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Abstract— In real-world applications, we often require re-
liable decision making under dynamics uncertainties using
noisy high-dimensional sensory data. Recently, we have seen
an increasing number of learning-based control algorithms
developed to address the challenge of decision making under
dynamics uncertainties. These algorithms often make assump-
tions about the underlying unknown dynamics and, as a result,
can provide safety guarantees. This is more challenging for
other widely used learning-based decision making algorithms
such as reinforcement learning. Furthermore, the majority
of existing approaches assume access to state measurements,
which can be restrictive in practice. In this paper, inspired
by the literature on safety filters and robust output-feedback
control, we present a robust predictive output-feedback safety
filter (RPOF-SF) framework that provides safety certification
to an arbitrary controller applied to an uncertain nonlinear
control system. The proposed RPOF-SF combines a robustly
stable observer that estimates the system state from noisy
measurement data and a predictive safety filter that renders
an arbitrary controller safe by (possibly) minimally modifying
the controller input to guarantee safety. We show in theory
that the proposed RPOF-SF guarantees constraint satisfaction
despite disturbances applied to the system. We demonstrate the
efficacy of the proposed RPOF-SF algorithm using an uncertain
mass-spring-damper system.

I. INTRODUCTION

In many practical settings including autonomous driv-
ing and other robotics applications, only noisy and high-
dimensional measurements are available and controllers must
be designed that provide desired safety guarantees despite
not having perfect state information. However, many control
techniques assume access to the full state and an exact
description of the system dynamics and observation model,
which may not be available.

Recently, learning-based controllers have gained interest
in such settings as they can synthesize control policies from
high-dimensional measurements. Learning-based controllers
such as reinforcement learning (RL) agents can improve per-
formance by leveraging past experiences from the interaction
with an environment, e.g., by operating in the real world.
These experiences generally also include failures, which
could result in damage to the robot or of its surrounding.

As learning-based controllers often do not account for
safety constraints, add-on safety filters have been proposed
to decouple performance (learning-based controller) and
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Fig. 1: A block diagram of the proposed robust predic-
tive output-feedback safety filter (RPOF-SF). The proposed
RPOF-SF consists of a robust observer (blue) and a predic-
tive safety filter module (red). The robust observer provides
an estimate of the system state from noisy output measure-
ments, while the predictive safety filter modifies the input
sent from an arbitrary controller with the goal to guarantee
constraint satisfaction (i.e., to make it safe).

safety (safety filter). These safety filters certify the safety
of control inputs from learning-based controllers and modify
them if the safety filter determines the original control input
would lead to safety violations. Current safety filter methods
typically assume noisy state feedback. However, in practice,
we must often rely on partial and noisy output measurements
instead. If a safety filter does not account for measurement
noise and/or state estimation errors present in the system,
then the safety filter can generally not guarantee safety [1].

In this paper, building on the idea of robust output
feedback model predictive control (MPC) [2] and model
predictive safety certification (MPSC) [3], we derive a
robust predictive output-feedback safety filter (RPOF-SF)
that includes a predictive safety filter and a robustly stable
observer (see Fig. 1). The proposed approach allows an
uncertain system to operate safely under arbitrary control
policies. We validate the proposed RPOF-SF on a numerical
example1.

II. RELATED LITERATURE

We summarize related literature on safety filters and robust
output-feedback control in this section.

A. Safety Filters

Learning-based controllers such as reinforcement learning
have been proposed to address the challenge of decision
making under uncertainties. As compared to traditional
model-based control techniques, learning-based approaches
can be applied to a wider class of systems subject to

1The code is available at: https://github.com/utiasDSL/dsl rpof sf
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model uncertainties [1]. Despite their flexibility, learning-
based controllers often lack formal safety guarantees. In
recent years, there have been several efforts from the control
community targeted to address the problem of providing
desired theoretical guarantees for learning-based controllers
that are not initially designed to be safe. One stream of
work in this area are safety filters. A safety filter minimally
modifies any unsafe control inputs from the learning-based
controller such that the system’s state stays inside a safe
set [1], which is either explicitly or implicitly defined.

Common techniques for explicitly defining safe sets in-
clude control barrier functions (CBF) [4]–[6] and Hamilton-
Jacobi (HJ) reachability [7], [8], which are generally defined
for continuous-time systems. Intuitively, the CBF framework
provides a scalar condition for certifying control inputs to
guarantee state constraint satisfaction, while the HJ reach-
ability framework provides a means to compute a robust
positive control invariant safe set, which is a set that is
contained in a given state constraint set such that if the
uncertain system starts inside the set, there exists a control
law to keep the system inside the set despite disturbances.
The explicit safe set characterizations from the CBF frame-
work and the HJ reachability analysis provide the basis for
designing safety filters to render a learning-based control
system safe. Recently, CBF and HJ reachability are combined
with learning to reduce the conservatism in the safety filter
design for uncertain systems [5], [6], [8], [9].

An alternative to CBF and HJ reachability frameworks for
safety certification is through the use of predictive filters,
which do not assume a pre-computed safe set but determine
the safe set implicitly via a MPC framework. A common
safety filter that implements this idea is MPSC, which solves
a finite-horizon constrained optimization problem with a
discrete-time predictive model to prevent a learning-based
controller from violating constraints [3]. These predictive
filters typically require state-feedback and do not handle
partial state measurements. To the best of our knowledge,
a predictive safety filter for output-feedback systems has not
been proposed.

B. Robust Output-Feedback Control

Due to their wide applicability and popularity, we focus
on MPC techniques in this section. At every time step,
MPC solves a finite-horizon optimal control problem subject
to constraints, applies the first optimal control input, and
replans at the next time step [10]. As MPC relies on
its predictive model for optimal performance, disturbances
acting on the system can lead to loss of feasibility of the
optimization or constraint violation at the next time step.
Under the assumption of full-state measurements, recent non-
linear robust tube-based MPC schemes guarantee constraint
satisfaction and feasibility for uncertain systems [11]–[13].
These schemes rely on a pre-stabilizing controller to stay
close to a nominal trajectory and constraint tightening, such
that no disturbance can lead to constraint violations. For
linear systems with partial and noisy state measurements,
there exist robust output-feedback MPC methods [14]–[17].

These approaches combine a robust MPC with a Luenberger
observer and apply additional constraint tightening based
on bounds on the estimation error. Recent work in [2]
extends the nonlinear robust tube-based MPC scheme to the
output-feedback setting. This approach designs a robustly
stable observer that predicts verifiable error bounds on the
estimation error. Additionally accounting for these bounds in
the pre-stabilizing controller and constraint tightening yields
constraint satisfaction for all future time steps.

There also exist min-max robust MPC formulations that
simultaneously optimize for the optimal state estimate and
control input sequence [18], [19]. While [19] is only ap-
plicable to linear systems, [18] handles nonlinear systems.
However, these techniques typically have a high computa-
tional demand. This puts min-max methods at a disadvantage
compared to tube-based methods for systems with complex
dynamics requiring high control rates.

In this paper, we combine model predictive safety certifica-
tion [3] with a recent framework for robust output-feedback
MPC [2] to guarantee safe closed-loop operation for arbitrary
control policies, which includes potentially unsafe control
policies of a reinforcement learning agent.

Notation: The non-negative real numbers are R≥0. The
set of integers in the interval [a, b] ⊂ R is I[a,b], and the set
of integers in the interval [a,∞) ⊂ R is I≥a. The class K
denotes continuous functions γ : [0, a) → R≥0 with a >
0, γ(0) = 0, and γ strictly monotonically increasing. The
class K∞ denotes functions γ ∈ K with a =∞ that satisfy
limr→∞ γ(r) =∞.

III. PROBLEM STATEMENT

This paper is concerned with safely controlling an uncer-
tain nonlinear constrained system with multiple inputs and
multiple outputs, where not all states are measured and there
is measurement noise. We consider the following uncertain
nonlinear discrete-time system

xk+1 = fw(xk, uk, wk) = f(xk, uk) + Ewk

yk = hw(xk, uk, wk) = h(xk, uk) + Fwk ,
(1)

where k ∈ I≥0 is the the discrete time step, xk ∈ X ⊆
Rnx is the state, uk ∈ U ⊆ Rm is the control input,
wk ∈ W ⊂ Rq is the disturbance with W being a bounded
disturbance set containing zero, and yk ∈ Y ⊆ Rny is the
noisy output. As W is bounded, there exists a scalar bound
on the disturbance w̄ ≥ 0 such that ‖wk‖ ≤ w̄ for all
k ∈ I≥0. The state dynamics fw : X × U × W → Rnx

and output equation hw : X×U×W→ Rny are continuous
functions. The nominal dynamics and output equations are
given by f(x, u) = fw(x, u, 0) and h(x, u) = hw(x, u, 0),
respectively. The matrices E ∈ Rnx×q and F ∈ Rny×q map
disturbances to states and outputs, respectively.

The goal of this work is to design a robust predictive
output-feedback safety filter that guarantees safe operation
of the system under arbitrary and potentially unsafe control
policies. Safe operation of the system is defined by staying
inside user-defined state and input constraints (xk, uk) ∈ Z
for all time steps k ∈ I≥0. In this paper, we leverage



techniques from a recent robust output-feedback MPC frame-
work [2] to develop a model predictive safety certification
scheme for uncertain nonlinear systems without full-state
feedback and noisy measurements.

IV. BACKGROUND
In this section, we introduce the necessary background for

our proposed robust predictive output-feedback safety filter,
which we will refer to as the RPOF-SF. First, we introduce a
recent framework for robust output-feedback MPC [2]. This
framework leverages incremental Lyapunov functions, which
provide scalar propagation laws for over-approximations of
the estimation and prediction errors. These propagation laws
allow the design of robustly stable observers and can be
efficiently evaluated in the MPC optimization. Second, we
present a predictive safety filter inspired by MPC as in [3].
We leverage these ideas in our RPOF-SF to guarantee safe
operation of dynamics systems with constraint satisfaction
under bounded uncertainties in the dynamics and output.

A. Robust Output-Feedback MPC

We first introduce recent results on robust output-feedback
MPC for nonlinear uncertain systems using online estimation
error bounds [2].

Incremental Lyapunov Functions: Incremental Lyapunov
functions provide a way of analyzing the stability between
two trajectories from the same system with the same control
input but different initial conditions. Intuitively, incremental
stability between two trajectories means that both trajectories
converge to the same trajectory. The notion of incremental
stability can be extended to (i) incremental input/output-to-
state stability (i-IOSS) by considering systems with inputs
and outputs or (ii) incremental input-to-state stabilizability
by considering a system with an additional feedback pol-
icy [2]. We begin with the definitions of detectability and
stabilizability in terms of incremental Lyapunov functions.

Detectability for nonlinear systems can be described by an
i-IOSS Lyapunov function [20]. As we will show below, the
i-IOSS Lyapunov function provides us with the tool to syn-
thesize robustly stable observers with guaranteed estimation
error bounds.

Definition 1 (i-IOSS Lyapunov function [20]): A
function Vd : X × X → R≥0 (with subscript d
for detectability) is called an (exponential-decrease) i-
IOSS Lyapunov function if there exist lower and upper
bounds on Vd with αd,l, αd,u ∈ K∞, bounding functions
σd,w, σd,y ∈ K, and a decay rate ρd ∈ (0, 1) such that

αd,l(‖x− x̃‖) ≤ Vd(x, x̃) ≤ αd,u(‖x− x̃‖) (2a)

Vd(x+, x̃+) ≤ ρdVd(x, x̃) + σd,w(‖w − w̃‖)+
σd,y(‖y − ỹ‖), (2b)

where x+=fw(x, u, w), x̃+=fw(x̃, u, w̃), y=hw(x, u, w),
ỹ=hw(x̃, u, w̃) for all x, x̃ ∈ X, u ∈ U, and w, w̃ ∈W.

Intuitively, such an i-IOSS Lyapunov function defines the
convergence of two trajectories x and x̃ under the same
control inputs u and the respective disturbances w and w̃.
In Eqn. 2b, the decay rate ρd defines how quickly the two

trajectories converge, while σd,w and σd,y bound the effect of
the disturbances and output, respectively. Given this notion
of stability, we can then bound a trajectory {xi}Hi=0 of length
H ∈ N using the knowledge of another trajectory {x̃i}Hi=0.

Incremental input-to-state stability (i-ISS) studies the sta-
bility of trajectories in the presence of disturbances w [13].
The notion of incremental input-to-state stability (i-ISS)
can be extended to incremental input-to-state stabilizability
by considering a control Lyapunov function (CLF). As we
will see next, we can conveniently use this condition in a
robust MPC framework to determine constraint tightening
and thereby provide constraint satisfaction guarantees.

Definition 2 (i-ISS CLF [2]): A function Vs : X × X →
R≥0 (with subscript s for stabilizability) is called an
(exponential-decrease) i-ISS CLF if there exist lower and
upper bounds on Vs with αs,l, αs,u ∈ K∞, bounding func-
tions σs,w, σπ ∈ K, decay rate ρs ∈ (0, 1), and a control law
π : X× X× U→ U such that

αs,l(‖x− x̃‖) ≤ Vs(x, x̃) ≤ αs,u(‖x− x̃‖) (3a)

Vs(x
+, x̃+) ≤ ρsVs(x, x̃) + σs,w(‖w − w̃‖) (3b)
‖π(x̃, x, u)− u‖ ≤ σπ(‖x− x̃‖), (3c)

where x+=fw(x, u, w), x̃+=fw(x̃, π(x̃, x, u), w̃) for all
x, x̃ ∈ X, u ∈ U, and w, w̃ ∈W.

The i-ISS CLF describes the convergence of two trajecto-
ries x and x̃ under respective disturbances w and w̃ achieved
by the additional feedback π. Similar to the notion of i-ISS,
the decay rate ρs in Eqn. 3b defines how quickly the two
trajectories converge, while σs,w bounds the effect of the
disturbance. The condition in Eqn. 3b allows us to efficiently
propagate the set of states that are reachable at future time
steps.

We note that there exist various methods in the literature
for the synthesis of such incremental Lyapunov functions,
see [21]–[23]. By making a few simplifying assumptions
(e.g., continuously differentiable dynamics, quadratic in-
cremental Lyapunov function, linear K functions), we can
rewrite the conditions for the i-IOSS Lyapunov function and
i-ISS CLF as linear matrix inequalities (LMIs). Furthermore,
as discussed in [23], by using a convexifying or a gridding
approach, we can turn the synthesis problem into a finite
semi-definite program (SDP), which can be solved to achieve
desired decay rates ρd and ρs. The existence of the incre-
mental Lyapunov functions is checked prior to closed-loop
execution, and the constants and the class K functions are
pre-computed based on either Eqn. 2 or Eqn. 3. As we will
see in Eqn. 12, in a robust output-feedback MPC formulation,
we can replace the incremental Lyapunov conditions by a set
of scalar conditions using the decay rates ρd, ρs and the class
K functions. These scalar conditions only minimally increase
the computational demand compared to a nominal MPC.

State Estimation Error Bounds: One key ingredient
in a robust output-feedback MPC framework is a robustly
stable observer. We next introduce Luenberger-like observers
and moving horizon estimators (MHE) with valid online
estimation error bounds. We consider the Luenberger-like



observer as a back-up observer if the robustness conditions
for the MHE are not satisfied.

Inspired by Luenberger observers for linear systems, a
nonlinear observer is given by

x̂k+1 = f(x̂k, uk) + L̂(x̂k, uk, yk) = f̂(x̂k, uk, yk) , (4)

with the estimated state x̂k ∈ Rnx and the estimator correc-
tion L̂ : X× U× Y→ X that satisfies L̂(x̂, u, h(x̂, u)) = 0.

Assumption 1 (Robustly stable observer [2]): There exist
an incremental Lyapunov function Vo : X×X→ R≥0 (with
subscript o for observer) with lower and upper bounds
αo,l, αo,u ∈ K∞, bounding functions σo,w, σo,L, σo,L,w ∈ K,
and decay rate ρo ∈ (0, 1), such that

αo,l(‖x− x̂‖) ≤ Vo(x, x̂) ≤ αo,u(‖x− x̂‖) (5a)

Vo(f̂(x̂, u, y), f(x, u, w)) ≤ ρoVo(x, x̂) + σo,w(‖w‖) (5b)

‖L̂(x̂, u, y)‖ ≤ σo,L(Vo(x, x̂)) + σo,L,w(‖w‖), (5c)

where y=hw(x, u, w) for all x, x̂ ∈ X, u ∈ U, and w ∈W.
To simplify the following discussion, we assume that the

incremental Lyapunov function is identical to the i-IOSS
Lyapunov function with Vo = Vd. Sufficient conditions for
Vo being an i-IOSS Lyapunov function can be found in [2]
and require affine disturbances in the state dynamics and
output equation (as assumed in Eqn. 1) and a quadratic Vo.

Given an upper bound ē0 on the initial estimation error
e0 such that 0 ≤ e0 ≤ ē0 and the robust stable observer
described by the i-IOSS Lyapunov function Vo, the error
bound can be recursively updated either offline or online

ēk+1,offline = ρoēk + σo,w(‖w̄‖) ,
ēk+1,online = ρdēk + σd,w(w̄ + ‖ŵk‖) + σd,y(‖ŷk − yk‖) ,

(6)

where ŵk=Eᵀ (EEᵀ)
−1
L̂(x̂k, uk, yk) with E defined in

Eqn. 1 and ŷk=h(x̂k, uk). The online update incorporates
the latest output measurement yk, while the offline update
requires no additional data and relies entirely on the pre-
computed decay rate ρo, σo,w, and w̄. See [2] for a proof of
the recursive updates in Eqn. 6.

The (exponential-decay) i-IOSS Lyapunov function Vo

with Vo(x̂0, x0) ≤ ē0 guarantees that for all k ∈ I≥0, x̂k, ēk
from Eqn. 4 and Eqn. 6 satisfy

Vo(xk, x̂k) ≤ ēk (7a)

‖L̂(x̂k, uk, yk)‖ ≤ σo,L(ēk) + σo,L,w(‖w̄‖) , (7b)

ēk+i ≤ ρioēk +
1− ρio
1− ρo

σo,w(‖w̄‖) ,∀i ∈ I≥0 .
(7c)

See [2] for the proof. The conditions in Eqn. 7 provide
desirable properties for the state estimation since they yield
valid bounds on the estimation error and their prediction.

In the following, we introduce the MHE that determines
the state estimate over a backward finite-time horizon M>0.
The MHE is considered as the dual of MPC for state esti-
mation and solves a finite-horizon optimization to determine
an optimized state estimate using past input and output data.

Assumption 2 (Continuous i-IOSS Lyapunov function):
There exists a function σd ∈ K, such that for any
x, x̂, x̃ ∈ X, the i-IOSS Lyapunov function Vd satisfies

|Vd(x̂, x)− Vd(x̃, x)| ≤ σd(‖x̂− x̃‖) . (8)
In the following, we use the notation x̂i|k to denote the

open-loop prediction from state x̂k at time step k + i. At
time step k, the MHE with the backward horizon Mk =
min{k,M} and the past initial state estimate x̂k−Mk

is given
by the following nonlinear program [2]:

J∗Mk,MHE(x̂k−Mk
) =

min
ŵ−Mk:−1|k,x̂−Mk|k

Mk∑
j=1

ρj−1
d (σd,w(w̄ + ‖ŵ−j|k‖)+

σd,y(‖ŷ−j|k − yk−j‖))+
ρMk

d ēk−Mk
+

ρMk

d σd(‖x̂−Mk|k − x̂k−Mk
‖)

s.t. x̂−j+1|k = fw(x̂−j|k, uk−j , ŵ−j|k) ,

ŷ−j|k = hw(x̂−j|k, uk−j , ŵ−j|k) ,

∀j ∈ I[1,Mk] .

(9)

The resulting state estimate and estimation error bound can
be determined by propagating the minimizers of Eqn. 9
ŵ∗−Mk:−1|k, x̂

∗
−Mk|k until x̂∗0|k is reached:

x̂k,MHE = x̂∗0|k ,

êk,MHE = J∗Mk,MHE(x̂k−MK
) .

(10)

As the MHE requires additional assumptions to be robustly
stable, we can instead check conditions Eqn. 7b and Eqn. 7c
on the estimation error for the MHE update to guarantee
robustness of the MHE update. In the following, we assume
that the resulting estimation error bound from the MHE is
valid according to Eqn. 7b and Eqn. 7c. In practice, these
conditions must be checked at every step. If the conditions
are not met, the backup Luenberger-like observer is used.

Prediction Error Bounds: In this part, we highlight
the use of incremental Lyapunov functions for tube-based
predictions of the combined error bounds originating from
the estimation error and the additive disturbance on the
dynamics. This requires the analysis of the incremental
stability between the true state x, the state estimate x̂, and a
nominal state x̄.

Under the assumption that Vs is an i-ISS CLF, there also
exist functions σs,o, σs,o,w ∈ K such that:

Vs(x̄
+, x̂+) ≤ ρsVs(x̄, x̂)+σs,o(Vo(x̂, x))+σs,o,w(w̄) , (11)

where u = π(x̂, x̄, ū), y = hw(x, u, w), x̄+ = f(x̄, ū), and
x̂+ = f̂(x̂, u, y) (see [2] for a proof of this implication). The
conditions on Vs can be used to predict the combined errors
from the estimation and the disturbed state dynamics.

Tube-based Robust Output-feedback MPC: The robust
output-feedback MPC minimizes a user-defined continuous
stage cost ` : X × U × R≥0 × R≥0 → R, which allows for
additional arguments to also include the bounds on the esti-
mation and prediction errors. Robust constraint satisfaction



is guaranteed via the proper design of a continuous terminal
cost Vf : X × R≥0 × R≥0 → R and a terminal constraint
set Xf ⊆ X× R≥0 × R≥0. At time step k, for a given state
estimate from the Luenberger-like observer Eqn. 6 and Eqn. 4
or the MHE Eqn. 10, the robust output-feedback MPC open-
loop optimization problem over a finite horizon N ∈ I≥1 is:

J∗N,MPC(x̂k, ēk) = (12a)

min
ū0:N−1|k,x̄0|k

N−1∑
i=0

l(x̄i|k, ūi|k, ēi|k, s̄i|k)+ (12b)

Vf(x̄N |k, ēN |k, s̄N |k) (12c)
s.t. s̄0|k = Vs(x̄0|k, x̂k) , (12d)

x̄i+1|k = f(x̄i|k, ūi|k) ,∀i ∈ I[0,N−1] , (12e)

ēj|k =
1− ρjd
1− ρd

σo,w(w̄) + ρjdēk ,∀j ∈ I[0,N ] ,

(12f)
s̄i+1|k = ρss̄i|k + σs,o(ēi|k) + σs,o,w(w̄) ,

(12g)
(xi|k, π(x̂i|k, x̄i|k, ūi|k)) ∈ Z , (12h)
Vs(x̄i|k, x̂i|k) ≤ s̄i|k ,∀xi|k, x̂i|k , (12i)
Vo(x̂i|k, xi|k) ≤ ēi|k ,∀xi|k, x̂i|k , (12j)
(x̄N |k, ēN |k, s̄N |k) ∈ Xf . (12k)

Eqn. 12c guarantees that the initial nominal state is inside
the set around the state estimate given by Vs. The constraints
in Eqn. 12e, Eqn. 12f, and Eqn. 12g specify the nominal
dynamics, estimation error bound and prediction error bound
propagation, respectively. Eqn. 12h guarantees constraint
satisfaction for the true state and control input. Proper
containment inside the tubes given by Vs and Vo for the
nominal and true state is achieved by Eqn. 12i and Eqn. 12j.
Finally, the terminal constraint is satisfied with Eqn. 12k.

The minimizers of Eqn. 12 are ū∗0:N−1|k, x̄∗0|k. At each
time step, only the first optimal control input ū∗0|k is applied
to the system through uk = π(x̂k, x̄

∗
0|k, ū

∗
0|k). Then the open-

loop optimization problem is solved again at the next time
step using an updated state estimate x̂k+1 and error bound
ēk+1 over a shifted time horizon.

Properly designed terminal ingredients provide constraint
satisfaction and recursive feasibility of the robust output-
feedback MPC.

Assumption 3 (Terminal constraint set [2]): There exists
a control law πf : X→ U such that for all (x̄, ē, s̄) ∈ Xf and
x, x̂ ∈ X satisfying Vs(x̄, x̂) ≤ s̄ and Vo(x̂, x) ≤ ē, and for
all s̄+, ē+ ∈ R≥0 satisfying s̄+ ≤ ρss̄+ σs,o(ē) + σs,o,w(w̄)
and ē+ ≤ ρoē+ σo,w(w̄), it holds that

(x̄+, ē+, s̄+) ∈ Xf , (x, π(x̂, x̄, ū)) ∈ Z , (13a)

where x̄+=f(x̄, ū) and ū=πf(x̄).
Recursive feasibility and boundedness of the closed-loop

cost can be shown using a terminal constraint set satisfying
Assumption 3 and some additional assumptions on the stage
cost ` and the terminal cost function Vf [2].

Under the assumption of continuous constraint functions
and the initial nominal state being equal to the initial state
estimate, x̄∗0|k = x̂k (this implies s̄∗0|k = 0), the constraint
tightening can be pre-computed. The resulting computational
demand is comparable to a nominal MPC [2].

We use the robust output-feedback MPC framework as
the basis for our proposed safety filter to provide safety
guarantees for constrained nonlinear systems with bounded
estimation errors.

B. Model Predictive Safety Certification
The model predictive safety certification (MPSC) method

is inspired by model predictive control techniques. Instead
of providing an optimal control input, the MPSC takes an
arbitrary control input and certifies the provided input either
as safe or unsafe [3]. If the control input is considered as safe,
it passes through the MPSC without modification. Otherwise,
the control input is deemed unsafe and is minimally modified
(according to a distance measure) such that the control input
is safe. This relies on techniques from MPC to guarantee
constraint satisfaction for all time steps. Guarantees are
provided through the existence of a safe set Sf :

Assumption 4 (Safe set): There exists a control policy
πsafe : X→ U such that for all (x̄k, ēk, s̄k) ∈ Sf and for all
j ∈ I≥0 and all xk+j , x̂k+j ∈ X satisfying Vs(x̄k+j , x̂k+j) ≤
s̄k+j and Vo(x̂k+j , xk+j) ≤ ēk+j , it holds that

(xk+j , π(x̂k+j , x̄k+j , ūk+j)) ∈ Z (14)

with x̄k+j+1=f(x̄k+j , ūk+j), ūk+j=πsafe(x̄k+j) and with
any s̄k+j+1, ēk+j+1 ∈ R≥0 satisfying s̄k+j+1 ≤ ρss̄k+j +
σs,o(ēk+j) + σs,o,w(w̄) and ēk+j+1 ≤ ρoēk+j + σo,w(w̄).

The assumption of the existence of safe set Sf is less
restrictive than the assumption of a robustly positive invariant
terminal set Xf as in Assumption 3. However, guaranteeing
constraint satisfaction for all future time steps requires addi-
tional attention (cf. proof for Theorem 1).

We present the idea of MPSC using nominal dynamics
and full-state measurements, such that xk = x̄k and uk =
π(x̂k, x̄k, ūk) = π(x̄k, x̄k, ūk) = ūk. The safety filter
framework can be extended to uncertain systems using a
formulation as in robust MPC. The main difference between
the MPSC and a nominal MPC is the objective function.
For the MPSC, the objective is the squared error between
the first optimal control input u∗0|k and the provided control
input at the current state ũ = πL(xk), where πL : X× U is
an arbitrary and potentially unsafe control policy. Then the
open-loop optimization problem for the MPSC at time step k
under the assumption of zero disturbances and perfect state
measurements is given by:

J∗N,MPSC(xk) = min
u0:N−1|k

‖πL(xk)− u0|k‖22
s.t. ∀i ∈ I[0,N−1] ,

xi+1|k = f(xi|k, ui|k) ,

(xi|k, ui|k) ∈ Z ,
x0|k = xk ,

xN |k ∈ Sf .

(15)



The certified control inputs that can be safely applied to the
system are given by the minimizer uk = u∗0|k in an MPC
fashion. Proofs for constraint satisfaction for all future time
steps using an adaptive horizon approach and guarantees for
handling uncertain state dynamics can be found in [3].

Previous results assume full-state measurements without
noise. In this work, we extend the model predictive safety
certification optimization problem to handle uncertain output
measurements using state estimates with valid error bounds.

V. ROBUST PREDICTIVE OUTPUT-FEEDBACK
SAFETY FILTER (RPOF-SF)

In this section, we present our proposed RPOF-SF (see
Fig. 1). The RPOF-SF takes an input from arbitrary state-
feedback control policies and either certifies the input as safe
or modifies the desired control input minimally (according
to the `2-norm) to still guarantee safety for uncertain con-
strained nonlinear systems.

A. Overview of the RPOF-SF Algorithm

As we are dealing with noisy and partial state measure-
ments, we leverage the state estimation techniques from the
previous section to determine state estimates with valid error
bounds. To simplify the formulation, we assume that the
MHE is a robustly stable observer. In practice, this requires
checking the conditions Eqn. 7b and Eqn. 7c. The estimation
error bound at time step k ∈ I≥1 is computed as

ēk = min{ēk,offline, ēk,online, ēk,MHE} , (16)

to determine the smallest upper bound and the state esti-
mate is then either given by the associated MHE or the
Luenberger-like observer with

x̂k =

{
x̂k,MHE if ēk = ēk,MHE ,

f̂(x̂k−1, uk−1, yk−1) otherwise .
(17)

The pair of state estimate x̂k and estimation error bound ēk
are then used to initialize our predictive safety filter.

By combining the robust output-feedback MPC and the
MPSC, we propose the following open-loop optimization
problem for the robust output-feedback predictive safety

filter:

J∗N,RPOF−SF(x̂k, ēk) =

min
ū0:N−1|k,x̄0|k

‖πL(x̂k)− π(x̂k, x̄0|k, ū0|k)‖22 (18a)

s.t. s̄0|k = Vs(x̄0|k, x̂k) , (18b)
x̄i+1|k = f(x̄i|k, ūi|k) ,∀i ∈ I[0,N−1] ,

(18c)

ēj|k =
1− ρjd
1− ρd

σo,w(w̄) + ρjdēk ,∀j ∈ I[0,N ] ,

(18d)
s̄i+1|k = ρss̄i|k + σs,o(ēi|k) + σs,o,w(w̄) ,

(18e)
(xi|k, π(x̂i|k, x̄i|k, ūi|k)) ∈ Z , (18f)
Vs(x̄i|k, x̂i|k) ≤ s̄i|k ,∀xi|k, x̂i|k , (18g)
Vo(x̂i|k, xi|k) ≤ ēi|k ,∀xi|k, x̂i|k , (18h)
(x̄N |k, ēN |k, s̄N |k) ∈ Sf . (18i)

In the proposed RPOF-SF we use the objective function
from Eqn. 15 in Eqn. 18a to certify arbitrary control policies
and substitute the terminal set Xf for the more general safe
set Sf in Eqn. 18i.

The minimizers of Eqn. 18 are denoted by ū∗0:N−1|k, x̄∗0|k.
We apply uk = π(x̂k, x̄

∗
0|k, ū

∗
0|k) to the system and solve the

open-loop optimization again at the next time step with a
receding horizon. If the problem is infeasible at the next time
step, which is possible due to the more general assumption
on the safe set Sf , the procedure in Alg. 1 must be followed
to guarantee constraint satisfaction for all future time steps.
If πL(x̂k) is a feasible control input then uk = πL(x̂k).
Otherwise uk is the minimal modification of πL(x̂k) such
that the optimization in Eqn. 18 is feasible.

The proposed algorithm is given in Alg. 1, where the
additional subscript Ñ in lines 9 and 10 of Alg. 1 indicates
that this nominal state or control input is the result of an
optimization with reduced horizon Ñ < N .

The formulation can be further simplified as in the robust
output-feedback MPC with pre-computed constraint tighten-
ing and tube size 0 at the initial nominal state [24].

B. RPOF-SF Constraint Satisfaction Guarantees

By leveraging the results in [2], [3], we show that the
proposed RPOF-SF guarantees constraint satisfaction for all
time steps.

Theorem 1: Let Assumptions 1 and 4 hold. Suppose that
the system in Eqn. 1 admits an (exponential-decay) i-IOSS
Lyapunov function (Def. 1) and an (exponential decrease)
i-ISS CLF (Def. 2). If the optimization in Eqn. 18 is
feasible at k = 0 with a valid initial estimation error bound
Vo(x̂0, x0) ≤ ē0, then the RPOF-SF described in Alg. 1
guarantees constraint satisfaction for all k ∈ I≥0. Further-
more, if the safe set Sf also satisfies Assumption 3, then the
optimization in Eqn. 18 is recursively feasible.

Proof: Suppose that Eqn. 18 is feasible at time step
k ∈ I≥0. The sequence of nominal optimal control inputs
is {ū∗0|k, . . . , ū∗N−1|k} and the initial optimal nominal state



Algorithm 1 Robust predictive output-feedback safety filter

1: while True do
2: Update x̂k and ēk using Eqn. 16 and Eqn. 17,

respectively.
3: if 18 is feasible for horizon N then
4: kfeasible ← k . Update feasible time step
5: uk ← π(x̂k, x̄

∗
0|k, ū

∗
0|k)

6: else
7: if k < N + kfeasible then
8: Solve 18 for horizon Ñ := N−(k−kfeasible)
9: uk ← π(x̂k, x̄

∗
0|k,Ñ , ū

∗
0|k,Ñ )

10: x̄k ← x̄∗
0|k,Ñ

11: else
12: uk ← π(x̂k, x̄k, πsafe(x̄k))
13: x̄k ← f(x̄k, πsafe(x̄k))
14: end if
15: end if
16: Apply the certified control input uk
17: k ← k + 1
18: end while

is x̄∗0|k. The true state and input satisfy (xk, uk) ∈ Z with
uk = π(x̂k, x̄

∗
0|k, ū

∗
0|k) due to the over-approximation of the

error bounds ēk and s̄∗0|k guaranteed by the i-IOSS Lyapunov
function and the i-ISS CLF under Assumption 1. Then we
can safely apply the control input uk.

If the optimization in Eqn. 18 is feasible at time (k + 1),
then constraint satisfaction for the true state (xk+1, uk+1) ∈
Z is again guaranteed by the over-approximation of the error
bounds and we apply uk+1.

If the optimization is infeasible at time (k+1), we can
construct a feasible solution using a previous feasible so-
lution for a reduced horizon (N−1). This is guaranteed
to be feasible since we already know that there exists
at least one feasible nominal control input sequence with
{ū∗1|k, . . . , ū∗N−1|k} and the initial nominal state x̄0|k+1 =
x̄∗1|k. Feasibility of the optimization in Eqn. 18 with horizon
(N−1) again guarantees (xk+1, uk+1) ∈ Z with uk+1 =
π(x̂k+1, x̄

∗
0|k+1,N−1, ū

∗
0|k+1,N−1) and we apply uk+1.

If the optimization with the full horizon N is
consecutively infeasible for the next N − 1 steps,
then feasibility of the optimization problem with hori-
zon of length 1 at the previous time step guarantees
that (x̄1|k+N−1,1, ē1|k+N−1,1, s̄1|k+N−1,1) ∈ Ssafe. Then
by Assumption 4, all future states and inputs guarantee
(xk+N+i, uk+N+i) ∈ Z for all i ∈ I≥0.

In case the safe set Sf satisfies Assumption 3, we recover
recursive feasibility and constraint satisfaction and require
no adaptation of the horizon, see [2].

The proof above shows that, despite the uncertainty in
dynamics and output equations, the proposed RPOF-SF is
still able to achieve constraint satisfaction at every time step.
This result enables the certification of control inputs from
arbitrary control policies.

VI. NUMERICAL EXAMPLE

In this section, we demonstrate that RPOF-SF achieves
constraint satisfaction for uncertain nonlinear systems despite
an arbitrary control policy. We apply the proposed RPOF-
SF on the following simulated nonlinear mass-spring-damper
system from [25] with an output measurement of the first
element of the state, similar to [24]:

ẋ1 = x2 , ẋ2 =
1

M

(
− k0 exp(−x1) x1 − hdx2 + u

)
,

y = x1 ,
(19)

where M = 1, k0 = 0.33, and hd = 1.1. The discrete-
time model is determined based on a fourth-order Runge-
Kutta method with sampling time ∆t = 0.25 s, which yields
the discrete-time dynamics f(x, u). We consider additive
disturbances with Ew =

[
∆t · w1

∆t
M w2

]ᵀ
and Fw = w3 ,

where w ∈ W = {w ∈ R3 : ‖w‖∞ ≤ 0.01}. We
enforce the following constraints point-wise in time Z =
[−0.85, 0.85]× [−2, 2]× [−6, 6].

We derive LMIs for the incremental Lyapunov functions
assuming quadratic incremental Lyapunov functions, linear
K and K∞ functions, and linear feedback π, similar to [23].
Using a gridding approach, we can solve the resulting SDPs
over the entire constraint set for the discrete-time system
since we assume global properties. We run this computa-
tion offline in Matlab using YALMIP [26] and the solvers
MOSEK [27] and SDPT3 [28]. This yields ρd = 0.74,
ρo = 0.67, ρs = 0.78 and σo,w(a) = 2.25a, σs,o(a) = 1.04a,
and σs,w(a) = 2.23a.

For simplicity, we design a safe set Sf defined by a
quadratic Lyapunov function Vf , that also satisfies Assump-
tion 3. The safe set and the associated controller are deter-
mined as in [10] and the size of the safe set is determined
online based on the error bounds as in [24]. Since the
constraints are polytopic, we use the constraint tightening
strategy from [2].

The RPOF-SF uses a horizon N = 40 and the MHE uses
a backward horizon M = 10. The uncertified control inputs
at every time step k are obtained from an arbitrary sinusoidal
control input signal. We assume x̂0 = x0 ⇐⇒ ē0 = 0 with
the initial state x0 =

[
0.79 0.7

]ᵀ
. We implement the online

computation (see Alg. 1) in Matlab using Casadi [29] and
solve the MPC and MHE using IPOPT [30], with the MHE
optimization limited to 1e3 iterations.

The closed-loop behavior of the proposed RPOF-SF is
shown in Fig. 2. This highlights the successful certification
of an arbitrary control policy, which would otherwise lead
to constraint violations. The proposed RPOF-SF is able to
modify the control inputs at every time step to achieve
constraint satisfaction despite state disturbances, measure-
ment uncertainties, and estimation errors. We emphasize that
the safety filter allows safe operation even in proximity to
a constraint boundary due to the over-approximated error
bounds.
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Fig. 2: Closed-loop behavior of the proposed RPOF-SF for 60 time steps. The constraint boundaries (black) and closed-
loop trajectories of the estimated state for (i) the unfiltered control input uk = πL(k) (green) and (ii) the certified control
input as provided through the RPOF-SF (red) are shown. The first open-loop trajectory (magenta, dashed) starting from
x0 = x̂0 =

[
0.79 0.7

]ᵀ
and the predicted ellipsoids for the estimation error bound given by Vo (teal) and the prediction

error bound given by Vs (blue) for the predicted time steps k = {1, 2, 5, N = 40} are also displayed. The terminal set (gray)
is shown for the first open-loop prediction. Left: The figure on the left shows that the unfiltered control input immediately
leads to constraint violations. In contrast, the certified control inputs from our robust predictive output-feedback safety filter
achieve constraint satisfaction for all time steps. Right: The figure on the right shows a close-up of (a). This highlights
constraint satisfaction of the RPOF-SF. Furthermore, the worst-case ellipsoid for Vo (teal) touches the constraint, which
validates the constraint tightening.

VII. CONCLUSIONS

In this paper, we proposed a robust predictive output-
feedback safety filter (RPOF-SF) for certifying arbitrary
control inputs applied to disturbed nonlinear systems without
full-state measurements. The efficacy of the proposed RPOF-
SF approach for guaranteeing constraint satisfaction under
uncertainties is proved in theory and demonstrated using a
mass-spring-damper system as a numerical example.

As future work, we plan to generalize the proposed
RPOF-SF approach to a broader class of uncertain systems
by incorporating probabilistic learning techniques and use
the proposed approach to guide reinforcement learning to
improve sampling efficiency.
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bust output feedback model predictive control of constrained linear
systems,” Automatica, vol. 42(7), pp. 1217–1222, 2006.
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