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Abstract— In this work we address the problem of perform-
ing a repetitive task when we have uncertain observations and
dynamics. We formulate this problem as an iterative infinite
horizon optimal control problem with output feedback. Previ-
ously, this problem was solved for linear time-invariant (LTI)
system for the case when noisy full-state measurements are
available using a robust iterative learning control framework,
which we refer to as robust learning-based model predictive
control (RL-MPC). However, this work does not apply to the
case when only noisy observations of part of the state are
available. This limits the applicability of current approaches
in practice: First, in practical applications we typically do
not have access to the full state. Second, uncertainties in the
observations, when not accounted for, can lead to instability
and constraint violations. To overcome these limitations, we
propose a combination of RL-MPC with robust output feed-
back model predictive control, named robust learning-based
output feedback model predictive control (RLO-MPC). We
show recursive feasibility and stability, and prove theoretical
guarantees on the performance over iterations. We validate the
proposed approach with a numerical example in simulation and
a quadrotor stabilization task in experiments.

I. INTRODUCTION

Performing iterative tasks when having uncertain observa-
tions and a uncertain dynamics model is a common prob-
lem in practice. Such a problem setup arises in industrial
robotics [1], mobile robotics [18], or in autonomous car
racing [21]. The uncertainties can be due to sensor noise
or nonlinear effects that are difficult to identify and model.

Iterative learning control (ILC) can be applied in such
cases to achieve high performance in repetitive tasks. ILC
uses data from previous iterations to improve controller
performance, for example, by reference signal adaptation
for future iterations [26]. Model predictive control (MPC)
is another popular control strategy. At every time step, MPC
solves an open-loop finite horizon optimal control problem
and only applies the first control input of the optimal input
sequence to the system. This is executed in a receding
horizon fashion. The benefit of MPC is that its optimization
problem explicitly considers state and input constraints.
Combinations of ILC and linear model predictive control
for repetitive tasks have been proposed in the past. In [12],
the authors use MPC with a time-varying multiple-input-
multiple-output (MIMO) linear model and use stored track-
ing errors from past iterations to correct for model errors.
The authors extend this work by proving asymptotic tracking

The authors are with the Dynamic Systems Lab
(http://www.dynsyslab.org), Institute for Aerospace Studies, University
of Toronto, Canada. The authors are also affiliated with the Vector
Institute for Artificial Intelligence, Toronto. Emails: {lukas.brunke,
siqi.zhou}@robotics.utias.utoronto.ca, schoellig@utias.utoronto.ca

������

��������

������� �

���� Output

Measurement 
Noise

Process 
Noise    

Control 
Input

Nominal 
State

Nominal Control 
Input    

State Estimate

Nominal States
Nominal Control Inputs

Iteration Cost

Terminal Set
Terminal Cost

-

Fig. 1. Our proposed robust learning-based output feedback MPC (RLO-
MPC, red) combines robust output feedback MPC with iterative learning
control. In contrast to robust output feedback MPC, we propose to determine
the terminal set and terminal cost function from data after each iteration
(indicated by dashed lines). To handle uncertain outputs, we extend robust
learning-based MPC (RL-MPC) with an observer (blue) and account for
state estimation errors.

for linear constrained systems in [11]. In [5], the authors
consider a nonlinear model, linearize the dynamics model
in the MPC based on the previous iteration’s trajectory, and
prove stability and fast convergence to set points.

Recently, the authors of [20] presented an efficient
learning-based model predictive control (L-MPC) framework
for a stabilization task. In [20], the terminal cost and terminal
constraint set are determined from data of past iterations with
the goal to guarantee stability and constraint satisfaction of
the MPC. Formal guarantees have been derived for special
cases such as LTI systems [24] and robust learning-based
model predictive control (RL-MPC) for LTI systems with
bounded process noise [22], [25].

While existing work on L-MPC considers full-state feed-
back, safe learning-based control approaches with output
feedback remain to be an open challenge [3]. In most prac-
tical settings, the full state cannot be measured as adequate
sensors are not available. State estimation aims to recover
the full-state information and its associated uncertainty from
partial state observations, called measurements or output.
The state estimation errors can be accounted for by extending
robust MPC methods to also consider bounded measurement
noise and a state estimator. This is referred to as robust output
feedback MPC and includes tube-based approaches [9], [15],
[16] and minmax approaches [4], [6], [13]. In this work,
we use a tube-based approach to achieve a lower online
computational effort.

Our proposed robust learning-based output feedback MPC,
which we call RLO-MPC, leverages tube-based robust out-
put feedback MPC for guaranteeing stability and constraint
satisfaction despite uncertainties and iterative learning for
improving performance. We extend the RL-MPC for an LTI
system with noisy state measurements in [22] to an LTI
system with uncertain outputs. We tighten the constraints
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according to the additional state estimation uncertainty using
methods from robust output feedback MPC. We compute
the terminal constraint set and the terminal cost using data
from previous iterations similar to RL-MPC. We derive
theoretical guarantees for stability, recursive feasibility, and
performance. In contrast to previous work [22], [25], we
assume that the initial state is contained inside a compact set.
While performance improvement over the iterations cannot
be guaranteed for this case, we derive upper bounds on
the total iteration cost. This upper bound is non-increasing
and is reduced over iterations. The proposed RLO-MPC is
validated in simulation and through quadrotor experiments
in Sec. V . In simulation we also show the benefit of the
proposed controller as compared to a certainty equivalent
approach, which does not consider state estimation errors.

II. PROBLEM STATEMENT

We consider an uncertain discrete-time LTI system:

xt+1 = Axt + But + wt ,

yt = Cxt + vt ,
(1)

where xt ∈ Rnx is the state at time t, ut ∈ Rnu is the
input, yt ∈ Rny is the output and, A, B, and C are known
real system matrices of consistent dimension. The system is
assumed to be controllable and observable. The process noise
wt ∈ W ⊂ Rnx and measurement noise vt ∈ V ⊂ Rny

affect the system at every time step. The sets W and V are
known compact polytopes that contain the origin in their non-
empty interior. The system is subject to known hard state and
input constraints x ∈ X ,u ∈ U, where X ⊂ Rnx is closed
and U ⊂ Rnu is compact. We assume that both X and U are
polyhedral and contain the origin in their non-empty interior.

The goal of this work is to design a controller that solves
the iterative infinite horizon optimal control problem at every
iteration j optimized over ujk for all k ≥ 0:

V j,∗0→∞(yS) = min
uj

0,u
j
1,...

∞∑
k=0

(
yjk

)ᵀ
Q̃yjk +

(
ujk

)ᵀ
R̃ujk

s.t. xjk+1 = Axjk + Bujk + wj
k ,

yjk = Cxjk + vjk ,x
j
k ∈ X ,ujk ∈ U ,

wj
k ∈W ,vjk ∈ V ,yj0 = yS ,∀k ∈ N ,

(2)

where Q̃ and R̃ are positive definite matrices, ujk are
output feedback policies, and yS is the initial output. This
iterative infinite horizon problem is generally intractable
due to the infinite horizon. Typically the infinite horizon is
approximated by a finite horizon and a terminal cost that
accounts for the cost-to-go. In this paper, we approach this
problem by exploiting the iterative nature of the task and by
learning the terminal cost function and terminal constraint set
for a robust output feedback MPC from previous iterations.

III. BACKGROUND

In this section, we present the necessary background for
the proposed approach.

A. Notation

We denote the set of natural numbers as N with 0 ∈ N.
The set of integers from i ∈ N to j ∈ N is denoted as
Ii,j = {i, . . . , j}, where j > i. Let A,B ⊂ Rn, then the
Minkowski sum is defined as A⊕B = {a+b : a ∈ A,b ∈ B}
and the Pontryagin difference is defined as A 	 B = {x ∈
Rn : x⊕ B ⊆ A}.

B. Uncertainty Bounding with a Single Tube

The system under consideration is uncertain (see (1)). To
account for the uncertainties, we design a single error tube
according to [9], [15], [16] using robust positively invariant
(RPI) sets. The error tube guarantees that any errors starting
inside the error tube, will stay inside the error tube for all
future time steps t ≥ 0.

Definition 1 (Robust Positively Invariant (RPI) Set [2]):
A set P ⊆ X is robust positively invariant for an autonomous
system subject to state constraints X, input constraints U,
and bounded process noise set W, if the initial system state
x0 ∈ P implies xt ∈ P ,∀w ∈W, t ≥ 0.

We start by introducing the observer and the error state
dynamics. Since only the outputs are available, we employ
a Luenberger observer to estimate the state:

x̂t+1 = Ax̂t + But + L(ŷt − yt) ,

ŷt = Cx̂t ,
(3)

where x̂t and ŷt are the estimated state and output at time
step t, and L ∈ Rnx×ny is the static observer gain and is
chosen such that AL = A+LC is Schur stable. The resulting
dynamics of the state estimation error et = xt − x̂t is

et+1 = ALet + wt + Lvt . (4)

We additionally introduce the nominal system

x̄t+1 = Ax̄t + Būt , (5)

where x̄t ∈ Rnx is the nominal state at time step t and
ūt ∈ Rnu is the input to the nominal system. The actual
control input to the system then combines the nominal
control input as a feedforward term and a feedback term,
shown in Figure 1, as

ut = ūt + Kξt ,

where ξt = x̂t − x̄t and the static feedback gain K ∈
Rnu×nx , which is selected such that AK = A+BK is Schur
stable. The error between the estimated and the nominal state
yields the dynamics

ξt+1 = AKξt − (LCet + Lvt) . (6)

Using the error definitions the system state can be written as

xt = x̄t + ξt + et .

The errors ξt and et are shown to be bounded in [16]. The
estimation error dynamics (4) guarantees the existence of the
minimally RPI (mRPI) set E∞ that satisfies

E∞ = (A + LC)E∞ ⊕W⊕ LV . (7)



Similarly, the dynamics of the difference between the esti-
mated state and the nominal state (6) yields the mRPI set
Ξ∞, that satisfies

Ξ∞ = (A + BK)Ξ∞ ⊕ (−LC)E∞ ⊕ (−L)V . (8)

The estimation error set (7) and the prediction error set (8)
allow us to choose the initial nominal state x̄0 and the
sequence of nominal control inputs Ū =

(
ū0, . . . , ūt, . . .

)
such that the state and the input of the uncertain system (1)
satisfy the original constraints for all time steps. For reduced
conservatism, we follow [9] and combine the error states into
a single error system:

zt+1 =

(
et+1

ξt+1

)
= Fzt + Gdt , (9)

where dt=
(
wᵀ
t ,v

ᵀ
t

)ᵀ ∈ D = W× V and

F =

(
AL 0
−LC AK

)
, G =

(
I L
0 −L

)
,

where F is Schur stable by design. It follows that the
combined error dynamics are bounded given that F is Schur
stable and D is bounded. Similar to [15] we consider a con-
vex, compact mRPI set Z∞ for the extended error system (9):

Z∞ = FZ∞ ⊕GD . (10)

We can use the set Z∞ to tighten the state and inputs
constraints as follows:

X̄ = X	
(
I I

)
Z∞ , Ū = U	

(
0 K

)
Z∞ .

Compared to [16], (10) yields a single tube and not two
tubes based on (7) and (8), respectively. This is desirable for
tube-based MPC as the state and input constraints are less
restrictive.

C. Robust Output Feedback MPC

In this subsection, we introduce robust output feedback
MPC [16]. In the following discussion, we use xk|t to denote
the open-loop prediction of state xk at time step t and t1 : t2
abbreviates consecutive time indices. Consider the finite time
optimal control problem (FTOCP) initialized at t = 0 with
x̄0 = x̂0:

Vt→t+H(x̄t) = min
ūt:t+H−1|t

t+H−1∑
k=t

`
(
x̄k|t, ūk|t

)
+ Vf

(
x̄t+H|t

)
s.t. ∀k ∈ It,t+H−1 ,

x̄k+1|t = Ax̄k|t + Būk|t ,

x̄k|t ∈ X̄ , ūk|t ∈ Ū ,
x̄t|t = x̄t , x̄t+H|t ∈ X̄f ,

(11)

where H > 0 is the horizon, ` (x,u) = xᵀQx+uᵀRu, is the
stage cost with positive definite matrices Q and R, Vf (x) =
xᵀPx, is the cost-to-go, where P is the solution to the
discrete-time algebraic Riccati equation of the unconstrained
LQR problem for the nominal system (5). The set X̄f is the
terminal constraint setthat is control invariant for the nominal
system (5) and determined using the tightened state and

input constraints X̄ and Ū and the closed-loop system matrix
A+BKf , where Kf is the optimal LQR state feedback gain.
Only the first optimal input ū∗t|t from the FTOCP is used at
time step t:

u∗t = ū∗t|t + Kξt ,

and applied to the system in (1). The FTOCP is solved in a
receding horizon fashion at every time step t ≥ 0 using (11).

We consider a quadratic cost and a linear system with
polytopic state and input constraints. The FTOCP in (11)
is a quadratic program (QP) that can be efficiently solved.
In contrast to [9], [16], we do not optimize over the initial
state and keep it fixed for all time steps. This allows the
comparison of the total iteration cost for varying initial
conditions.

D. Convex Safe Set

We collect the nominal state and nominal control in-
put for iteration j using X̄j =

(
x̄j0, . . . , x̄

j
t , . . .

)
, Ūj =(

ūj0, . . . , ū
j
t , . . .

)
. As in [22], [24] we define the set of indices

of successful iterations, which converge to the origin:

Mj =
{
k ∈ I0,j : lim

t→∞
x̄kt = 0

}
.

The sampled safe set SSj for iteration j is the collection of
all nominal states for every successful iteration:

SSj =

{ ⋃
i∈Mj

∞⋃
t=0

x̄jt

}
.

Furthermore, we introduce the convex safe set CSj with

CSj = conv(SSj) , (12)

where conv(·) indicates the convex hull. For an LTI nominal
system, the convex safe set is a control invariant set and is
substituted for the terminal constraint set X̄f in the robust
output feedback MPC (11) [2].

E. Terminal Cost

The nominal cost-to-go at time step t of iteration j for
previously collected state and control input data is given by

V jt→∞(x̄jt ) =

∞∑
k=t

`
(
x̄jk, ū

j
k

)
,

and the total nominal iteration cost for iteration j is
V j0→∞(x̄j0). Finally, we introduce the barycentric function
from [24] and define it based on the nominal state as in [25]:

P j(x̄) := min
λt≥0,t∈N0

j∑
k=0

∞∑
t=0

λkt V
k
t→∞(x̄kt )

s.t.

j∑
k=0

∞∑
t=0

λkt = 1 ,

j∑
k=0

∞∑
t=0

λkt x̄
k
t = x̄ .

(13)

The function P j(x̄) assigns the minimum cost-to-go using a
barycentric interpolation to each nominal state inside of the
convex safe set CS. This will replace the terminal cost in the
robust output feedback MPC (11).



IV. ROBUST LEARNING-BASED OUTPUT
FEEDBACK MPC

This section introduces the proposed RLO-MPC. We start
by presenting the algorithm in Sec. IV-A and derive the
properties of RLO-MPC in Sec. IV-B.

A. Robust Learning-Based Output Feedback MPC Algorithm
The RLO-MPC approximates the infinite horizon prob-

lem (2) as a finite-time horizon optimization problem, which
is solved at each time step t of iteration j > 0:

V jt→t+H(x̄jt ) =

min
ūj

t:t+H−1|t

t+H−1∑
k=t

`
(
x̄jk|t, ū

j
k|t

)
+ P j−1

(
x̄jt+H|t

)
s.t. ∀k ∈ It,t+H−1 , x̄

j
t|t = x̄jt ,

x̄jk+1|t = Ax̄jk|t + Būjk|t ,

x̄jk|t ∈ X̄ , ūjk|t ∈ Ū , x̄jt+H|t ∈ CSj−1 ,

(14)

where x̄j0 = x̂j0 ∈ E0 ⊂ X̄ and E0 is a compact polyhedral
set. The set E0 accounts for the fact that restarting the next
iteration from the same initial state estimate is restrictive
and not practical. Compared to the output feedback robust
MPC (11), we use P j and CSj for the terminal cost function
and the terminal constraint set, respectively. This leads to an
updated terminal cost function and terminal constraint set at
every iteration. The problem is solved in a receding horizon
fashion and the control input to system (1) at time step t is
given by

uj,∗t = ūj,∗t|t + Kξjt , (15)

where ξjt = x̂jt− x̄jt , ū
∗
t|t is the input at time t of the optimal

solution to (14) for the nominal system (5). The RLO-MPC
is initialized with P 0 and CS0, which is a given feasible,
suboptimal solution to the FTOCP. As in [22], we make the
following assumption:

Assumption 1: We are given an initial nominal state and
input sequence X̄0, Ū0, that satisfy the nominal system
dynamics (5) and the tightened constraints X̄ and Ū, the
initial state estimation constraint E0, and successfully drive
the nominal system to the origin. Further, the initial state
estimation error satisfies ej0 ∈ E∞,∀j ≥ 0.

Assumption 1 ensures that the terminal set at the first
iteration is non-empty. This assumption is not restrictive
in practice, as a conservative controller tuning or a hu-
man operator can provide a suboptimal trajectory for most
systems. One approach to reduce the conservatism is to
optimize the initial nominal state at every time step as in [23,
Ch. 8]. However, this would require solving a quadratically
constrained quadratic program, which increases the online
computation cost.

B. Properties of RLO-MPC
In the following, we present the properties of the proposed

RLO-MPC. To guarantee feasibility for every future iteration,
we assume:

Assumption 2: There exists a feasible solution to (14) at
j = 1 for all x̂1

0 ∈ E0.

1) Recursive Feasibility and Stability: We present the
following corollary on the recursive feasibility and stability
of the proposed RLO-MPC:

Corollary 1: Consider system (1), (3) in closed-loop with
the RLO-MPC controller (14) and (15). Under Assump-
tions 1 and 2, the RLO-MPC (14), (15) is feasible for all
times t ≥ 0 and all iterations j > 0. Moreover, the system’s
state xjt asymptotically converges to the set

(
I I

)
Z∞ for

every iteration j > 0, all w ∈W, and all v ∈ V.

Proof: Under Assumptions 1 and 2, recursive feasibility
and stability for every iteration j follows from Theorem 1
in [22] and Proposition 2 in [15].

2) Bound on Total Iteration Cost: Next we present the re-
sults on the controller performance and derive upper bounds
on the total nominal iteration cost. We start by analyzing the
performance over the different iterations j. We generalize
the results in [22] by considering a set of initial states over
different iterations j. For the case of a fixed initial condition
(i.e., E0 = {x̂0

0}), we recover the result in [22] stating that
the total iteration cost is non-increasing. However, the total
iteration cost is not guaranteed to be non-increasing for when
the initial state changes from iteration to iteration. For linear
systems with quadratic cost, the sublevel set of the optimal
total iteration cost contains all initial conditions with less or
equal total iteration cost. Any initial condition outside of this
sublevel set results in an increased total iteration cost.

In the following, we introduce a non-increasing upper
bound on the total iteration cost by considering the set of all
possible initial state estimates. Before presenting this upper
bound, we introduce the greatest commonly T -step reachable
set, which we define in terms of the T -step reachable set
RT (·) for the nominal system with tightened constraints [2].

Definition 2 (Greatest Commonly T -Step Reachable Set):
Let S ⊂ Rn be a compact polytopic set, T ∈ N, and
extreme(S) the set of vertices of S. Then under linear
dynamics and polytopic state and input constraints the set

R̄T (S) =
⋂

s∈extreme(S)

RT (s) ,

is the greatest commonly T -step reachable set of S.

Intuitively, the greatest commonly T -step reachable set of
a set S is the maximal set of states that the system can reach
after T steps if starting from all s ∈ S. Then Assumption 2
guarantees that there exists T ∈ {1, . . . ,H} such that the
intersection CS0 ∩ R̄T (E0) is non-empty.

The upper bound on the total cost for iteration j > 0 is

V̄ j0→∞(E0) = min
x̄∈CSj−1∩R̄T (E0)

V j,∗0→T (E0, x̄) + P j−1(x̄) ,

(16)



where V j,∗0→T (E0, x̄) is the solution to the following FTOCP:

V j,∗0→T (E0, x̄) = max
x̄j
0|0

min
ūj

t:t+T−1|0

T−1∑
k=0

`(x̄jk|0, ū
j
k|0)

s.t. ∀k ∈ I0,T−1 ,

x̄jk+1|0 = Ax̄jk|0 + Būjk|0 ,

x̄jk|0 ∈ X̄ , ūjk|0 ∈ Ū ,

x̄j0|0 ∈ E0 , x̄
j
T |0 = x̄ .

(17)

The objective function (16) for V̄ j0→∞(E0) is the sum of two
optimal costs. The first term gives the worst-case nominal
cost for any possible initial state estimate in the set E0 to any
feasible state in CSj−1. The optimization problem in (17)
is feasible by Assumption 2 and can be solved by applying
line searches to find the initial nominal state on the boundary
of E0. The second term is the cost-to-go from the optimal
intermediate state x̄∗ to the origin of the nominal system.

Theorem 1: Consider system (1), (3) in closed-loop with
the RLO-MPC controller (14) and (15). Let CSj be the
convex safe set at the j-th iteration as defined in (12). Under
Assumptions 1 and 2, V̄ j0→∞(E0) is an upper bound on the
total iteration cost for iteration j > 0:

V j0→∞(x̂j0) ≤ V̄ j0→∞(E0) . (18)

Furthermore, the upper bound on the total iteration cost
V̄ j0→∞ is non-increasing:

V̄ j+1
0→∞(E0) ≤ V̄ j0→∞(E0) ,∀j > 0 . (19)

Proof: We use the fact that the combination of the
FTOCP solution for V j,∗0→T (E0, x̄) and the iteration cost from
any previous iteration for P j−1(x̄) is suboptimal. Optimality
holds only if x̄jT = x̄it for any i ∈ I0,j−1. This yields

V j0→∞(x̂j0) ≤ V j0→T (x̂j0) + P j(x̄jT )

≤ V j,∗0→T (x̂j0, x̄
j
T ) + P j(x̄jT )

≤ min
x̄∈CSj−1∩RT (x̂j

0)
V j,∗0→T (x̂j0, x̄) + P j−1(x̄) .

(20)

In (20) the total iteration cost is bounded using the initial
state estimate x̂j0. An upper bound on the total iteration cost
can be obtained by maximizing the cost over all possible
initial state estimates in the set E0:

V j0→∞(x̂j0) ≤ min
x̄∈CSj−1∩R̄T (E0)

V j,∗0→T (E0, x̄) + P j−1(x̄)

= V̄ j0→∞(E0) .
(21)

To show V̄ j0→∞(E0) is non-increasing over all iterations j >
0, we first note that the definition of the convex safe set
yields CSj ⊆ CSj+1. By Assumptions 1 and 2, the FTOCP
problem (14) is feasible at j = 0. It follows that

CSj ∩ R̄T (E0) ⊆ CSj+1 ∩ R̄T (E0) , (22)

which implies that the problem is feasible for all subsequent
iterations j > 0. Since the FTOCP in (17) includes a maxi-
mization over a quadratic function with polytopic constraints
on the initial state, the solution x̄j,∗0 at iteration j will lie on

the boundary of the polytope E0, such that x̄j,∗0 ∈ ∂E0. If
the iteration j yields an optimal intermediate state x̄∗ that
decreases the total iteration cost, the upper bound on the total
iteration will decrease as well. Otherwise the upper bound
on the total iteration cost will be constant. Then (22), (17)
and the definition of P j (13) yield:

V̄ j+1
0→∞(E0) = min

x̄∈CSj∩R̄T (E0)
V j+1,∗

0→T (E0, x̄) + P j(x̄)

≤ min
x̄∈CSj−1∩R̄T (E0)

V j,∗0→T (E0, x̄) + P j−1(x̄)

= V̄ j0→∞(E0) ,

which gives the desired result.
In the proof of Theorem 1, we are applying two inequali-

ties (20) and (21), which indicates that we can state a second,
tighter upper bound using only the first inequality. While this
bound is tighter, it is not guaranteed to be non-increasing and
requires knowledge of the new initial state estimate. Define

Vj0→∞(x̂j0) = min
x̄∈CSj−1∩RT (x̂j

0)
V j,∗0→T (x̂j0, x̄) + P j−1(x̄) .

(23)
Then we can state the following Corollary:

Corollary 2: Consider system (1) in closed-loop with the
RLO-MPC controller (14) and (15). Let CSj be the convex
safe set at the j-th iteration as defined in (12). Let Assump-
tions 1 and 2 hold, then Vj0→∞(x̂j0) is an upper bound on
the total iteration cost for iteration j > 0:

V j0→∞(x̂j0) ≤ Vj0→∞(x̂j0) .
Proof: The proof of Corollary 2 follows from (20) in

the proof of Theorem 1.
The results from Theorem 1 and Corollary 2 are connected
through the following relationship:

V j0→∞(x̂j0) ≤ Vj0→∞(x̂j0) ≤ V̄ j0→∞(E0) .

V. ILLUSTRATIVE EXAMPLES

This section shows examples for the proposed RLO-MPC
presented in Sec. IV.

A. Simulation Example

Consider the following double integrator system used
in [16]:

xk+1 =

(
1 1
0 1

)
xk +

(
1
1

)
uk + wk

yk =
(
1 1

)
xk + vk ,

where X = {
(
x1 x2

)ᵀ ∈ R2 : x1 ∈ [−50, 3] , x2 ∈
[−50, 3]}, U = {u ∈ R : u ∈ [−3, 3]}, W = {w ∈
R2 : ‖w‖∞ ≤ 0.1}, and V = {v ∈ R : |v| ≤ 0.05}. We
pick E0 = (−8.7 − 0.5)ᵀ ⊕ {e ∈ R2 : ‖e‖∞ ≤ 0.2} as
the tolerance for the initial state estimate for each iteration.
For all experiments the RLO-MPC is implemented with a
horizon of H = 2, the controller gain K =

(
−1 −1

)
and

the observer gain L =
(
−1 −1

)ᵀ
. We run the controller

for N = 20 time steps for 30 iterations for computational
feasibility but this is sufficient for the nominal system to
reach the origin. For the cost function of (14) we have



Q = I and R = 0.01. For this example, the minimally robust
positively invariant sets E∞, Ξ∞, Z∞ can be determined
exactly, because the matrices AL, AK , and F are nilpo-
tent [19]. The set CS0 is initialized by using the robust output
feedback MPC approach by [9], with horizon Hinit = 5,
Ninit = 50, Qinit = diag(0.1, 0.1), Rinit = 10. The terminal
cost function Vf (x) = xᵀPx and the terminal constraint
set X̄f are calculated using P and Kf from the associated
unconstrained LQR problem for the nominal system [10].
The choice of Qinit and Rinit is such that the performance
improvement of the robust output feedback controller is
clearly visible. The initial P 0(·) is determined with the actual
weight matrices Q and R. The experiments are implemented
in MATLAB using MPT3 [8] and YALMIP [14] with the
solvers Gurobi [7] and BMIBNB.

1) Bounded Total Iteration Cost: We validate the upper
bounds on the total iteration cost through simulation. We run
the controller 50 times with each run having 30 iterations. An
additional superscript r ∈ {1, . . . , 50} indicates the index of
the run. Each run and iteration is initialized with a random
initial state estimate x̂j,r0 ∈ E0 using rejection sampling.
During this experiment, we assume that the uncertainties
wj,r
k ∈ extreme(W) and vj,rk ∈ extreme(V), such that the

maximum admissible uncertainties are applied to the system.
We pick T = H for this set of simulations.

The total nominal iteration cost for all runs and the
minimum non-increasing upper bound over all runs are
shown in Figure 2. As expected, the nominal total iteration
cost V j,r0→N (x̂j,r0 ) is not guaranteed to be non-increasing due
to the variation of initial states across different iterations.
However, all iterations of the RLO-MPC have a lower total
nominal iteration cost than the initial trajectory for each
run. The graph confirms that the relationship V j0→N (x̂j,r0 ) ≤
V̄ j0→N (E0) holds. The upper bound V̄ j0→N (E0) is conserva-
tive, but the simulation validates that it is non-increasing.
This upper bound also shows that the total nominal iteration
cost is guaranteed to be lower than the total nominal itera-
tion cost for the initial trajectory from the second iteration
onwards. Figure 3 shows the iteration cost prediction error
∆V j,r0→N (x̂j,r0 ) = Vj,r0→N (x̂j,r0 ) − V j,r0→N (x̂j0), which is the
difference between the tighter upper bound (23) and the
nominal total iteration cost. The error is always nonnegative,
which verifies V j0→∞(x̂j,r0 ) ≤ Vj0→∞(x̂j,r0 ). From iteration 8
onwards the median of the iteration cost prediction error
∆V j0→N (x̂j,r0 ) over all runs is approximately 0. Therefore,
the tighter upper bound of the total iteration cost Vj,r0→N (x̂j,r0 )
is indistinguishable from the true total nominal iteration cost
V j0→N (x̂j,r0 ) for most runs. The tighter upper bound allows
us to accurately determine the closed-loop performance of
the proposed RLO-MPC for an increasing iteration count.

2) Comparison to Certainty Equivalence Approach: We
now compare the performance of an RL-MPC and the
proposed RLO-MPC. We consider a system, where full-
state feedback is not available and an observer has to be
used. Since the RL-MPC requires full-state feedback, we
apply the certainty equivalence principle. We assume that
the state estimate is equal to the true state with x̂jt =
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is not guaranteed to be non-increasing in this setting. The graph validates
the proposed upper bound of the total nominal iteration cost V̄ j

0→N (E0).
Although this upper bound is conservative, it is non-increasing.
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0 ) for iterations j ∈ {0, . . . , 30} and runs r ∈
{1, . . . , 50}. The graph validates that the tighter upper bound Vj

0→N (x̂j,r
0 )

is indeed an upper bound. Furthermore, the median of the prediction error
converges to 0. Therefore, the tighter upper bound allows us to accurately
determine the performance of the closed-loop system.

xjt . The state estimate is again given by the Luenberger
observer (3). For the RL-MPC we consider the robust tube-
based MPC approach described in [17], where we keep the
initial state fixed. Then the state and control input constraints
are tightened using the minimally robust positive invariant set
S∞ that satisfies S∞ = AKS∞ ⊕W. As in Sec. V-A.1, we
run the controller for 50 different runs with 30 iterations.
Furthermore, this experiment uses the same initial states,
initial state estimates, and the same process and measurement
noise as applied to the system in the experiment in Sec. V-
A.1.

In Figure 4 we show the number of state constraint viola-
tions for the certainty equivalent approach for each run. Ev-
ery run has a minimum of 5 and a maximum of 15 constraint
violations. On average, almost 10 out of 30 iterations lead
to constraint violations for the certainty equivalent approach.
An unsuccessful trajectory of the certainty equivalent RL-
MPC is displayed in Figure 5. This trajectory from the third
iteration of the first run violates the state constraint at step
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Fig. 5. Unsuccessful trajectory of the certainty equivalent RL-MPC at
iteration j = 3 of the first run. The state constraint is violated at the second
time step of the iteration.

2. We highlight that the constraint is violated, although the
tube is contained inside X. Therefore, not accounting for
state estimation errors in RL-MPC can lead to constraint
violation. In contrast, the proposed RLO-MPC satisfies all
state and input constraints for every iteration in all runs.

B. Quadrotor Experiments

We run a one-dimensional stabilization task on a
Crazyflie 2.0 quadrotor. Our goal is to design reference
signals with the proposed approach such that the quadrotor is
driven to a neighborhood around the origin without violating
the state and input constraints. The quadrotor tracks the
reference signals using a PD position controller. The position
of the quadrotor is measured by a Vicon system at 300Hz.
The quadrotor dynamics are nonlinear. However, by using the
underlying PD controller and operating at low velocities, we
can approximate the closed-loop dynamics of the quadrotor
as a decoupled uncertain LTI system in the x-, y-, z-direction.
In the experiment, we focus on the dynamics along the
horizontal x-direction for illustration purposes and keep the
other directions constant.

We identify a linear system by applying a sinusoidal refer-
ence trajectory with time-varying frequency and amplitude.
We consider the state x =

(
x1 x2

)ᵀ ∈ R2, where x1 is
the quadrotor’s position and x2 is its velocity in x direction.
The control input u ∈ R is the position reference supplied to
the PD controller. Using MATLAB’s System Identification
Toolbox we identified the system at 5Hz as

xk+1 =

(
0.8061 0.1090
−1.4089 0.1419

)
xk +

(
0.1507
1.5491

)
uk + wk ,

yk =
(
1 0

)
xk + vk .

The state constraints are given by the area of the experi-
mental space and the maximum velocities of the quadrotor
X = {−2.0 m ≤ x1 ≤ 2.0 m,−2.0 m

s ≤ x2 ≤ 2.0 m
s }.

The control input set is the input space covered by the
data used in the system identification: U = {u ∈ R :
−1.016 m ≤ u ≤ 0.9854 m}. The maximum and minimum
errors from applying the same control inputs from the
sinusoidal trajectory to the linear model compared to the
true system are used as the system’s process noise: W =
{w ∈ R2 : −0.0233 m ≤ w1 ≤ 0.0201 m,−0.2049 m

s ≤
w2 ≤ 0.1703 m

s }. The measurement noise is identified by
measuring the error when the quadrotor is on a fixed position
on the ground and is given by V = {v ∈ R : |v| ≤
0.001 m}. We pick Q = diag(10, 100), R = 10. The
matrix P is obtained from the associated unconstrained LQR
problem. We select the controller and observer gain as K =
Kf =

(
0.6568 −0.1091

)
and L =

(
−0.8608 1.4055

)ᵀ
,

respectively. The RPI sets are determined through fixed-point
iterations until (7), (8), and (10) are satisfied. We initialize
the RLO-MPC with a trajectory from a robust MPC [16],
but optimize for a different cost function with Qinit = 10Q,
Rinit = 1. The MPC horizon is H = Hinit = 10.

We execute five separate runs with four iterations each.
Each iteration is executed for 20 s. Although we command
the quadrotor to start from x̂0 =

(
0.7 0.0

)ᵀ
in each

iteration, precisely controlling the quadrotor to this initial
condition is challenging. Instead, we consider a set of initial
conditions E0. This initial state set is shown in magenta in
Figure 6. To avoid delays in the computation of the control
signal, we create the convex safe set and terminal cost func-
tion only from the last two iterations. The resulting closed-
loop trajectory for the last iteration of the first run is shown
in Figure 6. The true state x of the quadrotor is estimated
offline using Vicon position measurements. Figure 6 shows
that the measurement error is contained inside E∞ (shown
for the first five time steps). Here, this set already contains all
other errors as well. Since E∞ ⊆

(
I I

)
Z∞, we conclude

that our modeling assumptions hold. The proposed RLO-
MPC successfully controls the true state to a neighborhood
of the origin without violating any state or input constraints.

For evaluating the nominal performance of the controller,
we pick T = 2. Then we can determine the upper bounds
on the nominal iteration cost, which is shown in Table I.
The minimum of each column is bold. The upper bound
minr V̄

j,r
0→N (E0) is greater than the maximum of each it-

eration. Furthermore, the upper bound improves over the
iterations. The upper bound can be improved by running
additional iterations or by shrinking the set E0.

VI. CONCLUSIONS

We proposed RLO-MPC for performing iterative tasks.
Our approach applies to LTI systems with uncertain observa-
tions and dynamics. We gave theoretical guarantees with re-
gards to recursive feasibility, stability and performance of the
closed-loop system. We relaxed the impractical assumption
of identical initial conditions over all iterations and instead
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Fig. 6. Closed-loop trajectory of the proposed RLO-MPC at iteration j = 4
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TABLE I
THE TOTAL NOMINAL ITERATION COST V j,r

0→N (x̂j,r
0 ) AND THE DERIVED

UPPER BOUND V̄ j
0→N (E0) FOR ITERATIONS j ∈ {0, . . . , 4} AND RUNS

r ∈ {1, . . . , 5} OF THE QUADROTOR EXPERIMENTS.

V j,r
0→N (x̂j,r

0 )

j minr maxr medianr minr V̄
j,r
0→N (E0)

0 106.555 112.746 108.724 -
1 101.681 106.639 104.026 112.013
2 100.808 106.261 104.103 107.692
3 102.076 106.738 104.352 107.686
4 104.776 106.338 105.491 107.677

considered initial conditions from a polytopic set. We showed
that the worst-case achievable performance of our proposed
controller is bounded. Furthermore, the derived upper bound
is non-increasing and is reduced over iterations. We suc-
cessfully validated our proposed RLO-MPC in simulation
and through experiments on a quadrotor. In simulation we
compared our approach to a certainty equivalent approach,
which does not consider state estimation errors. The certainty
equivalent approach violated constraints for every run, while
the proposed RLO-MPC always satisfied the constraints. This
emphasizes the importance of accounting for uncertainty in
the state estimation.
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