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Abstract— Safety filters based on control barrier func-
tions (CBFs) have become a popular method to guarantee
safety for uncertified control policies, e.g., as resulting from
reinforcement learning. Here, safety is defined as staying in a
pre-defined set, the safe set, that adheres to the system’s state
constraints, e.g., as given by lane boundaries for a self-driving
vehicle. In this paper, we examine one commonly overlooked
problem that arises in practical implementations of continuous-
time CBF-based safety filters. In particular, we look at the issues
caused by discrete-time implementations of the continuous-
time CBF-based safety filter, especially for cases where the
magnitude of the Lie derivative of the CBF with respect to the
control input is zero or close to zero. When overlooked, this
filter can result in undesirable chattering effects or constraint
violations. In this work, we propose three mitigation strategies
that allow us to use a continuous-time safety filter in a discrete-
time implementation with a local relative degree. Using these
strategies in augmented CBF-based safety filters, we achieve
safety for all states in the safe set by either using an additional
penalty term in the safety filtering objective or modifying the
CBF such that those undesired states are not encountered
during closed-loop operation. We demonstrate the presented
issue and validate our three proposed mitigation strategies in
simulation and on a real-world quadrotor.

I. INTRODUCTION

Safety filters have recently gained interest with the rise
of learning-based control and reinforcement learning ap-
proaches. While such learning-based approaches can improve
the controller’s performance based on interaction data, they
do not provide safety guarantees (e.g., a self-driving vehicle
that should stay inside lane boundaries). A safety filter tries
to find the minimal modification to a potentially arbitrary
control input proposed by an uncertified control policy that
still achieves safety [1]. Safety filters typically rely on model
knowledge of the system for accurate predictions [2]–[4].

One popular safety filtering method relies on control bar-
rier functions (CBF). Control barrier functions can be used
to encode control invariant sets. These sets guarantee that if
the system’s state is initialized in this set, there always exists
a feasible control input to keep the system inside the set for
all future time. If a control invariant set satisfies the state
constraints, it is typically called a safe set, and the system is
referred to as being safe inside this set [5]. The advantage
of CBFs is that determining control invariance amounts to
checking a scalar condition. For control-affine systems, this
scalar condition can be used as an affine constraint in a
quadratic program (QP) to find the closest feasible control
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Fig. 1: Visualization of the case study in Sec. VI for a linear system with an
ellipsoidal CBF. The states for which ∥Lgh(x)∥ is small allow the CBF-
based safety filter to apply control inputs close to the uncertified control
input, rendering the safety filter close to being inactive. Moreover, along
the green line, the Lie derivative term Lgh(x) is zero, and the relative
degree s does not equal one. In these states, the safety filter is completely
inactive. In a discrete-time implementation, the instantaneous inactivity of
the safety filter can result in undesirable inputs that cannot be corrected at
the subsequent discrete-time step. In both cases, this can lead to chattering
and/or safe set violations.

input to a proposed uncertified control input. This QP yields
the control barrier function-based safety filter.

CBFs are typically defined for continuous-time systems.
To preserve the CBF-based safety filter’s guarantees, the
aforementioned QP has to be solved infinitely fast [6]. This is
impossible in practice, such that the CBF-based safety filter
only approximately provides safety guarantees by solving
the QP at discrete timesteps. Nevertheless, applying this
approximate strategy in practice has led to many successful
real-world implementations, especially when the sampling
time is small [7]–[12].

A few works have systematically addressed this discrete-
time implementation by analyzing the safety between dis-
crete timesteps or providing an event-triggered formula-
tion [6], [13]. However, these approaches can lead to con-
servative closed-loop performance or rely on knowing the
global relative degree. Checking the global relative degree is
not always straightforward, and misspecification can lead to
undesired behaviours, especially in discrete-time implemen-
tations.

There also exist discrete-time CBFs that have been specif-
ically designed for discrete-time implementations [14]–[16].
However, even for control-affine systems, the resulting
safety filter optimization problem is typically a nonlinear
program, which reduces the real-time feasibility for real-
world systems. Therefore, discrete-time implementations of
continuous-time CBF-based safety filters continue to be a
popular method for approximately guaranteeing the safety
of real-world systems.
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Our contributions in this work are three-fold: (i) we draw
attention to practical issues of using standard continuous-
time CBF-based safety filters in discrete-time implementa-
tions, (ii) we propose three practical strategies to mitigate
the issues, and (iii) we verify our proposed strategies in
simulation and real-world quadrotor experiments.

II. PROBLEM FORMULATION

In this work, we consider the control architecture shown
in Fig. 2 and a continuous-time nonlinear control system in
the following control-affine form:

ẋ = f(x) + g(x) u , (1)

where x ∈ X ⊂ Rn is the state of the system with X being
the set of admissible states, u ∈ Rm is the input of the
system, and f : Rn 7→ Rn and g : Rn 7→ Rn×m are locally
Lipschitz continuous functions. We assume that X is a known
compact set, and f and g are known functions.

The safe set C ⊆ X is assumed to be given and is defined
as the zero-superlevel set of a smooth function h : Rn → R:
C = {x ∈ X | h(x) ≥ 0} where the boundary of the safe
set is ∂C = {x ∈ X | h(x) = 0} with ∂h(x)/∂x ̸= 0
for all x ∈ ∂C. Our goal is to modify a given, potentially
uncertified control policy π(x) with a safety filter based on a
continuous-time CBF-based safety filter such that the system
is safe (i.e., the system’s state x stays inside a safe set C if
it starts inside of C).

III. BACKGROUND

In this section, we introduce the necessary definitions
and the relevant background on CBF-based safety fil-
ters (see Fig. 2).

Definition 1 (Extended class-K function [5]): A function
γ : R → R is said to be of class-Ke if it is continuous,
γ(0) = 0, and strictly increasing.

Definition 2 (Positively control invariant set): Let U be
the set of all bounded controllers ν : R≥0 → Rm . A set
C ⊆ X is a positively control invariant set for the control
system in (1) if ∀x0 ∈ C , ∃ν ∈ U , ∀ t ∈ T+

x0
, ϕ(t, x0, ν) ∈

C, where ϕ(t, x0, ν) is the system’s phase flow starting at
x0 under the controller ν, and T+

x0
is the maximum time

interval.
Definition 3 (Relative degree [17]): The system consist-

ing of the dynamics equation in (1) and the output equation
y = h(x) has relative degree s ∈ {1, . . . , n} in Xs ⊆ Rn

if it is s-th order differentiable and LgL
i−1
f h(x) = 0 for

i ∈ {1, . . . , s− 1} and LgL
s−1
f h(x) ̸= 0 for all x ∈ Xs.

Intuitively, the relative degree specifies how often we have
to differentiate h along the dynamics (1) until the control
input appears. If Xs = X, then s is the global relative degree.
Consequently, s is a local relative degree if Xs ⊂ X. We use
the global relative degree in the following two definitions for
CBFs and higher-order CBFs.

Definition 4 (CBF [5]): Let C ⊆ X be the superlevel set
of a continuously differentiable function h : X → R, then
h is a CBF if there exists a class-Ke function γ such that
for all x ∈ X the control system in (1) has a global relative
degree of s = 1 and satisfies

max
u∈Rm

[Lfh(x) + Lgh(x)u] ≥ −γ(h(x)) , (2)

Fig. 2: A block diagram of a typical CBF-based safety filter framework. A
CBF-based safety filter is augmented to an uncertified controller π(x) and
modifies the input of the uncertified controller if it is deemed unsafe.

where Lfh(x) and Lgh(x) are the Lie derivatives of h along
f and g, respectively. In the following, we will also write
ḣ(x, u) = Lfh(x) + Lgh(x)u for simplicity.

Definition 5 (Higher-Order CBF [18]): Consider an s-th
order continuously differentiable function h : X 7→ R. Let
hi(x), i ∈ {1, ..., s} be defined as

hi(x) = ḣi−1(x) + γi(hi(x)), i ∈ {1, ..., s} (3)

where h0 = h, and γi(x), i ∈ {1, ..., s} denote class
Ke functions and Ci(t), i ∈ {1, ..., s} be defined by the
superlevel set of hi−1, i ∈ {1, ..., s}. Then h is a Higher-
Order CBF of relative degree s if there exists differentiable
class Ke functions γi(x), i ∈ {1, ..., s} such that for all
x ∈ X the control system in (1) has a global relative degree
of s and satisfies

max
u∈Rm

[
Ls
fh(x) + LgL

s−1
f h(x)u+O(h(x))

]
≥ −γs(hs−1(x)) (4)

for all x ∈ C1 ∩, ...,∩Cs, where O(h) is given by

O(h) =

s−1∑
i=1

Li
f (γs−i ◦ hs−i−1)(x). (5)

Using a CBF with relative degree s = 1, we can define
an input set

Ucbf(x) = {u ∈ Rm | ḣ(x, u) ≥ −γ(h(x))} (6)

that renders the system positively control invariant, which
we will refer to as safe [5]. This requires the selection of
a class-Ke function γ that yields a non-empty Ucbf(x) for
all x ∈ C. For an uncertified controller π(x) that may not
designed to be safe, one can formulate a QP to augment the
control input such that the system satisfies the CBF condition
in (2) [19]:

us(x) = argmin
u∈Rm

1

2
∥u− π(x)∥2 (7a)

s.t. ḣ(x, u) ≥ −γ(h(x)) . (7b)

This is the safety filtering optimization that is solved inside
the safety filter block in Fig. 2. Intuitively, the optimization
problem in (7) finds an input in Ucbf(x) that is as close
as possible to π(x), where the closeness of the inputs is
specified with respect to a chosen distance measure (e.g.,
the Euclidean norm in (7a)). For generic cases with a higher
relative degree, we can define (6) and (7) analogously.

In practice, a continuous-time implementation of (7) is
often infeasible. This is partially due to the fact that the sys-
tem state and input commands are only processed at discrete
times. Moreover, practical systems are subject to delays (e.g.,



the time taken for solving the QP and communication delays
in the control system), which hinders an ideal realization of a
continuous-time CBF safety filter. In most implementations,
the safety filter (7) is solved and applied to a system in a
discrete-time fashion.

IV. UNDESIRABLE EFFECTS OF DISCRETE-TIME
IMPLEMENTATIONS OF CBF-BASED SAFETY FILTERS

In this section, we discuss an undesirable effect of discrete-
time implementations of continuous-time CBF-based safety
filters.

We consider the case, where (7) is solved at a sampling
time ∆t > 0 to approximate the continuous-time safety
filter policy. Consider the system (1) at state x(t0) with
t0 > 0. Then, the certified control input is us(x(t0)). The
certified control input is applied over the time interval t ∈
[t0, t0 +∆t). However, only the initial time step t0 has been
certified by the safety filter, such that safety for the open
time interval t ∈ (t0, t0 +∆t) is typically not guaranteed
in discrete-time implementations of continuous-time CBF-
based safety filters. Poor performance in discrete-time imple-
mentations can especially arise when ∥LgL

s−1
f h(x)∥ → 0.

In these cases, relatively large inputs are permissible by
the CBF condition. However, when the system is close to
the boundary, the large input applied over the finite time
interval could result in subsequent chattering effects and even
constraint violations.

Another related issue is when LgL
s−1
f h(x) = 0. This

happens when the CBF has a local relative degree higher
than s, which can often be non-trivial to determine in
practice. For a simple ellipsoidal CBF candidate h(x) =
1−x⊺Px with P ≻ 0, one would need to check x⊺Pg(x) is
nonzero for all x ∈ X to determine if the relative degree is
one to satisfy the CBF definition. Fig. 1 shows an example
where the relative degree at certain x ∈ X is greater than
one. At these states, the safety filter (7) becomes inactive
(as Lgh(x) = 0). When x ∈ C and Lgh(x) = 0, the lower
bound on the Lie derivative (7b) is trivially satisfied for any
control input u ∈ Rm. Therefore, the control input can be
chosen to minimize (7a), such that us(x) = π(x). While
the Lie derivative ḣ(x, u) = Lfh(x) is a constant for all
u ∈ Rm at such a state x, we can have g(x) ̸= 0 such that
ẋ = f(x)+ g(x)u is nonzero for u ∈ Rm. Although the Lie
derivative is unaffected by the control input, the control input
may still affect the closed-loop system dynamics. Therefore,
at states x where Lgh(x) = 0, the safety filter allows the
application of the unsafe control input π(x) for at least the
time interval [t0, t0 +∆t). Since π(x) may be any arbitrary
control policy, this can lead to safe set violations, poor
performance, or chattering (frequent switching between an
active and inactive safety filter [20], [21]).

To avoid this undesirable closed-loop behaviour, we en-
courage practitioners to implement additional verification
methods, either online or offline. We propose possible miti-
gation strategies in the next section.

V. MITIGATING UNDESIRED BEHAVIORS FOR
DISCRETE-TIME IMPLEMENTATIONS

In this section, we discuss potential practical strategies
for handling cases when ∥LgL

s−1
f h(x)∥ → 0 and even

LgL
s−1
f h(x) = 0 (which by Def. 3 indicates a misspecified

global relative degree). This list shall lend practitioners a set
of methods to improve real-world implementations.

One way to mitigate the issues resulting from
∥LgL

s−1
f h(x)∥ → 0 is to let the sampling time ∆t → 0. In

the limit, this results in a continuous-time implementation.
However, as discussed above, this is not feasible in practice.
Alternatively, a prediction model can be used to determine if
a future time step is inside the safe set, e.g., x(t+∆t) ∈ C.
However, this can result in nonlinear constraints in the safety
filter optimization problem, e.g., using Euler integration and
a nonlinear CBF. Therefore, we aim to provide mitigation
strategies that minimally increase the online computation.

A. Penalty Term

One method to handle the case of ∥LgL
s−1
f h(x)∥ → 0 is

by modifying the safety filter objective function by adding
a term that explicitly accounts for LgL

s−1
f h(x) becoming

close to 0. Our new proposed safety filtering objective is

J(x) =
1

2
∥u− π(x)∥2 + r

2∥LgL
s−1
f h(x)∥2

∥u− πsafe(x)∥2 ,

(8)
where πsafe is a known safe backup control policy (e.g., a
stabilizing controller that renders C control invariant). The
new objective (8) replaces the standard CBF safety filtering
objective for all ∥LgL

s−1
f h(x)∥ > ϵ where ϵ is a small

positive number and r > 0 is a weighting parameter. The
closer ∥LgL

s−1
f h(x)∥ gets to 0, the greater the impact of

the second term in the safety filtering objective. In this case,
the safety filter will track the safe backup control policy
instead of the uncertified control policy π(x). The weighting
parameter r determines the balancing between the two terms
when ∥LgL

s−1
f h(x)∥ is far from 0. To avoid numerical

instabilities, we set us(x) = πsafe(x) when we are in a state
x such that ∥LgL

s−1
f h(x)∥ ≤ ϵ.

This strategy requires almost no added computational ef-
fort. In practice, the design of the safe backup control policy
will require some attention, such that the backup policy
can return the system to states where ∥LgL

s−1
f h(x)∥ > ϵ.

Otherwise, the system will continue using the backup control
policy πsafe for all future time.

B. Modified Safe Set Design

The undesired behaviors can also be mitigated by account-
ing for the issue of ∥LgL

s−1
f h(x)∥ → 0 during the design

of the CBF for a system. In the following, we introduce two
practical modification strategies.

1) Safe Set Transformation: One method to avoid the
effects of ∥LgL

s−1
f h(x)∥ → 0 during the design is by

applying a transformation to the CBF, e.g., a translation
or a rotation, which yields h̃(x) and the new safe set C̃,
respectively. This transformation has to be chosen such that
the closed-loop system from a specific initial condition x0

is not affected by ∥LgL
s−1
f h̃(x)∥ → 0 for the transformed

CBF. For example, if the underlying control policy π is
known to be stabilizing for a certain subset of the safe set,
we can safely use π in those states, e.g., the inactive safety
filter does not jeopardize safety. Therefore, the goal of this
strategy is to find a transformation, such that the states x



for which ∥LgL
s−1
f h̃(x)∥ → 0 are the states for which π is

safe. The transformed CBF h̃(x) is given by

h̃(x) = h(R(x− δ)) , (9)

where δ ∈ Rn represents the translation and R ∈ SO(n) ⊂
Rn×n represents the rotation matrix with the special orthog-
onal group SO(n) such that R satisfies RR⊺ = I with I
being the identity matrix and detR = 1. Following the
transformation, it is not guaranteed that h̃(x) is a valid CBF
anymore and has to be verified before using it online [12].

Since it may be impractical to show that π is stabilizing
for states x for which ∥LgL

s−1
f h̃(x)∥ → 0, there is also the

option to combine the transformation with the penalty term
as introduced in the previous subsection.

2) Safe Set Approximation: Our final proposed method
to handle ∥LgL

s−1
f h(x)∥ → 0 is based on finding an

alternative safe set C̃ that can be represented by a set of
valid CBFs {hi(x)}qi=0, where q ∈ N is the number of
CBFs. The functions hi should be chosen in such a way
that ∥LgL

s−1
f hi(x)∥ > ϵ for all x ∈ C̃, where ϵ > 0 is a

parameter.
One possible choice for such functions hi are affine

functions of the form

hi(x) = p⊺i x+ bi , (10)

where pi ∈ Rn and bi ∈ R. This has the advantage that ∂hi

∂x
is independent of the state x and constant. This can simplify
the choice of pi: pick pi such that Lghi(x) = p⊺i g(x) ̸= 0
for all x ∈ C̃ such that a relative degree of 1 is achieved.
However, a disadvantage is that this results in a convex set C̃,
which can be restrictive. One may also let the alternative safe
set be an inner approximation of the original safe set, i.e.,
C̃ ⊆ C to satisfy the initial safety requirements. An improved
approximation can be achieved by adding more constraints;
the accuracy of the approximation and the computational
demand have to be traded off in real-world applications.

VI. CASE STUDY: LTI SYSTEM WITH ELLIPSOIDAL CBF
In this section, we validate our proposed mitigation strate-

gies in simulation and on a real-world quadrotor system. All
of our CBF-based safety filters have been implemented using
CasADi [22].

To demonstrate the undesirable effect, we first set up two
examples (in simulation and the real world) where the issues
discussed in Sec. IV occur. For both examples, we consider
an ellipsoidal CBF of the form

h(x) = β − (x− c)⊺P (x− c) , (11)

where β > 0 defines the superlevel set, c ∈ Rn is the
ellipsoid’s center, and P ∈ Rn×n is a positive definite
matrix. Here we select β = 1, P = diag(1.31, 4.00),
c =

[
0 0

]⊺
for simulation and c =

[
1.125 0

]⊺
for real-

world experiments.

A. Simulation Results
The system of interest for the simulation is the following

continuous-time LTI system

ẋ =

[
0.00 1.00
−0.09 0.10

]
︸ ︷︷ ︸

A

x+

[
0

18.09

]
︸ ︷︷ ︸

B

u , (12)

which was identified from offline data collected on a real-
world quadrotor system, with x ∈ R2 and u ∈ R. This yields

Lgh(x) = −2x⊺PB . (13)

Note that, for all states x ∈ Xs̸=1 = {x ∈ R2 | x⊺PB = 0},
we have Lgh(x) = 0 with a relative degree s ̸= 1; elsewhere
we have s = 1. For any state in the neighbourhood of Xs̸=1,
we have that ∥Lgh(x)∥ is zero or close to zero.

Here, we select the class-Ke function γ as the identity
map. The uncertified control policy is π(x) = −0.1. We
simulate the system using a sampling time ∆t = 0.001 s for
15 s and always initialize the system to x0 =

[
0.5 −0.1

]⊺
.

The closed-loop state and input trajectories for the un-
certified controller and the standard discrete-time imple-
mentation of a continuous-time CBF-based safety filter are
shown in Fig. 3a. The system leaves the safe set C in
both cases. For the certified control policy, this is caused
by the closed-loop trajectory xus entering the set of states
where Lgh(x) = 0 (indicated by Xs ̸=1). The CBF condition
in (7b) certifies arbitrary control inputs for states x ∈ Xs̸=1,
rendering the safety filter inactive. This results in the system
starting to chatter (us ranging from −3.20 to 2.04, see (a,
right)) and eventually violating the safe set constraint C.
This is a result of the discrete-time implementation of the
continuous-time safety filter.

In the following, we apply our mitigation strategies to
the simulation example. These strategies pursue one of two
goals: (i) prevent ∥Lgh(x)∥ → 0 by modifying the CBF, or
(ii) by using a safe control policy πsafe when ∥Lgh(x)∥ is
close to 0.

First, we use the additional penalty term. Here, we select
the new objective function to substitute (7a) with our new
objective in (8) and select r = 1 and ϵ = 10−8. The
closed-loop state and input trajectories for the CBF-based
safety filter with the modified objective function are shown
in Fig. 3b. Initially, the closed-loop system behaves similarly
to the standard CBF safety filter. Unlike the standard CBF
safety filter, our modified safety filtering objective results in
a switch to the backup control policy πsafe = 0 when it enters
a neighbourhood of Xs̸=1. Therefore, no chattering or safe
set violations occur.

The next mitigation strategy is achieved by transforming
the safe set. For this example, we choose δ = 0 and a two-
dimensional rotation matrix R that rotates every state x with
an angle θ = π

6 around an axis normal to the x1-x2 plane.
Fig. 3c shows the closed-loop state and input trajectories for
the CBF-based safety filter with the transformed CBF. The
transformed CBF C̃ also modifies the set of states for which
Lgh(x) = 0 (see dashed green line in Fig. 3c). This allows
the closed-loop system to safely pass through Xs̸=1 and its
neighbourhood while applying π(x) during the first couple of
time steps and then stabilize at a state x(T ) that is not close
to Xs ̸=1, where T > 0 is the final time in the simulation. To
achieve a useful transformation of the CBF, knowledge of
which states yield Lgh(x) = 0 is required and necessitates
an additional step in the offline design. As mentioned above,
this strategy can also be used with the additional penalty
term.

Finally, we find an alternative CBF to mitigate the undesir-
able impact of Lgh(x) = 0 on the closed-loop safety filtering
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Fig. 3: Demonstration of the undesired closed-loop behaviour when ∥Lgh(x)∥ → 0 (see (a)) and our proposed mitigation strategies (see (b), (c), and
(d)) in simulation. The closed-loop trajectories in (a, left) show the state trajectories using the uncertified control policy π(x) and the certified control
policy us(x), respectively. In both cases, the system leaves the safe set C. For the certified control policy, this is caused by the closed-loop trajectory xus

entering the neighbourhood of states where Lgh(x) = 0 (indicated by Xs̸=1). This results in the system starting to chatter (see (a, right)) and eventually
violating the safe set constraint C. In (b), we prevent safety violations by adding our proposed penalty term to the safety filtering objective. Initially, the
closed-loop system behaves similarly to the standard CBF-based safety filter. Then, the system switches to a backup control policy πsafe = 0 when it enters
a neighbourhood of Xs ̸=1. In (c), we successfully prevent chattering and safety violations by using a transformed safe set C̃. This allows the closed-loop
system to safely pass through the set Xs ̸=1 during the first couple of time steps and then stabilize at the final state in the simulation far from Xs ̸=1.
Finally, in (d), we demonstrate the mitigation of ∥Lgh(x)∥ → 0 by using an alternative safe set C̃. Again, no safe set violations occur, as none of the
affine constraints given by hi are parallel to the input matrix B. Therefore, Xs ̸=1 is empty.

behavior, see Fig. 3d. Again, no safe set violations occur, as
none of the affine constraints given by hi are orthogonal
to the set B⊥ = {x ∈ R2 , x⊺B = 0}. Therefore, this
yields Lghi(x) ̸= 0 , i ∈ {1, ..., 7} for all states x in the
modified safe set ∈ C̃. We highlight that all the hi have to
be specifically chosen to avoid p⊺i B = 0 (for the affine case).

The presented simulation results encourage determination
for which states LgL

s−1
f h(x) = 0 for the problem at hand.

This enables finding an effective modification to the safe
set C. For high-dimensional systems or online adapted safe
sets or systems (e.g., as in learning-based methods), the
determination of LgL

s−1
f h(x) = 0 can be computationally

infeasible. In such cases, the additional penalty term is a
better option.

B. Quadrotor Experiments
We perform physical experiments on a miniature quadro-

tor, the Crazyflie 2.1 [23], to verify the proposed mitigation
strategies. A video of the experiments can be seen at this
link: http://tiny.cc/practicalCBF. In the exper-
iment, a CBF-based safety filter is supposed to prevent a
falling quadrotor from colliding with the floor. We stabilize
the attitude of the quadrotor such that the motion of the
quadrotor is limited to its z-axis. Then the system’s state
reduces to x =

[
zpos zvel

]⊺ ∈ R2 and the applied input

is the collective thrust utotal ∈ R. The elements of the state
vector, zpos and zvel, are determined by a motion capture
system and numerical differentiation, respectively. Instead of
the collective thrust, we use the delta thrust as our control
input u = utotal − u0 where u0 is the collective thrust for
hovering with mass m = 0.033 kg and gravitational constant
g = 9.81 m

s2 . This yields the following continuous-time LTI
system:

ẋ =

[
0.00 1.00
0.00 0.00

]
︸ ︷︷ ︸

A

x+

[
0

30.30

]
︸ ︷︷ ︸

B

u (14)

The set Xs̸=1 with relative degree s ̸= 1 can be readily
determined, and we note that the issue introduced in sec-
tion Sec. IV also exists in our real-world system. The sam-
pling time for the real-world experiments is ∆t = 0.167 s.
We highlight that in our real-world system, the sampling
time is much larger than in our simulation. Recall that
with a discrete-time implementation of a continuous-time
CBF-based safety filter, safety is typically not guaranteed
between consecutive sampling time instants. Therefore, more
conservative, i.e., less steep, class-Ke functions have to be
chosen to prevent the system from approaching the safe set
boundary too fast.

We begin our experiments by hovering at an approximated

http://tiny.cc/practicalCBF
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Fig. 4: Demonstration of the undesired closed-loop behavior when ∥Lgh(x)∥ → 0 (see (a)) and our proposed mitigation strategies (see (b), (c), and (d)) on
a real-world quadrotor system. The closed-loop trajectories in (a, left) show the state trajectories using the uncertified control policy π(x) and the certified
control policy us(x), respectively. The quadrotor violates the safe set C for both scenarios. For the standard CBF-based safety filter, chattering happens
when the system enters the vicinity of set Xs ̸=1, which causes the quadrotor to leave the safe set. In (b), with our proposed penalty formulation, the system
switches to the backup control policy πsafe = 0 when it enters the neighbourhood of Xs ̸=1 and chattering is significantly reduced. Most importantly, the
quadrotor strictly stays inside the safe set in this experiment. Then, in (c), when using a transformed safe set C̃, no chattering and safety violations can
be observed. The quadrotor ends up hovering inside of the transformed safe set C̃. In (d), we apply an alternative safe set C̃ to achieve Lghi(x) ̸= 0
for all x ∈ C̃. The quadrotor violates the new smaller safe set for a few states. However, the system stays inside the original safe set C throughout the
experiment. No chattering is observed with this alternative safe set.

initial condition x0 =
[
1.25 0

]⊺
. Then, the uncertified

control policy π(x) = −0.05mg is applied. In the different
experiments on the real-world system, we demonstrate the
closed-loop behavior of the system with no safety filter,
the standard CBF-based safety filter, and the augmented
CBF-based safety filters using each of our three proposed
mitigation strategies.

The experimental results of the closed-loop state and input
trajectories for the uncertified controller and the standard
CBF safety filter are presented in Fig. 4a. Both cases result
in the quadrotor leaving the safe set. For the standard CBF
safety filter, when the system enters the neighbourhood of
set Xs ̸=1 where arbitrary control inputs are certified by (7b),
chattering can be observed with us varying from −0.14mg
to 0.37mg at a high frequency.

The proposed mitigation strategies are validated in the
following experiments. We first add the penalty term to our
objective function, which results in the new objective (8). In
this experiment, we select r = 75 and ϵ = 10−8. When
the system enters the neighbourhood of Xs ̸=1, a backup
control policy πsafe = 0 is applied. This is a backup control
policy, as all the states x ∈ Xs ̸=1 have x2 = 0, so x1

will be constant for all future time. The state and input

trajectories with this modified objective function are shown
in Fig. 4b. While chattering is not entirely prevented, its
magnitude is significantly decreased with the certified control
input us ∈ [−0.0016mg, 0.02mg] during the timesteps when
chattering occurs. Furthermore, the safety constraints are not
violated during the closed-loop operation. We note that for
real-world safety-critical applications, the parameter r can
be picked conservatively so that the safety filter will tend to
rather adopt the given safe backup control policy to avoid
dangerous behaviors.

Secondly, we apply the transformed safe set with the
same design parameters as in the simulation subsection to
reduce the unfavorable effect caused by the system’s state
entering the neighbourhood of Xs̸=1. The real-world results
are shown in Fig. 4c. The quadrotor safely passes through
the vicinity of set Xs̸=1 and eventually, the augmented safety
filter successfully achieves hover inside the transformed safe
set C̃. Additionally, no chattering is observed because of the
transformed safe set C̃.

Finally, we leverage an alternative CBF in our last experi-
ment. We select a new set of five affine constraints that satisfy
p⊺i B ̸= 0 for i = {1, . . . , 5} to accommodate the sampling
effect of the discrete-time implementation on our real-world



systems. The new safe set and system trajectories are shown
In Fig. 4d. We observe no chattering but minor violations of
the new safe set for a few states. After the violation happens,
the quadrotor is brought back into the safe set by the safety
filter and remains there for the rest of the experiment. The
model mismatch between the real-world system and our LTI
model or the large sampling time could cause this violation.
We also emphasize that, by choosing this alternative CBF,
we sacrifice a large part of the original safe set, which is still
rendered safe by this strategy.

VII. CONCLUSION

In this work, we highlight the issue of CBF-based safety
filters becoming inactive in states where the norm of the Lie
derivative of the CBF with respect to the input dynamics
∥LgL

s−1
f h(x)∥ is close to zero (or zero). In such states,

the CBF-based safety filter certifies any control input as
safe, including the uncertified control policy. For discrete-
time implementations, this inactivity can lead to chattering
and/or safe set violations as an uncertified control input can
be applied for the sampling duration.

To prevent this issue, we propose three strategies to modify
a standard CBF-based safety filter. Our first strategy aims
at switching to a safe backup control policy close to states
that cause the discussed issue using an additional term in
the safety filtering objective. The second strategy transforms
the safe set such that the undesired states are avoided in
closed-loop operation with the safety filter. Our last strategy
leverages an alternative safe set that is carefully designed
such that undesired states do not exist in the new safe set.
Finally, we demonstrate the presented issue and validate our
three proposed mitigation strategies in simulation and on a
real-world quadrotor.
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