracked
object and remove the measurement from the list. We repeat
the process for every object that has detections in its gate.

VII. MANAGING THE LIST OF TRACKED OBJECTS

We employ a strategy of greedy track creation and lazy
deletion for managing tracks. In greedy track creation, every
observation becomes a new track. However, every track must
go through a "trial period". While objects are in their trial
period, they are removed from the list of objects being
tracked if they miss a single frame.

Once objects are promoted from their trial period, we
count the number of consecutive frames that an object has
been unobserved for. In order for a non-trial track to be

Table 1
RUNTIME OF EACH COMPONENT IN OUR PIPELINE.

[Component [[Run Time [Hardware |
SqueezeDet 20ms GTX1080Ti
SqueezeDet 45 ms Intel Xeon E5-2699R (12 cores)
Clustering 20 ms Intel Xeon E5-2699R (1 core)
Tracker 5 ms Intel Xeon E5-2699R (1 core)
Total Run Time: 70 ms Intel Xeon E5-2699R Only

removed from the list, there must be no associated measure-
ments for Y (Y=5) consecutive frames. This constitutes a
lazy deletion process.

Table [l summarizes the algorithm’s performance. We note
that the majority of the run-time can be attributed to the 2D
detector.

VIII. UOFTPED50

As the primary contribution of this work, we are releasing
a new dataset, named UofTPed50, for benchmarking 3D
object detection and tracking of pedestrians. Our focus is
on providing an accurate position and velocity benchmark
for a pedestrian in the form of GPS ground truth. Currently,
a comprehensive benchmark of this type is not publicly
available. UofTPed50 consists of 50 sequences of varying
distance, trajectory shape, pedestrian appearance, and sensor
vehicle velocities. Each sequence contains one pedestrian.
The scenarios are broken into five groups:

1) A total of 36 sequences tracking straight lateral tra-
jectories with respect to the stationary car at seven
distances performed by three pedestrians

2) A total of 3 sequences tracking straight lateral trajec-
tories with respect to a dynamic car performed by two
pedestrians

3) A total of 4 sequences tracking straight longitudinal
trajectories with respect to the stationary car per-
formed by two pedestrians

4) A total of 4 sequences tracking straight longitudinal
trajectories with respect to a dynamic car performed
by two pedestrians

5) A total of 6 sequences tracking complex trajectories
(i.e., curves and Zig-Zags) with respect to the station-
ary car performed by two pedestrians

We collected UofTPed50 data on our self-driving car,

Zeus, illustrated in Figure m Zeus is a 2017 Chevrolet Bolt
Electric Vehicle. Sensor data was collected from a Velo-
dyne HDL-64 LIDAR, a 5 MP Blackfly BFS-U3-51S5C-
C monocular camera, and a NovAtel PwrPak7 GPS/IMU
with TerraStar corrections (<10cm reported position error).
Position data for the pedestrian was collected by attaching
the tethered antenna of a NovAtel PwrPak7 GPS, also with
TerraStar corrections, to the pedestrian’s head as illustrated
in Figure 3] Ground truth velocity for the pedestrian was
generated by smoothing the finite difference between GPS
waypoints. To synchronize data between the car and the

Bird’s Eye View

Velocity
Vector

Figure 3.
right, a perspective view from the camera.

pedestrian, we use UTC timestamps. A minor issue observed
during the data collection process is that the two GPS units
have a constant offset. To correct this, we estimate the
centroid of the pedestrian at the beginning of each sequence
using LIDAR, and use it to estimate the offset between
the two GPS frames. We intend to rectify this issue before
making our dataset publicly available.

There are some key differences between UofTPed50 and
the KITTI dataset. First, on KITTI object tracking can
only be benchmarked on the 2D image plane. Although
there are 3D labels for pedestrians, the multi-object tracking
benchmark does not include this information. In UofTPed50,
we collect the 3D global position of the ground truth from
GPS, which is more consistent in its error. Second, as
illustrated in Figure [4] the KITTI dataset has a narrow
distribution of pedestrian distances with nearly 25% of
all labelled pedestrians being roughly 10m from the car.
Despite having a smaller range of distances, UofTPed50
has a more uniform distribution. Finally, most pedestrian
sequences in the KITTI dataset contain pedestrians tracking
a constant heading. In UofTPed50, we collect sequences
with the pedestrian tracking complex curved and Zig-Zag
trajectories.

Distribution of Pedestrian Distances KITTI vs. UofTPed50

EEKITTI
T UofTPed50| |

0.25

probability

o 10 20 30 40 50 60 70
distance of pedestrians to car (m)

Figure 4. Distribution of pedestrian distances in the KITTI dataset and in
the UofTPed50 dataset.

Perspective

Clustered
LIDAR Points

Example of a pedestrian track on the UofTPed50 dataset. On the left, a bird’s eye view with LIDAR points projected to the ground. On the

IX. EXPERIMENTS:

In this section, we describe the experimental evaluation
we have performed on UofTPedS0, as well as on the KITTI
Object Tracking benchmark. We have divided our evaluation
into several subsections. First, we demonstrate the perfor-
mance of our approach with varying target depth. Second,
we show the impact relative motion can have on the accuracy
of our position and velocity estimates. Third, we compare the
performance of our approach on different trajectory shapes.
We also discuss the performance of our approach using
several qualitative examples that compare the pedestrian
trajectory generated by aUToTrack against the ground truth
GPS-based trajectories. We present a qualitative analysis of
our velocity tracking performance on several scenarios. We
describe the accuracy with which we can assess whether
or not a pedestrian is static. Finally, we briefly analyze our
performance on the KITTI Object Tracking benchmark.

A. Varying Distance

The first set of sequences in UofTPed50, the pedestrian
walks laterally from one side of the vehicle to the other
at evenly spaced distances. Figure [§] illustrates an example
of a lateral trajectory. We use this to simulate a pedestrian
crossing the road immediately in front of the vehicle. We
need to ensure that position and velocity estimates remain
accurate with increasing distance. Being able to accurately
estimate the state of other traffic participants regardless of
distance is key to the safety of an autonomous vehicle.

We use Root Mean Squared Error (RMSE) as our error
metric for both position and velocity estimation. As summa-
rized in Table [] our position and velocity estimation error
tends to increase with distance. The position error increases
from 0.14m at 5Sm to 0.37m at 35m. This appears to be
an acceptable increase in error given the range increase.
Although we are able to achieve high velocity estimation
accuracy up to 30m, there appears to be a steep drop

off in performance at 35m. This is potentially due to the
increasing sparsity of points further from the LIDAR. We
have also observed that 30m is close to the detection range
of squeezeDet trained on KITTI, another potential cause of
the drop in performance.

Table II

POSITION AND VELOCITY ESTIMATION ERROR VS. TARGET DISTANCE
Target

Distance(m) 5 10 15 20 25 30 35

Position

RMSE (m) 0.14 | 0.18 | 0.21 | 0.26 | 0.22 | 0.27 | 0.37
Velocity

RMSE (m) 020 | 0.19 | 0.18 | 0.23 | 032 | 0.29 | 0.55

B. Varying Relative Motion

In these experiments, the pedestrian is either walking
straight towards or away from the vehicle. We repeat the
pedestrian trajectories with the vehicle stationary and driving
forward. These trajectories are used to simulate a pedestrian
walking along a sidewalk. It is important to distinguish
between pedestrians moving laterally across and longitudi-
nally along the road. Table summarizes the results of
this experiment. We note that when the vehicle is driving
forward (V > 0) and the pedestrian is walking towards the
vehicle, position error increases. In general, high sensor
vehicle velocity introduces several complications, such as
pointcloud distortion and sensor message misalignment.
Thus, our expectation is that error should increase with
increasing relative motion. However, it is surprising to see
that velocity estimation error remains relatively constant in
both cases regardless of vehicle motion. For scenarios where
the pedestrian is walking away, relative velocity decreases.
As such, we observe that both the position and velocity error
also decrease.

Table III
POSITION AND VELOCITY ESTIMATION ERROR VS. RELATIVE MOTION

[Pedestrian Motion [Walk Towards | Walk Away |
Vehicle Motion V=0| V>0]| V=0] V>0
Position RMSE (m) 0.27 0.51 0.31 0.27
Velocity RMSE (m/s) 0.21 0.19 0.26 0.23

C. Varying Trajectory Shape

In these experiments, our goal is to push our system in
order to find corner cases where performance declines. In
the other sequences, the pedestrian motion follows a rela-
tively constant heading. Here, we demonstrate trajectories
that have more changes in velocity and directionCurved
trajectories involve the pedestrian jogging in a shape similar
to a parabola. Figure [3] illustrates an example of a Zig-Zag
trajectory.

Wait trajectories involve the vehicle driving forwards,
stopping and then waiting for the pedestrian to cross. Ta-
ble summarizes the results of this experiment. As ex-

pected, the straight-line trajectories (Across, Toward, Away)
tend to have the lowest tracking error due to their simplicity.
Interestingly, position error remains relatively low during the
Curve, Zig-Zag, and Wait trajectories. This can be due to the
fact that relative motion remains low. Velocity estimation
error increases for the more complex trajectories, but is
highest for Zig-Zag. We anticipate this is caused by lag in
our current estimator. Estimator parameters were tuned to
compromise between lag and smoothness.

Table IV
POSITION AND VELOCITY ESTIMATION ERROR VS. SCENARIO TYPE

[Scenario [[Curve [Zig-Zag | Across | Toward | Away [Wait |
Position
RMSE(m) 0.32 0.26 0.21 0.27 0.31 0.35
Velocity
RMSE(my/s) || 0! 0.59 0.18 0.21 026 | 046

D. Qualitative Analysis

Figures [6] [5] [7] [§] directly compare the trajectories and
velocities estimated by aUToTrack against the GPS-based
ground truth in our dataset. Our first observation is that
our approach is capable of replicating the reference position
trajectories with high accuracy. However, one can also
observe that the position and velocity estimation appears to
overshoot and somewhat lag behind the ground truth. This
is likely caused by estimator dynamics, and can be remedied
with parameter tuning. Even though the Zig-Zag velocities
shown in Figure [§] change rapidly, we are still able to track
the velocity with respectable accuracy. Figure [/| shows a
similar story, where the pedestrian abruptly changes velocity,
challenging the tracker to keep up.

Overall, we are please with the performance of aUToTrack
on our dataset, although there is clearly room for im-
provement. Future work will include improving the velocity
tracking in challenging scenarios, and boosting the position
accuracy at 35m.

E. KITTI Object Tracking

Table [V] summarizes the performance of aUToTrack on
the KITTI Object Tracking test set. As of writing, we rank
among the top five published works. The metrics used in

Position Tracking on UofTPed50

T
=——Ground Truth
——aUToTrack 1
—Position of Car

y-position (m)
N

2 1 1
-30 -25 -20 -15 -10 -5 0
x-position (m)

Figure 5. Zig-Zag scenario position tracking. The pedestrian starts roughly
30m away, then follows a Zig-Zag trajectory towards the stationary car.

Velocity Tracking (y-component)

Position Tracking on UofTPed50

10 T T T 3r

T
——Ground Truth
8 —aUToTrack H 2
—Position of Car

E
c = 1r
2 af . £
i >0
2 2f 1 £
> '\ 8 1

ok e °

1 1 1 1 1 1 1 >
-30 -25 -20 -15 -10 -5 0 -2 {—Ground Truth
x-position (m) ——aUToTrack
-3 1 1 1 1 1

0 5 10 15 20 25 30 35

Figure 6. Straight Scenario Position Tracking. The pedestrian starts elapsed time (s)

roughly 20m away on the left of the car, then follows a straight trajectory

laterally. Figure 8. Zig-Zag scenario velocity estimation, corresponding to Figure ??.
The pedestrian starts roughly 30m away, then follows a Zig-Zag trajectory

12 - Velocity Tracking (y-component) towards the stationary car.

=—Ground Truth
et |

= 28T information. The results show that choosing the best detector
E 06 has by far the largest impact on performance on these
£ o4 datasets. Thus, in order to compete with the other approaches
§ 0.2 listed in Table [V} a powerful detector is required. Table
0 also show that our addition of 3D information via clustering
02 | | | | | | has a substantial improvement on the MOTA and Precision,

0 5 10 15 20 25 30 a modest improvement to MT, and negligible impact on the
elapsed time (s) .
other metrics.

Figure 7. Wait scenario velocity estimation. For the first 15 seconds, the Table V
car approaches a stopped pedestrian and stops. The pedestrian then crosses

RESULTS ON THE KITTI OBJECT TRACKING TEST SET
laterally and stops.

| [MOTAT | MOTPT | MTT | ML] | IDS] | FRAG] | FPST |

j4] 86.6 84.0 72.5 6.8 293 501 1.7

this benchmark are defined as the Clear MOT metrics from | Dl | 842 Lo 732 | 28 | 468 | 944 3.3

. . . [6] 83.0 82.7 60.6 11.4 172 365 53

[21]. Our approach is very simple: we use LIDAR data Ours 1823 303 76 135 1025 [1402 100

and 2D bounding boxes to estimate the 3D position of 170 80.4 81.3 628 | 62 121 613 100
objects and then we employ baseline data association and
tracking techniques. Despite this simplicity, we are able

Table VI

to achieve quite competitive performance, while tieing for
q p p i g ABLATION STUDIES: NETWORK COMPARISON, USE OF CLUSTERING

highest framerate among the top five published works. It ON KITTI OBJECT TRACKING TRAINING SET

should be noted that we are only able to achieve state-of-the-

art performance when using Recurrent Rolling Convolutions | [MOTAT [MOTPT [RT [Pf [MTT [ML| [FPST |
(RRQ). Since we are working on a tracking benchmark, it E‘é‘;ﬁ:f:gﬁ; 488 78.2 649 | 856 | 31.4 | 257 | 50
seemed appropriate to use a very good detector. SqueezeDet || 46.0 737 51185 310 261 1350

‘ We not.e that our MT metric ranks guite l'1ighly‘. Our ?(ljllgsterin 84.9 79.7 943 | 950 | 872 | 1.9 07
interpretation of this result is that tracking objects in 3D RRC g 03 500 oid o6 570 19 07

is simply not as difficult as tracking objects within a 2D
image plane. Since our system possesses a 3D estimate
of the location and velocity of all objects, we are able to X. CONCLUSION
predict the motion of objects more reliably than vision-
based approaches. We also note that our FRAG and IDS
metrics do not do as well. This is easily attributed to the
fact that our data association relies purely on the locations of
objects in 3D space. We believe that using image features for
data association could dramatically reduce these numbers.
However, a more complex data association step would likely
also increase runtime.

Table compares our results on the training set when
using different detectors, with and without our 3D clustering "We plan on releasing the dataset in June 2019

In this paper, we introduced the UofTPed50 dataseﬂ, an
alternative to KITTI for benchmarking 3D Object Detection
and Tracking which we will be making publicly available.
The UofTPed50 dataset offers precise ground truth for the
position and velocity of a pedestrian in 50 varied and
challenging scenarios — something that is currently unavail-
able anywhere else. We also described our approach to the
problem of 3D Object Detection and Tracking — aUToTrack.

We use vision and LIDAR to generate raw detections and
use GPS/IMU measurements to track objects in a global
metric reference frame. We use an off-the-shelf 2D object
detector paired with a simple clustering algorithm to obtain
3D position measurements for each object. Given this 3D
information, we then use simple data association and filter-
ing techniques to obtain competitive tracking performance.
We demonstrate state-of-the-art performance on the KITTI
Object Tracking public benchmark while showing that our
entire pipeline is capable of running in less than 75 ms
on CPUs only. Our future work will include bolstering our
velocity estimation on UofTPed50 and reducing the error in
our position estimates at ranges exceeding 35 m.

REFERENCES

[1] K. Burnett, A. Schimpe, S. Samavi, M. Gridseth, C. W.
Liu, Q. Li, Z. Kroeze, and A. P. Schoellig, “Building a
winning self-driving car in six months,” arXiv preprint
arXiv:1811.01273, 2018.

[2] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for
autonomous driving? the kitti vision benchmark suite,” in
Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[3] J.Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y.-W. Tai,
and L. Xu, “Accurate single stage detector using recurrent
rolling convolution,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017.

[4] W. Choi, “Near-online multi-target tracking with aggregated
local flow descriptor,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2015, pp. 3029-3037.

[5S] S. Sharma, J. A. Ansari, J. K. Murthy, and K. M. Krishna,
“Beyond pixels: Leveraging geometry and shape cues for
online multi-object tracking,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 1EEE,
2018, pp. 3508-3515.

[6] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the
untrackable: Learning to track multiple cues with long-term
dependencies,” in International Conference on Computer
Vision (ICCV), 2017.

[7] S. Scheidegger, J. Benjaminsson, E. Rosenberg, A. Kr-
ishnan, and K. Granstrém, “Mono-camera 3d multi-object
tracking using deep learning detections and pmbm filtering,”
in 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE,
2018, pp. 433-440.

[8] H. Somerville. (2019). Gm’s driverless car bet faces long
road ahead, [Online]. Available: https : / / uk . reuters .
com / article / uk - gm - selfdriving - cruise - insight -
1IdUKKCNIMYOCQ) (visited on 02/18/2019).

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:
Towards real-time object detection with region proposal
networks,” in Advances in neural information processing
systems, 2015, pp. 91-99.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” in
European conference on computer vision, Springer, 2016,
pp. 21-37.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 779-788.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

(21]

B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet:
Unified, small, low power fully convolutional neural net-
works for real-time object detection for autonomous driv-
ing,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2017, pp. 129—
137.

C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum
pointnets for 3d object detection from rgb-d data,” arXiv
preprint arXiv:1711.08488, 2017.

J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslan-
der, “Joint 3d proposal generation and object detection
from view aggregation,” CoRR, vol. abs/1712.02294, 2017.
arXiv: 1712.02294, [Online]. Available: http://arxiv.org/
abs/1712.02294.

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft,
“Simple online and realtime tracking,” in Image Processing
(ICIP), 2016 IEEE International Conference on, 1EEE,
2016, pp. 3464-3468.

L. Leal-Taixé, A. Milan, 1. Reid, S. Roth, and K. Schindler,
“Motchallenge 2015: Towards a benchmark for multi-target
tracking,” arXiv preprint arXiv:1504.01942, 2015.

F. Moosmann and C. Stiller, “Joint self-localization and
tracking of generic objects in 3d range data,” in Robotics
and Automation (ICRA), 2013 IEEE International Confer-
ence on, IEEE, 2013, pp. 1146-1152.

A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard,
“Motion-based detection and tracking in 3d lidar scans,”
in 2016 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2016, pp. 4508-4513.

Intel. (2019). Intel distribution of openvino toolkit, [Online].
Available: https://software.intel.com/en-us/openvino-toolkit
(visited on 02/18/2019).

R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library
(PCL),” in IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 2011.

K. Bernardin and R. Stiefelhagen, “Evaluating multiple ob-
ject tracking performance: The clear mot metrics,” Journal
on Image and Video Processing, vol. 2008, p. 1, 2008.

https://uk.reuters.com/article/uk-gm-selfdriving-cruise-insight-idUKKCN1MY0CQ
https://uk.reuters.com/article/uk-gm-selfdriving-cruise-insight-idUKKCN1MY0CQ
https://uk.reuters.com/article/uk-gm-selfdriving-cruise-insight-idUKKCN1MY0CQ
http://arxiv.org/abs/1712.02294
http://arxiv.org/abs/1712.02294
http://arxiv.org/abs/1712.02294
https://software.intel.com/en-us/openvino-toolkit

	Introduction
	Related Work
	Object Detection
	Object Tracking

	2D Object Detector
	Clustering
	Tracker Setup
	Constant Velocity Motion and Measurement Models
	Linear Kalman Filter
	Tracking in World Frame

	Data Association
	Managing The List of Tracked Objects
	UofTPed50
	Experiments:
	Varying Distance
	Varying Relative Motion
	Varying Trajectory Shape
	Qualitative Analysis
	KITTI Object Tracking

	Conclusion
	References

