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Abstract
Robotic algorithms typically depend on various parameters, the choice of which significantly affects the robot’s
performance. While an initial guess for the parameters may be obtained from dynamic models of the robot,
parameters are usually tuned manually on the real system to achieve the best performance. Optimization algorithms,
such as Bayesian optimization, have been used to automate this process. However, these methods may evaluate
unsafe parameters during the optimization process that lead to safety-critical system failures. Recently, a safe
Bayesian optimization algorithm, called SAFEOPT, has been developed, which guarantees that the performance
of the system never falls below a critical value; that is, safety is defined based on the performance function. However,
coupling performance and safety is often not desirable in robotics. For example, high-gain controllers might achieve
low average tracking error (performance), but can overshoot and violate input constraints. In this paper, we present
a generalized algorithm that allows for multiple safety constraints separate from the objective. Given an initial set
of safe parameters, the algorithm maximizes performance but only evaluates parameters that satisfy safety for
all constraints with high probability. To this end, it carefully explores the parameter space by exploiting regularity
assumptions in terms of a Gaussian process prior. Moreover, we show how context variables can be used to safely
transfer knowledge to new situations and tasks. We provide a theoretical analysis and demonstrate that the proposed
algorithm enables fast, automatic, and safe optimization of tuning parameters in experiments on a quadrotor vehicle.
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1 Introduction

Safety and the ability to operate within constraints
imposed by an environment are critical prerequisites for
any algorithm that is applied on a real robotic system.
Especially in robotics, where systems often face large
prior uncertainties, failures can cause serious damage to
the robot and its environment (Schaal and Atkeson 2010).
To avoid unsafe behavior, safety is typically guaranteed
with respect to a model of the robot’s dynamics and
environment. When accurate models are not available
or when the robotic system contains elements that are
difficult to model, such as computer vision components, the
parameters of the algorithms are either tuned manually in
experiments on the real system or tuned based on massive
amounts of experimental data (Lillicrap et al. 2015). Both
methods are time-consuming and potentially safety-critical:
the engineer must either carefully select parameters that are
safe or collect enough representative data that leads to safe
behavior.

In this paper, we present a method to automatically opti-
mize parameters of robotics algorithms while respecting
safety constraints during the optimization. The resulting
algorithm can be used to optimize parameters on the real
robot without failures, since no unsafe parameters are eval-
uated during the optimization. We expand the theoretical
framework of SAFEOPT (Safe Optimization) by Sui et al.
(2015) to the more general setting with multiple constraints.
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Figure 1. Overview of the algorithm. At each iteration n, the
algorithm selects safe and informative parameters at which the
performance and the safety constraints are evaluated on the
real robot. Based on the noisy information gained, the
algorithm updates its belief over the functions. This safe
optimization process is iterated until the safely reachable,
optimal parameters are found.

We show that our algorithm, SAFEOPT-MC (for multi-
ple constraints), enjoys strong theoretical guarantees about
safety and performance, and works well in practice.

Related work In control theory, guaranteeing safety in
the presence of unmodeled dynamics is often interpreted
as the problem of ensuring stability of the underlying
control law with respect to an uncertain dynamic system
model (Zhou and Doyle 1998). In this setting, controllers
can be gradually improved by estimating the unmodeled
dynamics and updating the control law based on this
estimate. Safety can be guaranteed by ensuring that either
the controller is robustly stable for all possible models
within the uncertainty specification (Berkenkamp and
Schoellig 2015; Berkenkamp et al. 2017) or the system
never leaves a safe subset of the state space (Ostafew et al.
2016; Aswani et al. 2013; Akametalu et al. 2014; Moldovan
and Abbeel 2012; Turchetta et al. 2016). Both methods
require a system model and uncertainty specification to
be known a priori, which must be accurate enough to
guarantee stability. In contrast, in our setting we do not
assume to have access to a model of the system, but aim
to directly optimize the parameters of a control algorithm,
without violating safety constraints.

In the robotics literature, optimization algorithms have
previously been applied with the goal of maximizing
a user-defined performance function through iterative
experiments. This is especially powerful when no prior
model of the robot is available. However, typical algorithms
in the literature do not consider safety of the optimization
process, and make other restrictive assumptions such as
requiring gradients (Killingsworth and Krstić 2006; Åström
et al. 1993), which are difficult to obtain from noisy data, or
an impractical number of experiments (Davidor 1991).

The objective of learning optimal policies has been
extensively studied in the reinforcement learning commu-
nity (Sutton and Barto 1998). In particular, the area of
policy search considers the objective of optimizing the
parameters of control algorithms (Kober and Peters 2014).
The state of the art methods are based on estimating the
gradients of the performance function (Peters and Schaal
2006, 2008). As a result, typically multiple evaluations of

very similar parameters are conducted on the real system in
order to estimate the gradients, which means the approaches
are often not data-efficient and converge to local optima.
Safety in gradient-based policy search has only been con-
sidered by disallowing large steps along the gradient into
areas of the parameter space that have not been explored
before (Achiam et al. 2017). Guarantees there hold only
in expectation. In contrast, our method is gradient-free, so
that it can explore the parameter space globally in a more
data-efficient manner. At the same time, we provide high-
probability worst-case guarantees for not violating safety
constraints during the optimization process.

One class of optimization algorithms that has been
successfully applied to robotics is Bayesian optimiza-
tion (Mockus 2012). In Bayesian optimization, rather than
considering the objective function as a black-box about
which we can only obtain point-wise information, regular-
ity assumptions are made. These are used to actively learn
a model of the objective function. The resulting algorithms
are practical and provably find the global optimum of the
objective function while evaluating the function at only
few parameters (Bull 2011; Srinivas et al. 2012). Bayesian
optimization methods often model the unknown function as
a Gaussian process (GP) (Rasmussen and Williams 2006).
These models are highly flexible, allow to encode as much
prior knowledge as desired, and explicitly model noise
in the performance function evaluations. The GP models
are used to guide function evaluations to locations that
are informative about the optimum of the unknown func-
tion (Mockus 2012; Jones 2001). Example applications of
Bayesian optimization in robotics include gait optimization
of legged robots (Calandra et al. 2014a; Lizotte et al.
2007) and the optimization of the controller parameters of
a snake-like robot (Tesch et al. 2011). Marco et al. (2017)
optimize the weighting matrices of an LQR controller for
an inverted pendulum by exploiting additional information
from a simulator. Several different Bayesian optimization
methods are compared by Calandra et al. (2014b) for the
case of bipedal locomotion. While these examples illustrate
the potential of Bayesian optimization methods in robotics,
none of these examples explicitly considers safety as a
requirement.

Recently, the concept of constraints has been incorpo-
rated into Bayesian optimization. Gelbart et al. (2014) intro-
duce an algorithm to optimize an unknown function subject
to an unknown constraint. However, this constraint was not
considered to be safety-critical; that is, the algorithm is
allowed to evaluate unsafe parameters. The case of finding
a safe subset of the parameters without violating safety con-
straints was considered by Schreiter et al. (2015), while Sui
et al. (2015) presented a similar algorithm to safely opti-
mize an objective function. However, the algorithm of Sui
et al. (2015) considers safety as a minimum performance
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requirement. In robotics, safety constraints are typically
functions of the states or inputs that are independent of the
performance.

Our contributions In this paper, we present an algorithm
that considers multiple, arbitrary safety constraints
decoupled from the performance objective. This
generalization retains the desirable sample-efficient
properties of normal Bayesian optimization, but carefully
explores the parameter space in order to maximize
performance while guaranteeing safety with high
probability. We extend the theory of SAFEOPT (Sui
et al. 2015) to account for these additional constraints and
show that similar theoretical guarantees can be obtained
for the more general setting. We then relax the assumptions
used in the proofs to obtain a more practical version of the
algorithm and additionally show that the safety guarantees
carry over to this case. Next to the theoretical contributions,
the second main contribution is an extensive experimental
evaluation of the method, where we consider the problem of
safely optimizing linear and nonlinear laws on a quadrotor
vehicle. The experiments demonstrate that the proposed
approach is able to safely optimize parameters of a control
algorithms while respecting safety constraints with high
probability. Moreover, we show how ideas from context-
based optimization (Krause and Ong 2011) can be used to
safely transfer knowledge in order to obtain environment-
dependent control laws. For example, in our experiments
we optimize a control law for different flying speeds of a
quadrotor vehicle. Early results with only a safety constraint
on performance and without additional theoretical results
were presented in (Berkenkamp et al. 2016).

The rest of the paper is structured as follows: in Section 2,
we define the problem of safely optimizing the parameters
of control algorithms and provide an overview on GPs
and Bayesian optimization in Section 3. In Section 4,
we introduce our algorithm, and analyze its theoretical
properties in Section 4.2. We evaluate the performance
of the algorithm in experiments on a quadrotor vehicle
in Section 5 and draw conclusions in Section 6. The proofs
of the theorems are provided in Section 7.

2 Problem Statement
We consider a given algorithm that is used to accomplish
a certain task with a robot. In general, this algorithm is
arbitrary and may contain several components including
vision, state estimation, planning, and control laws. The
algorithm depends on tuning parameters a ∈ A in some
specified, domain A ⊆ Rd.

The goal is to find the parameters within A that
maximize a given, scalar performance measure, f . For
example, this performance measure may represent the
negative tracking error of a robot (Berkenkamp et al. 2016),

the average walking speed of a bipedal robot (Calandra
et al. 2014a), or any other quantity that can be computed
over a finite time horizon. We can only evaluate the
performance measure for any parameter set a on finite-
time trajectories from experiments on the real robot. The
functional dependence of f on a is not known a priori.
In the following, we write the performance measure as
a function of the parameters a, f : A → R, even though
measuring performance requires an experiment on the
physical robot and typically depends on a trajectory of
states, control inputs, and external signals.

We assume that the underlying system is safety-
critical; that is, there are constraints that the system
must respect when evaluating parameters. Similarly to the
performance measure, f(a), these constraints can represent
any quantity and may depend on states, inputs, or even
environment variables. There are q safety constraints of the
form gi(a) ≥ 0, gi : A → R, i = 1 . . . q, which together
define the safety conditions. This is without loss of
generality, since any constraint function can be shifted by
a constant in order to obtain this form. The functions gi are
unknown a priori but can be estimated through (typically
noisy) experiments for a given parameter set a. For
example, in order to encode a state constraint on an obstacle
for a robot, the safety function gi(a) can return the smallest
distance to the obstacle along a trajectory of states when
using algorithm parameters a. Note that if the functions
were known in advance, we could simply exclude unsafe
parameters from the set A.

The overall optimization problem can be written as

max
a∈A

f(a) subject to gi(a) ≥ 0 ∀ i = 1, . . . , q. (1)

The goal is to iteratively find the global maximum of this
constrained optimization problem by, at each iteration n,
selecting parameters an and evaluating (up to noise) the
corresponding function values f(an) and gi(an) until
the optimal parameters are found. In particular, since the
constraints define the safety of the underlying system, only
parameters that are inside the feasible region of (1) are
allowed to be evaluated; that is, only parameters that fulfill
these safety requirements on the real system.

Since the functions f and gi in (1) are unknown a
priori, it is not generally possible to solve the corresponding
optimization problem without violating the constraints. The
first problem is that we do not know how to select a first,
safe parameter to evaluate. In the following, we assume that
an initial safe set of parameters S0 ⊆ A is known for which
the constraints are fulfilled. These serve as a starting point
for the exploration of the safe region in (1). In robotics,
safe initial parameters with poor performance can often be
obtained from a simulation or domain knowledge.

Secondly, in order to safely explore the parameter
space beyond S0, we must be able to infer whether
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parameters a that we have not evaluated yet are safe to
use on the real system. To this end, we make regularity
assumptions about the functions f and gi in (1). We
discuss these assumptions in more detail in Section 4.2.
However, broadly speaking we make assumptions that
allow us to model the functions f and gi as a GP, construct
reliable confidence intervals over the domain A, and imply
Lipschitz continuity properties. Using these properties,
we are able to generalize safety beyond the initial, safe
parameters S0. Given the model assumptions, we require
that the safety constraints hold with high probability over
the entire sequence of experiments.

As a consequence of the safety requirements, it is not
generally possible to find the global optimum of (1). Instead
we aim to find the optimum in the part of the feasible region
that is safely reachable from S0. We formalize this precisely
in Section 4.

Lastly, whenever we evaluate parameters on the real
system, we only obtain noisy estimates of both the
performance function and the constraints, since both
depend on noisy sensor data along trajectories. That
is, for each parameter a the we evaluate, we obtain
measurements f̂(a) = f(a) + ω0 and ĝi(a) = gi(a) + ωi,
where ωi, i = 0, . . . , q, is zero-mean, σ-sub-Gaussian
noise. Note that while f̂(a) is a random variable,
we use f̂(an) to denote the measurement obtained at
iteration n. In general, the noise variables may be
correlated, but we do not consider this case in our
theoretical analysis in Section 4.2. We only want to evaluate
parameters where all safety constraints are fulfilled, so
that gi(an) ≥ 0 for all i ∈ {1, . . . , q} and n ≥ 1.

3 Background
In this section, we review Gaussian processes (GPs) and
Bayesian optimization, which form the foundation of our
safe Bayesian optimization algorithm in Section 4. The
introduction to GPs is standard and based on (Berkenkamp
et al. 2016) and (Rasmussen and Williams 2006).

3.1 Gaussian Process (GP)
Both the function f(a) and the safety constraints gi(a)
in Section 2 are unknown a priori. We use GPs as
a nonparametric model to approximate these unknown
functions over their common domain A. In the following,
we focus on a single function, the performance function. We
extend this model to multiple functions in order to represent
both performance and constraints in Section 3.1.1.

GPs are a popular choice for nonparametric regression
in machine learning, where the goal is to find an
approximation of a nonlinear map, f(a) : A → R, from
an input vector a ∈ A to the function value f(a). This is
accomplished by assuming that the function values f(a),

associated with different values of a, are random variables
and that any finite number of these random variables have
a joint Gaussian distribution (Rasmussen and Williams
2006).

A GP is parameterized by a prior mean function and a
covariance function k(a,a′), which defines the covariance
of any two function values f(a) and f(a′), a,a′ ∈ A.
The latter is also known as the kernel. In this work, the
mean is assumed to be zero, without loss of generality.
The choice of kernel function is problem-dependent and
encodes assumptions about smoothness and rate of change
of the unknown function. A review of potential kernels
can be found in (Rasmussen and Williams 2006) and more
information about the kernels used in this paper is given
in Section 5.

The GP framework can be used to predict the function
value f(a∗) for an arbitrary parameter a∗ ∈ A based
on a set of n past observations, {f̂(ai)}ni=1, at the
chosen parameters Dn = {ai}ni=1. The GP model assumes
that observations are noisy measurements of the true
function value f(a); that is, f̂(a) = f(a) + ω with
ω ∼ N (0, σ2). Conditioned on these observations, the
posterior distribution is a GP again with mean and variance

µn(a∗) = kn(a∗)(Kn + Inσ
2)−1f̂n, (2)

σ2
n(a∗) = k(a∗,a∗)− kn(a∗)(Kn + Iσ2)−1kT

n (a∗),
(3)

where f̂n =
[
f̂(a1), . . . , f̂(an)

]T
is the vector of observed,

noisy function values, the covariance matrix Kn ∈ Rn×n
has entries [Kn](i,j) = k(ai,aj), i, j ∈ {1, . . . , n}, and the
vector kn(a∗) =

[
k(a∗,a1), . . . , k(a∗,an)

]
contains the

covariances between the new input a∗ and the observed data
points in Dn. The matrix In ∈ Rn×n denotes the identity
matrix.

3.1.1 GPs with multiple outputs So far, we have focused
on GPs that model a single scalar function. In order
to model not only the performance, f(a), but also the
safety constraints, gi(a), we have to consider multiple,
possibly correlated functions. In the GP literature, these
are usually treated by considering a matrix of kernel
functions, which models the correlation between different
functions (Álvarez et al. 2012). Here instead, we use
an equivalent representation by considering a surrogate
function,

h(a, i) =

{
f(a) if i = 0

gi(a) if i ∈ Ig,
(4)

which returns either the performance function or
the individual safety constraints depending on
the additional input i ∈ I with I = {0, . . . , q},
where Ig = {1, . . . , q} ⊂ I are the indices belonging
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to the constraints. The function h(·, ·) is a single-output
function and can be modeled as a GP with scalar output
over the extended parameter spaceA× I. For example, the
kernel for the performance function f(a) and one safety
constraint g(a) may look like this:

k((a, i), (a′, j)) =

{
δij kf (a,a′) + kfg(a,a

′) if i = 0

δij kg(a,a
′) + kfg(a,a

′) if i = 1,

where δij is the Kronecker delta. This kernel models
the functions f(a) and g(a) with independent kernels kf
and kg respectively, but also introduces a covariance
function kfg that models similarities between the two
function outputs. By extending the training data by the
extra parameter i, we can use the normal GP framework
and predict function values and corresponding uncertainties
using (2) and (3). When observing the function values, the
index i is added to the parameter set a for each observation.
Including noise parameters inside the kernel allows to
model noise correlation between the individual functions.

Importantly, using this surrogate function rather than
the framework of Álvarez et al. (2012) enables us to lift
theoretical results of Sui et al. (2015) to the more general
case with multiple constraints and provide theoretical
guarantees for our algorithm in Section 4.2.

In the setting with multiple outputs, at every iteration n,
we obtain |I| = q + 1 measurements; one for each
function. For ease of notation, we continue to write µn
and σn, even though we have obtained n · (q + 1)
measurements at locations Dn × I in the extended
parameter space.

3.2 Bayesian Optimization
Bayesian optimization aims to find the global maximum
of an unknown function (Mockus 2012). The framework
assumes that evaluating the function is expensive, while
computational resources are relatively cheap. This fits
our problem in Section 2, where each evaluation of the
performance function corresponds to an experiment on the
real system, which takes time and causes wear in the robotic
system.

In general, Bayesian optimization models the objective
function as a random function and uses this model
to determine informative sample locations. A popular
approach is to model the underlying function as a GP,
see Section 3.1. GP-based methods use the posterior mean
and variance predictions in (2) and (3) to compute the next
sample location. For example, according to the GP-UCB
(GP-Upper Confidence Bound) algorithm by Srinivas et al.
(2012), the next sample location is

an = argmax
a∈A

µn−1(a) + β1/2
n σn−1(a), (5)

where βn is an iteration-dependent scalar that reflects the
confidence interval of the GP. Intuitively, (5) selects new
evaluation points at locations where the upper bound of
the confidence interval of the GP estimate is maximal.
Repeatedly evaluating the system at locations given by (5)
improves the mean estimate of the underlying function
and decreases the uncertainty at candidate locations for the
maximum, such that the global maximum is provably found
eventually (Srinivas et al. 2012).

While (5) is also an optimization problem, its
solution does not require any evaluations on the real
system and only uses the GP model. This reflects
the assumption of cheap computational resources. In
practice, Bayesian optimization typically focuses on low-
dimensional problems. However, this can be scaled up by
discovering a low-dimensional subspace of A for Bayesian
optimization (Djolonga et al. 2013; Wang et al. 2013) or
encoding additional structure in the kernel (Duvenaud et al.
2011).

3.3 Contextual Bayesian Optimization
Contextual Bayesian optimization is a conceptually
straightforward extension of Bayesian optimization (Krause
and Ong 2011). It enables optimization of functions that
depend on additional, external variables, which are called
contexts. For example, the performance of a robot may
depend on its battery level or the weather conditions,
both of which cannot be influenced directly. Alternatively,
contexts can also represent different tasks that the robot has
to solve, which are specified externally by a user. The idea
is to include the functional dependence on the context in
the GP model, but to consider them fixed when selecting
the next parameters to evaluate.

For example, given a context z ∈ Z that is fixed by
the environment, we can model how the performance
and constraint functions change with respect to different
contexts by multiplying the kernel function ka over the
parameters, with another kernel kz : Z × Z → R over the
contexts,

k((a, i, z), (a′, i′, z′)) = ka((a, i), (a′, i′)) · kz(z, z′).
(6)

This kernel structure implies that function values are
correlated when both parameters and the contexts are
similar. For example, we would expect selecting the same
parameters a for a control algorithm to lead to similar
performance values if the context (e.g., the battery level)
is similar.

Since contexts are not part of the optimization criterion,
a modified version of (5) has to be used. It was shown
by Krause and Ong (2011) that an algorithm that evaluates
the GP-UCB criterion given a fixed context zn,

an = argmax
a∈A

µn−1(a, zn) + β1/2
n σn−1(a, zn), (7)
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enjoys similar convergence guarantees as normal Bayesian
optimization in Section 3.2. Specifically, after seeing a
particular context often enough, the criterion (7) will query
parameters that are close-to-optimal.

3.4 Safe Bayesian Optimization ( SAFEOPT)
In this paper, we extend the safe optimization algo-
rithm SAFEOPT (Sui et al. 2015) to multiple constraints.
SAFEOPT is a Bayesian optimization algorithm, see Sec-
tion 3.2. However, instead of optimizing the underlying
performance function f(a) globally, it restricts itself to a
safe set of parameters that achieve a certain minimum per-
formance with high probability. This safe set is not known
initially, but is estimated after each function evaluation. In
this setting, the challenge is to find an appropriate evalu-
ation strategy similar to (5), which at each iteration n not
only aims to find the global maximum within the currently
known safe set (exploitation), but also aims to increase the
set of controllers that are known to be safe (exploration).
SAFEOPT trades off between these two sets by choosing
for the next experiment the parameters inside the safe set
about whose performance we are the most uncertain.

4 SAFEOPT-MC (Multiple Constraints)
In this section, we introduce the SAFEOPT-MC algorithm
for multiple constraints and discuss its theoretical
properties. The goal of the algorithm is to solve (1) by
evaluating different parameters from the domain A without
violating the safety constraints. To this end, any algorithm
has to consider two important properties:

(i) Expanding the region of the optimization problem
that is known to be feasible or safe as much as
possible without violating the constraints,

(ii) Finding the optimal parameters within the current
safe set.

For objective i), we need quantify the size of the safe set. To
do this in a tractable manner, we focus on finite sets A in
the following. However, heuristic extensions to continuous
domains exist (Duivenvoorden et al. 2017).

The theoretical guarantees of the algorithm rely on the
continuity of the underlying function. Many commonly
used kernels, such as the squared exponential (Gaussian)
kernel, encode Lipschitz-continuous functions with high
probability (Ghosal and Roy 2006). We make more specific
assumptions that ensure deterministic Lipschitz constants
in Section 4.2. For now, we assume that f(a) and gi(a) are
Lipschitz continuous with Lipschitz constantLwith respect
to some norm ∗.

Since we only observe noisy estimates of both the
performance function and the constraints, we cannot expect

to find the entire safe region encoded by the constraints
within a finite number of evaluations. Instead, we follow Sui
et al. (2015) and consider learning the safety constraint
up to some accuracy ε. This assumption is equivalent to a
minimum slack of ε on the constraints in (1).

As mentioned in Section 2, we assume that we have
access to initial, safe parameters S0 ⊆ A, for which we
know that the safety constraints are satisfied a priori.
Starting from these initial parameters, we ask what the
best that any safe optimization algorithm could hope to
achieve is. In particular, if we knew the safety constraint
functions gi(·) up to ε accuracy within some safe set of
parameters S, we could exploit the continuity properties to
expand the safe set to

Rε(S) := S∪⋂
i∈Ig

{a ∈ A | ∃a′ ∈ S : gi(a
′)− ε− L‖a−a′‖ ≥ 0} ,

(8)
where Rε(S) represents the number of parameters that
can be classified as safe given that we know g
up to ε-error inside S and exploiting the Lipschitz
continuity to generalize to new parameters outside of S.
The baseline that we compare against is the limit
of repeatedly applying this operator on S0; that is,
with Rnε (S) = Rε(R

n−1
ε (S)) and R1

ε (S) = Rε(S) the
baseline is R̄ε(S0) := limn→∞Rnε (S0). This set contains
all the parameters in A that could be classified as safe
starting from S0 if we knew the function up to ε error. This
set does not include all the parameters that potentially fulfill
the constraints in (1), but is the best we can do without
violating the safety constraints. Hence the optimal value
that we compare against is not the one in (1), but

f∗ε = max
a∈R̄ε(S0)

f(a), (9)

which is the maximum performance value over the set that
we could hope to classify as safe starting from the initial
safe set, S0.

4.1 The Algorithm
In this section, we present the SAFEOPT-MC algorithm that
guarantees convergence to the previously set baseline. The
most critical aspect of the algorithm is safety. However,
once safety is ensured, the second challenge is to find
an evaluation criterion that enables trading off between
exploration, trying to further expand the current estimate

∗The functions f and gi can have different Lipschitz constants Li, but we
assume a global Lipschitz constant for ease of notation. Additionally, the
theoretical results transfer equivalently to the case of Lipschitz-continuity
with respect to some metric.
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Figure 2. Optimization with the SAFEOPT-MC algorithm after 1, 2 and 10 parameter evaluations. Based on the mean estimate
(blue) and the 2σ confidence interval (light blue), the algorithm selects evaluation points for which g(a) ≥ 0 (black dashed) from
the safe set Sn (red), which are either potential maximizers Mn (green) or expanders Gn (magenta). It then learns about the
function by drawing noisy samples from the unknown, underlying function (light gray). This way, we expand the safe region (red)
as much as possible and, simultaneously, find the global optimum of the unknown function (17) (cyan circle).

of the safe set, and exploitation, trying to improving the
estimate of the best parameters within the current set.

To ensure safety, we construct confidence intervals that
contain the true functions f and gi with high probability. In
particular, we use the posterior GP estimate given the data
observed so far. The confidence intervals for the surrogate
function in (4) are defined as

Qn(a, i) :=
[
µn−1(a, i)± β1/2

n σn−1(a, i)
]
, (10)

where βn is a scalar that determines the desired confidence
interval. This set contains all possible function values
between the lower and upper confidence interval based
on the GP posterior. The probability of the true function
value lying within this interval depends on the choice
of βn, as well as on the assumptions made about the
functions. We provide more details about this choice
in Section 4.2, Lemma 1, and Section 4.3.

Rather than defining the lower and upper bounds based
on (10), the following analysis requires that consecutive
estimates of the lower and upper bounds are contained
within each other. This assumption ensures that the safe
set does not shrink from one iteration to the next,
which we require to prove our results. We relax this
assumption in Section 4.3. We define the contained
set at iteration n as Cn(a, i) = Cn−1(a, i) ∩Qn(a, i),
where C0(a, i) is [0,∞] for all a ∈ S0 and R
otherwise. This ensures that parameters in the initial

safe set S0 remain safe according to the GP model
after additional observations. The lower and upper
bounds on this set are defined as lin(a) := minCn(a, i)
and uin(a) := maxCn(a, i), respectively. For notational
clarity, we write lfn(a) := l0n(a) and ufn(a) := u0

n(a) for the
performance bounds.

Based on these confidence intervals for the function
values and a current safe set Sn−1, we can enlargen the safe
set using the Lipschitz continuity properties,

Sn =
⋂
i∈Ig

⋃
a∈Sn−1

{
a′ ∈ A | lin(a)− L‖a−a′‖ ≥ 0

}
.

(11)
The set Sn contains all points in Sn−1, as well as all
additional parameters that fulfill the safety constraints given
the GP confidence intervals and the Lipschitz constant.

With the set of safe parameters defined, the last
remaining challenge is to trade off between exploration
and exploitation. One could, similar to Schreiter et al.
(2015), simply select the most uncertain element over the
entire set. However, this approach is not sample-efficient,
since it involves learning about the entire function rather
than restricting evaluations to the relevant parameters. To
avoid this, we first define subsets of Sn that correspond
to parameters that could either improve the estimate of the
maximum or could expand the safe set. The set of potential
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maximizers is defined as

Mn :=

{
a ∈ Sn |ufn(a) ≥ max

a′∈Sn
lfn(a′)

}
, (12)

which contains all parameters for which the upper bound
of the current performance estimate is above the best
lower bound. The parameters in Mn are candidates for
the optimum, since they could obtain performance values
above the current conservative estimate of the optimal
performance.

Similarly, an optimistic set of parameters that could
potentially enlarge the safe set is

Gn := {a ∈ Sn | en(a) > 0} , (13)

en(a) :=
∣∣{a′ ∈ A \ Sn | ∃i ∈ Ig : (14)

uin(a)− L‖a− a′‖ ≥ 0
}∣∣.

The function en enumerates the number of parameters that
could additionally be classified as safe if a safety function
obtained a measurement equal to its upper confidence
bound. Thus, the set Gn is an optimistic set of parameters
that could potentially expand the safe set.

We trade off between the two sets, Mn and Gn, by
selecting the most uncertain element across all performance
and safety functions; that is, at each iteration n we select

an = argmax
a∈Gn∪Mn

max
i∈I

wn(a, i), (15)

wn(a, i) = uin(a)− lin(a) (16)

as the next parameter set to be evaluated on the real system.
The implications of this selection criterion will become
more apparent in the next section, but from a high-level
view this criterion leads to a behavior that focuses almost
exclusively on exploration initially, as the most uncertain
points will typically lie on the boundary of the safe set
for many commonly used kernels. This changes once the
constraint evaluations return results closer to the safety
constraints. At this point, the algorithm keeps switching
between selecting parameters that are potential maximizers,
and parameters that could expand the safe set and lead
to new areas in the parameter space with even higher
function values. Pseudocode for the algorithm is found
in Algorithm 1.

We show an example run of the algorithm in Figure 2.
It starts from an initial safe parameter a0 ∈ S0 at which
we obtain a measurement in Figure 2d. Based on this,
the algorithms uses the continuity properties of the
safety function and the GP in order to determine nearby
parameters as safe (red set). This corresponds to the
region where the high-probability confidence intervals of
the GP model (blue shaded) are above the safety threshold
(grey dashed line). At the next iteration in Figure 2e,
the algorithm evaluates parameters that are close to the

Algorithm 1: SAFEOPT-MC
Inputs: Domain A,

GP prior k((a, i), (a′, j)),
Lipschitz constant L,
Initial safe set S0 ⊆ A

1 for n = 1, . . . do
2 Sn ←⋂

i∈Ig

⋃
a∈Sn−1

{
a′ ∈ A | lin(a)− L‖a− a′‖ ≥ 0

}
3 Mn ←

{
a ∈ Sn |ufn(a) ≥ maxa′∈Sn l

f
n(a′)

}
4 Gn ← {a ∈ Sn | en(a) ≥ 0}
5 an ← argmaxa∈Gn∪Mn

maxi∈I wn(a, i)

6 Measurements: f̂(an), ĝi(an)∀i = 0, . . . , q
7 Update GP with new data
8 end

boundary of the safe set, in order to expand the set of
safe parameters. Eventually the algorithm converges to
the optimal parameters in Figure 2c, which obtain the
largest performance value that is possible without violating
the safety constraints. A local optimization approach, e.g.
based on estimated gradients†, would have gotten stuck in
the local optimum at the initial parameter a0.

At any iteration, we can obtain an estimate for the current
best parameters from

ân = argmax
a∈Sn

lfn(a), (17)

which returns the best, safe lower-bound on the perfor-
mance function f .

4.2 Theoretical Results
In this section, we show that the same theoretical
framework from the SAFEOPT algorithm (Sui et al. 2015)
can be extended to multiple constraints and the evaluation
criterion (15). Here, we only provide the results and high-
level ideas of the proofs. The mathematical details are
provided in Section 7. For simplicity, we assume that all
function evaluations are corrupted by the same σ-sub-
Gaussian noise in this section.

In order to provide guarantees for safety, we need the
confidence intervals in (10) to hold for all iterations and
functions. In the following, we assume that the surrogate
function h(a, i) has bounded norm in a reproducing kernel
Hilbert space (RKHS, c.f., Christmann and Steinwart
(2008)). A RKHS corresponding to a kernel k(·, ·) includes
functions of the form h(a, i) =

∑
j αjk((a, i), (aj , ij))

with αi ∈ R and representer points (aj , ij) ∈ A× I. The

†If gradient information is available, it can be incorporated in the GP
model too (Solak et al. 2003)
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bounded norm property implies that the coefficients αj
decay sufficiently fast as j increases. Intuitively, these
functions are well-behaved, in that they are regular with
respect to the choice of kernel.

The following Lemma allows us to choose a scaling
factor βn for (10), so that we achieve a specific probability
of the true function being contained in the confidence
intervals for all iterations.

Lemma 1. (based on Chowdhury and Gopalan (2017)).
Assume that h(a, i) has RKHS norm bounded by B
and that measurements are corrupted by σ-sub-Gaussian
noise. If β1/2

n = B + 4σ
√
γ(n−1)|I| + 1 + ln(1/δ), then

the following holds for all parameters a ∈ A, function
indices i ∈ I, and iterations n ≥ 1 jointly with probability
at least 1− δ:∣∣h(a, i)− µn−1(a, i)

∣∣ ≤ β1/2
n σn−1(a, i). (18)

Moreover, if the kernel is continuously differentiable,
then the corresponding functions are Lipschitz continu-
ous (Christmann and Steinwart 2008). Note that Lemma 1
does not make probabilistic assumptions on h – in fact, h
could be chosen adversarially, as long as it has bounded
norm in the RKHS. Similar results can be be obtained for
the Bayesian setting where the function h is assumed to be
drawn from the GP prior (Srinivas et al. 2012).

The scaling factor βn in Lemma 1 depends on the
information capacity γn associated with the kernel k. It
is the maximum amount of mutual information that we
can obtain about the GP model of h(·) from n noisy
measurements ĥD at parameters D = {(a1, i1), . . . },

γn = max
D⊆A×I,|D|≤n

I(ĥD;h). (19)

Intuitively, it quantifies a best case scenario where we can
select the measurements in the most informative manner
possible. The information capacity γn has a sublinear
dependence on n for many commonly-used kernels and can
numerically approximated up to a small constant factor for
any given kernel Srinivas et al. (2012).

Since the confidence intervals hold with probabil-
ity 1− δ and the safe set is not empty starting from S0, it is
possible to prove that parameters within the safe set Sn are
always safe with high probability. In order for the algorithm
to compete with our baseline, we must additionally ensure
that the algorithm learns the true function up to ε confidence
in both the sets Mn and Gn. The number of measure-
ments required to achieve this depends on the information
capacity γn, since it encodes how much information can be
obtained about the true function from n measurements. We
use the sublinearity of γn in order to bound the number of
samples required to estimate the function up to ε accuracy.
We have the following result:

Theorem 1. Assume that h(a, i) has bounded norm in an
RKHS and that the measurement noise is σ-sub-Gaussian.
Also, assume that S0 6= ∅ and gi(a) ≥ 0 for all a ∈ S0

and i ∈ Ig . Choose βn as in Lemma 1, define ân as in (17),
and let n∗(ε, δ) be the smallest positive integer satisfying

n∗

βn∗γ|I|n∗
≥ C1(|R̄0(S0)|+ 1)

ε2
, (20)

where C1 = 8/ log(1 + σ−2). For any ε > 0
and δ ∈ (0, 1), when running Algorithm 1 the following
inequalities jointly hold with probability at least 1− δ:

1. Safety: ∀n ≥ 1,∀i ∈ Ig : gi(an) ≥ 0

2. Optimality: ∀n ≥ n∗, f(ân) ≥ f∗ε − ε

Proof. Main idea: safety follows from Lemma 1, since
accurate confidence intervals imply that we do not evaluate
unsafe parameters. For the optimality, the main idea
is that, since we evaluate the most uncertain element
in Mn ∪Gn, the uncertainty about the maximum is
bounded by wn(an, in). The result follows from showing
that, after a finite number of evaluations, either the safe
set expands or the maximum uncertainty within Mn ∪Gn
shrinks to ε. See Section 7 for derivations and details.

Theorem 1 states that, given the assumptions we made
about the underlying function, Algorithm 1 explores the
state space without violating the safety constraints and,
after at most n∗ samples, finds an estimate that is ε-
close to the optimal value over the safely reachable
region. The information capacity γ|I|n∗ , grows at a faster
rate of |I|n compared to n in SAFEOPT, since we
obtain |I| observations at the same parameters set a,
while the SAFEOPT analysis assumes every measurement is
optimized independently. However, γ|I|n remains sublinear
in n, see Section 7.

4.2.1 Contexts In this section, we show how the
theoretical guarantees derived in the previous section
transfer to contextual Bayesian optimization. In this setting,
part of the variables that influence the performance, the
contexts, are fixed by an external process that we do not
necessarily control. In normal Bayesian optimization, it was
shown by Krause and Ong (2011) that an algorithm that
optimizes the GP-UCB criterion in (7) for a fixed context
converges to the global optimum after repeatedly seeing the
corresponding context.

Intuitively, the fact that part of the variables that influence
the performance, the contexts, are now fixed by an external
process should not impact the algorithm on a fundamental
level. However, safety is a critical issue in our experiments
and, in general, one could always select an adversarial
context for which we do not have sufficient knowledge to
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determine safe controller parameters. As a consequence, we
make the additional assumption that only ‘safe’ contexts are
visited; that is, we assume the following:

Assumption 1. For any n ≥ 1, the context zn ∈ Z is
selected such that Sn(zn) 6= ∅.

Here, Sn(zn) denotes the safe set for the given
context zn. Intuitively, Assumption 1 ensures that for every
context there exists at least one parameter choice that is
known to satisfy all safety constraints. This assumption
includes the case where safe initial parameters for all
contexts are known a priori and the case where the
algorithm terminates and asks for help from a domain-
expert whenever a context leads to an empty safe set.

A trivial extension of SAFEOPT-MC to contexts is to
run |Z| independent instances of Algorithm 1, one for
each context. This way, it is sufficient to repeatedly see a
context several times to apply the previous results to the safe
contextual optimization case. One can apply the previous
analysis to this setting, but it would fail to yield guarantes
that hold jointly for all contexts.

In order to obtain stronger results that hold jointly across
all contexts in Z , we adapt the information capacity (worst-
case mutual information) γn to consider contexts,

γn = max
D⊆A×Z×I,|D|≤n

I(ĥD;h), . (21)

Unlike in (19), the mutual information is maximized across
contexts in (21). As a result, we can use Lemma 1 to obtain
confidence intervals that hold jointly across all contexts.

A second challenge is that contexts are chosen in
an arbitrary order. This is in stark contrast to the
parameters an, which are chosen according to (15) in order
to be informative. This means that any tight finite sample
bound on Algorithm 1 must necessarily depend on the order
of contexts. The following theorem accounts for both of
these challenges.

Theorem 2. Under the assumptions of Theorem 1
and Assumption 1. Choose βn as in Lemma 1, where γn
is now the worst-case mutual information over contexts as
in (21). For a given context order (z1, z2, . . . ) and any
context z ∈ Z , let

n(z) =

n∗(z)∑
n=1

1z=zn (22)

be the number of times that we have observed the context z
up to iteration n∗ and 1 is the indicator function. Let n∗(z)
be the smallest positive integers such that

n(z)

βn∗(z) γn(z)|I|(z)
≥ C1(|R̄0(S0(z))|+ 1)

ε2
, (23)

where C1 = 8/ log(1 + σ−2). We note the information
capacity for a fixed context z by γn(z). That
is, with hz(a, i) = h(a, i, z) it is defined as
γn(z) = maxD⊆A×I,|D|≤n I(ĥz D;hz). For any ε > 0
and δ ∈ (0, 1), let f∗ε (z) = maxa∈R̄ε(S0) f(a, z). Then,
when running Algorithm 1 the following inequalities jointly
hold with probability at least 1− δ:

1. ∀n ≥ 1, i ∈ Ig : gi(an, zn) ≥ 0

2. ∀z ∈ Z, n ≥ n∗(z) : f(ân, z) ≥ f∗ε (z)− ε

Proof. For a fixed context, zn = z ∀n, we have n∗(z) =
n(z) and the results follow directly as in Theorem 1.
Otherwise, the only difference in the proofs is that β
depends on the information capacity over contexts,
making sure that the confidence intervals are valid across
contexts. By visiting contexts in Z \ {z}, we obtain more
measurements and β increases, which in turn increases
the upper bound on the number of samples required at
context z.

Theorem 2 states that the contextual variant of Algo-
rithm 1 enjoys the same safety guarantees as the non-
contextual version. Additionally, it shows that, after gaining
enough information about a particular context, it can iden-
tify the optimal parameters. In practice, this upper bound
is conservative, since it does not acount for knowledge
transfer accross contexts. In practice, correlations between
contexts significantly speed up the learning process. For
example, in Figure 3 we show a contextual safe optimiza-
tion problem with two contexts. Even though the algorithm
has only been able to explore the parameter space at the first
context (z = 0, left function), the correlation between the
functions means that information can be transferred to the
as-of-yet unobserved context (z = 1, right function). This
knowledge transfer significantly improves data-efficiency
and the number of evaluations required by the algorithm.

4.3 Practical Implementation
In this section, we discuss possible changes to Algorithm 1
that make the algorithm more practical, at the expense of
loosing some of the theoretical guarantees. One challenge
in applying Algorithm 1 in practice, is defining a suitable
Lipschitz constant. In particular, specifying the wrong
constant can lead to conservativeness or unsafe parameters
being evaluated. Moreover, smoothness assumptions are
already encoded by the kernel choice, which is more
intuitive to specify than Lipschitz constants on their
own. In practice, we use only the GP model to ensure
safety (Berkenkamp et al. 2016); that is, we define lin(a) =
minQn(a, i) and uin(a, i) = maxQn(a, i) in terms of the
confidence intervals of the GP directly. Thus, we can define
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Figure 3. Example run of the context-dependent SAFEOPT-MC algorithm. For the first six samples, the algorithm only sees the
context z = 0 (left function) and obtains measurements there (red crosses). However, by exploiting correlations between different
contexts, the algorithm can transfer knowledge about the shape of the function and safe set over to a different context, z = 1
(right function). This enables the algorithm to be significantly more data-efficient.

the safe set without a Lipschitz constant as

Sn = S0 ∪
{
a ∈ A | ∀i ∈ Ig : lin(a) ≥ 0

}
. (24)

While it is difficult to prove the full exploration of the
safely reachable set as in Theorem 1, the resulting algorithm
remains safe:

Lemma 2. With the assumptions of Lemma 1, S0 6= ∅,
and gi(a) ≥ 0 for all a ∈ S0 and i ∈ Ig , when running
Algorithm 1 with the safe set defined as in (24), the
following holds with probability at least 1− δ:

∀n ≥ 1, ∀i ∈ Ig : gi(an) ≥ 0. (25)

Proof. The confidence intervals hold with probability 1−
δ following Lemma 1. Since Sn in (24) is defined as the set
of parameters that fulfill the safety constraint and the safe
set is never empty since S0 6= ∅, the claim follows.

Similarly, the set of expanders can be defined in terms
of the GP directly, by adding optimistic measurements and
counting the number of new parameters that are classified
as safe, see (Berkenkamp et al. 2016) for details. However,
this potentially adds a large computational burden.

The parameter βn, which determines the GP’s confidence
interval in Lemma 1, may be impractically conservative for
experiments. The theoretical safety results also hold when
we replace γn in βn by the empirical mutual information
gained so far, I(ĥDn×I , h). Empirically, depending on the
application, one may also consider setting βn to a constant
value. This roughly corresponds to bounding the failure
probability per iteration, rather than over all iterations.

Learning all the different functions, f and gi, up to
the same accuracy ε may be restrictive if they are scaled
differently. A possible solution is to either scale the
observed data, or to scale the uncertainties in (15) by the
prior variances of the kernels for that specific output. This
enables (15) to make more homogeneous decisions across
different scales.

5 Quadrotor Experiments

In this section, we demonstrate Algorithm 1 (with the
changes discussed in Section 4.3) in experiments on a
quadrotor vehicle, a Parrot AR.Drone 2.0.

A Python implementation of the SAFEOPT-MC algo-
rithm that builds on (GPy 2012), a GP library, is available
at http://github.com/befelix/SafeOpt. Videos of the experi-
ments can be found at

• Section 5.3: http://tiny.cc/icra16 video

• Section 5.4: https://youtu.be/rLmwYtoE3yg

• Section 5.5: https://youtu.be/4xC4OSiIDGk

5.1 Experimental Setup
During the experiments, measurements of all vehicle
states are estimated from position and pose data provided
by an overhead motion capture camera system. The
quadrotor’s dynamics can be described by six states:
positions x = (x, y, z), velocities ẋ = (ẋ, ẏ, ż), ZYX Euler
angles (φ, θ, ψ), and body angular velocities (ωx, ωy, ωz).
The control inputs u are the desired roll and pitch
angles θdes and φdes, the desired z-velocity żdes, and the
desired yaw angular velocity ωz,des, which in turn are inputs
to an unknown, proprietary, on-board controller.

The position dynamics in the global coordinate frame are

ẍ = RZYX(φ, θ, ψ)~f − ~g, (26)

where RZYX is the rotation matrix from the body frame
to the inertial frame, ~f = (0, 0, c) is the mass-normalized
thrust, and ~g = (0, 0, g) is the gravitational force. The goal
of the controller is to track a reference signal. We assume
that z-position and the yaw angle are controlled by fixed
control laws and focus on the position control in x- and y
direction. We use two different control laws in the following
experiments.
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The most simple control law that can be used for this
setting is a PD-controller, defined as

φdes = k1(xk − xdes) + k2(ẋ− ẋdes), (27)
θdes = k1(yk − ydes) + k2(ẏ − ẏdes), (28)

where a = (k1, k2) are the two tuning parameters.
Intuitively, a larger parameter k1 encourages tracking
reference changes more aggressively, while k2 is a damping
factor that encourages moderate velocities.

A more sophisticated approach to control quadrotor
vehicles is to use estimates of the angles and accelerations
to solve for the thrust c. We use loop shaping on the
horizontal position control loops so that they behave in the
manner of a second-order systems with time constant τ
and damping ratio ζ. Based on a given desired reference
trajectory, commanded accelerations are computed as

ẍc =
1

τ2
(xdes − x) +

2ζ

τ
(ẋdes − ẋ), (29)

ÿc =
1

τ2
(ydes − y) +

2ζ

τ
(ẏdes − ẏ). (30)

From the commanded accelerations, we then obtain the
control inputs for the desired roll and pitch angles by
solving (26) for the angles. Here, the tuning parameters
are a = (τ, ζ). For details regarding the controllers
see (Schoellig et al. 2012; Lupashin et al. 2014).

The quadrotor was controlled using the
ardrone autonomy and vicon bridge packages in ROS
Hydro. Computations for the SAFEOPT-MC algorithm
in Algorithm 1 were conducted on a regular laptop and
took significantly less than one second per iteration. As
a result, experiments could be conducted continuously
without interruptions or human interventions.

5.2 Kernel Selection
Algorithm 1 critically depends on the GP model for the
performance and constraint functions. In this section, we
review the kernel used in our experiments and the kind of
models that they encode. A more thorough review of kernel
properties can be found in (Rasmussen and Williams 2006).

In our experiments, we use the Matèrn kernel with
parameter ν = 3/2 (Rasmussen and Williams 2006),

k(a,a′) = κ2
(
1+
√

3 r(a,a′)
)

exp
(
−
√

3 r(a,a′)
)
, (31)

r(a,a′) =
√

(a− a′)TM−2(a− a′), (32)

which encodes that mean functions are one-times differen-
tiable. This is in contrast to the commonly used squared
exponential kernels, which encode smooth (infinitely differ-
entiable) functions. With the Matèrn kernel, the GP model
is parameterized by three hyperparameters: measurement

noise σ2 in (2) and (3), the kernel’s prior variance κ2,
and positive lengthscales l ∈ RA+ , which are the diagonal
elements of the diagonal matrix M, M = diag(l). These
hyperparameters have intuitive interpretations: the variance
of the measurement noise κ2 corresponds to the noise in
the observations, which includes any randomness in the
algorithm and initial conditions, and random disturbances.
The prior variance κ2 determines the expected magnitude
of function values; that is, |f(a)| ≤ κ with probability 0.68
according to the GP prior. Lastly, the lengthscales l deter-
mine how quickly the covariance between neighboring val-
ues deteriorates with their distance. The smaller the length-
scales, the faster the function values can change from one
parameter set to the next. In particular, the high-probability
Lipschitz constant encoded by this kernel depends on the
ratio between the prior variance and the lengthscales, κ/l.

When using GPs to model dynamic systems, typically
a maximum likelihood estimate of the hyperparameters
is used based on data; see (Ostafew et al. 2016) for an
example. For Bayesian optimization, the GP model is
used to actively acquire data, rather than only using it for
regression based on existing data. This dependence between
the kernel hyperparameters and the acquired data is known
to lead to poor results in Bayesian optimization when using
a maximum likelihood estimate of the hyperparameters
during data acquisition (Bull 2011). In particular, the
corresponding GP estimate is not guaranteed to contain the
true function as in Lemma 1. In this work, we critically
rely on these confidence bounds to guarantee safety. As
a consequence, we do not adapt the hyperparameters as
more data becomes available, but treat the kernel as a
prior over functions in the true Bayesian sense; that is,
the kernel hyperparameters encode our prior knowledge
about the functions that we model and are fixed before
experiments begin. While this requires intuition about the
process, intuitively the less knowledge we encode in the
prior, the more data and evaluations on the real system are
required in order to determine the best parameters.

5.3 Linear Control
In this section, we use SAFEOPT-MC to optimize the
parameters of the linear control law in (27). The entire
control algorithm consists of this control law together with
the on-board controller and state estimation.

The goal is to find controller parameters that maximize
the performance during a 1-meter reference position
change. For an experiment with parameters an at
iteration n, the performance function is defined as

f(an) = c(an)− 0.95 c(a0), (33)

c(an) = −
N∑
k=0

xT
kQxk +Ru2

k, (34)
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where, to compute the cost c, the states x = (x− 1, ẋ, φ, ω)
and the input u are weighted by positive semi-definite
matrices Q and R. The subscript k indicates the state
measurement at time step k in the trajectory and the time
horizon is 5 s (N = 350). Performance is defined as the
cost improvement relative to 95% of the initial controller
cost. The safety constraint is defined only in terms of the
performance; that is, the constraint is g(a) = f(a) ≥ 0,
which encodes that we do not want to evaluate controller
parameters that perform significantly worse than the initial
parameters.

While the optimal controller parameters could be easily
computed given an accurate model of the system, we do not
have a model of the dynamics of the proprietary, on-board
controller and the time delays in the system. Moreover, we
want to optimize the performance for the real, nonlinear
quadrotor system, which is difficult to model accurately. An
inaccurate model of the system could be used to improve the
prior GP model of the performance function, with the goal
of achieving faster convergence. In this case, the uncertainty
in the GP model of the performance function would account
for inaccuracies in the system model.

We define the domain of the controller parameters
as [−0.6, 0.1]2, explicitly including positive controller
parameters that certainly lead to crashes. In practice, one
would exclude parameters that are known to be unsafe a
priori. The initial controller parameters are (−0.4,−0.4),
which result in a controller with poor performance.
Decreasing the controller gains further leads to unstable
controllers.

The parameters for the experiments were set as follows:
the length-scales were set to 0.05 for both parameters,
which corresponds to the notion that a 0.05-0.1 change in
the parameters leads to very different performance values.
The prior standard deviation, κ, and the noise standard
deviation, σ, are set to 5% and 10% of the performance
of the inital controller, f(a0), respectively. The noise
standard deviation, σ, mostly models errors due to initial
position offsets, since state measurements have low noise.
The size of these errors depends on the choice of the
matrices Q andR. By choosing σ as a function of the initial
performance, we account for the Q and R dependency.
Similarly, κ specifies the expected size of the performance
function values. Initially, the best we can do is to set this
quantity dependent on the initial performance and leave
additional room for future, larger performance values. For
the GP model, we choose β1/2

n = 2 to define the confidence
interval in (10).

The resulting, estimated performance function after
running Algorithm 1 for 30 experiments is shown in Fig. 4.
The unknown function has been reliably identified. Samples
are spread out over the entire safe set, with more samples
close to the maximum of the function and close to the
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Figure 4. GP mean estimate of the performance function
after 30 evaluations. The algorithm adaptively decides which
parameters to evaluate based on safety and informativeness.
In the bottom-left corner, there is the magnified section of the
first three samples, which are close together to determine the
location of the initial, safe region. The maximum, magnified in
the top-left corner, also has more samples to determine the
precise location of the maximum. Other areas are more
coarsely sampled to expand the safe region.

initial controller parameters. No unsafe parameters below
the safety threshold were evaluated on the real system.

Typically, the optimization behavior of Algorithm 1
can be roughly separated into three stages. Initially, the
algorithm evaluates controller parameters close to the initial
parameters in order for the GP to acquire information about
the safe set (see lower-left, zoomed-in section in Figure 4).
Once a region of safe controller parameters is determined,
the algorithm evaluates the performance function more
coarsely in order to expand the safe set. Eventually,
the controller parameters are refined by evaluating high-
performance parameters that are potential maximizers in a
finer grid (see upper-left, zoomed-in section in Figure 4).
The trajectories of the initial, best and intermediate
controllers can be seen in Figure 5.

5.4 Nonlinear Control
In the previous section, we showed how to optimize the
performance of a linear control law subject to a simple
constraint on performance. In this section, we optimize the
nonlinear controller in (29) and (30) and show how more
complex constraints can be used.

We use the same task as in the previous section, but this
time the goal is to minimize the root-mean-square error
(RMSE) over a time horizon of 5 s (N = 350 samples)
during a 1-meter reference position change in x-direction.
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Figure 5. The quadrotor controller performance is evaluated
during a 5 s evaluation interval, where a 1 m reference position
change must be performed. The trajectories correspond to the
optimization routine in Figure 4. The initial controller (blue)
performs poorly but is stable. In contrast, the optimized
controller (red) shows an optimized, smooth, and fast
response. The trajectories of other controller parameters that
were evaluated are shown in gray.
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Figure 6. Mean estimate of the root-mean-square error when
optimizing the parameters of the nonlinear control law for a
step response, subject to safety constraints. The algorithm
carefully evaluates only safe parameter combinations, until the
safe region cannot be expanded further without violating
constraints. Without the safety constraint, the algorithm
explores a larger region of the parameter space (light blue)
and eventually evaluates an unsafe parameter set.

We define the performance function,

f(an) = c(an)− 0.75 c(a0), (35)

c(an) =
1√
N

(
N∑
k=1

‖xk − xdes,k‖22

)1/2

, (36)

as the performance relative to 75% of the performance
of the initial parameters a0 = (0.9, 0.8). We define the
GP model of this performance function as follows: in
this experiment, measurement noise is minimal, since
the positions are measured accurately by the overhead
camera system. However, to capture errors in the initial
position, we define σ = 0.05c(a0). We assume that we
can improve the initial controller by roughly 20%, so we
set κ = 0.2c(a0). The lengthscales are set to 0.05 in order
to encourage cautious exploration. These parameters turned
out to be conservative for the real system. Notice that
the cost is specified relative to c(a0) instead of f(a0) as
in Section 5.3. Since c(a0) > f(a0), these hyperparameters
are more conservative, so that we require more evaluations
on the real system. The reason for this more conservative
choice is that the nonlinear controller is expected to have a
less smooth performance function, unlike the one for linear
control, which is expected to be roughly quadratic.

If, as in the previous section, one were to set the safety
constraint to g1(a) = f(a), the algorithm would classify
the blue shaded region in Figure 6 as safe. This region
includes time constants as low as τ = 0.3, which encourage
highly aggressive maneuvers, as would be expected from a
performance function that encourages changing position as
fast as possible. However, these high gains amplify noise
in the measurements, which can lead to crashes; that is,
the performance-based constraint cannot properly encode
safety. Notice that the blue shaded area does not correspond
to full exploration, since the experiment was aborted after
the first, serious crash. The reason for the unsafe exploration
is that the RMSE performance function in (36) does not
encode safety the same way as as weighting of state and
input errors in Figure 4 does. Thus, in order to encode
safety, we need to specify additional safety constraints.

One indication of unsafe behavior in quadrotors are high
angular velocities when the quadrotor oscillates around the
reference point. We define an additional safety constraint
on the maximum angular velocity maxk |ωx,k| ≤ 0.5 rad/s
by setting g2(a) = 0.5−maxk |ωx,k|. The correspond-
ing hyperparameters are selected as σ2 = 0.1, l = 0.2,
and κ = 0.25. The measurement noise can be chosen rel-
atively small here, since it corresponds to a single mea-
surement of angular velocity. Note that it is difficult to
perform the step maneuver with an angular velocity lower
than 0.4 rad/s, so that typical values of g2 are smaller
than 0.1.

With this additional safety constraint, the algorithm
explores the parameter space and stops before the safety
constraints are violated, as can be seen in Figure 6.
Rather than exploring smaller time constants τ (higher
gains), the algorithm evaluates larger damping ratios, which
allow slightly smaller values of τ and therefore higher
performance without violating the safety constraints. The
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Figure 7. The trajectories (gray) resulting from iteratively
optimizing the controller parameters for a unit circle reference
trajectory at 1 m/s (black). The trajectory with the initial
parameters (blue) has poor tracking performance, while the
optimized parameters (red) perform significantly better. The
flight is safe, i.e., only safe parameters are evaluated.

optimal parameters are to the top-left of the safe set, where
small time constants encourage tracking the reference
aggressively, while the increased damping ratio ensures a
moderate angular velocity.

5.5 Circle Trajectory
In this section, we use the same nonlinear controller and
cost function as in the previous section, but aim to optimize
the RMSE with respect to a circle trajectory of radius 1 m at
a speed of 1 m/s. The reference is defined as a point moving
along the circle at the desired speed. Feasibility of such
motions has been analyzed in Schoellig et al. (2011).

In order to ensure good tracking behavior, we define
safety as a constraint on the maximum RMSE of 0.2 m.
Additionally, we use the same constraint on the maximum
angular velocity around the x and y axis of 0.5 rad/s as
before. The yaw-angle is set so that the quadrotor always
points to the center of the circle, which ideally should
lead to zero angular velocity. Deviations from this are an
indication of unsafe behavior. We use the same kernel
hyperparameters as in Section 5.4.

The trajectories that result from running the optimization
algorithm are shown in Figure 7. The initial controller
parameters lead to very poor performance. In particular,
the initial time constant is too large, so that the quadrotor
lags behind the reference. As a result, the quadrotor flies a
circle of smaller radius. In contrast, the resulting optimized
trajectory (in red) is the best that can be obtained given the
safety constraints and controller structure above. The mean
estimate of the performance function after the experiments
can be seen in Figure 8a. The optimal parameters have
smaller time constants, so that the position is tracked

aggressively. Since the reference point moves of 1 m/s,
these aggressive controller parameters do not lead to
unsafe behavior. During the entire optimization, only safe
parameters that keep the vehicle within the constraints on
RMSE and angular velocity are evaluated.

5.6 Context-Dependent Optimization
In this section, we show how the knowledge about good
controller parameters at low speeds can be used to speed up
the safe learning at higher speeds.

In our circle experiment, the quadrotor tracked a moving
reference. As this reference moves with high velocities, the
quadrotor gets pushed to its physical actuator limits and
starts to lag behind the reference. This causes the circle that
is flown by the quadrotor to have a smaller radius than the
reference trajectory. In this section, the goal is to maximize
the speed of the reference trajectory subject to the safety
constraints of the previous experiment in Section 5.5. One
way to achieve this goal, is to add the speed of the reference
point to the performance function. However, this would lead
to more experiments, as the algorithm will explore the safe
parameter space for every velocity. Instead, here we define
the trajectory speed as a context, which is set externally. In
particular, we set

zn = argmax
v∈R, a∈A

v subject to: gi(a, v) ≥ 0, ∀i ∈ Ig,
(37)

that is, we select the maximum velocity for which there are
safe parameters known. While here we select the context
manually, in practice contexts can be used to model any
external, measurable variables, such as the battery level,
see Section 3.3.

In order to transfer knowledge about good controller
parameters from the slow speed in Section 5.5 to higher
speeds, we model how performance and constraints vary
with desired speed by defining a kernel kz(ẋdes, ẋ

′
des)

over contexts. We use the same kernel structure as in (6)
and hyperparameters κ = 1 and l = 0.25. Based on the
data from Section 5.5, the extended model allows us to
determine speeds for which safe controller parameters are
known.

Starting from the data of the previous experiments
in Section 5.5, we run SAFEOPT-MC using the extended
kernel with the additional speed context determined by (37).
This allows us to find optimal parameters for increasingly
higher speeds, which satisfy the constraints. We can safely
increase the speed up to 1.8 m/s. We show the mean
performance function estimates for two speeds in Figure 8.
For lower speeds, the best controller parameters track the
reference position more aggressively (low τ ). For higher
speeds, this behavior becomes unsafe as the quadrotor lags
behind the reference point. Instead, the optimal parameters
shift to higher time constants (lower gains). Additionally,
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Figure 8. The mean estimate of the performance function for the circle trajectory in Figure 7 for a speed of 1 m/s (left)
and 1.8 m/s (right). Extending the kernel with a context for speed allows to transfer knowledge to different speeds and leads to
speed-dependent optimal control parameters, speeding up the learning for higher speeds.

as expected, high speeds lead to higher reference tracking
errors. Increasing the reference velocity any further causes
the performance constraint to be violated.

The trajectories that result from applying the optimal
parameters for a speed of 1 m/s and the maximum safe
speed of 1.8 m/s can be seen in Figure 9. For the relatively
slow speed of 1 m/s the quadrotor can track the circle
well using aggressive parameters. For the higher speed,
the reference trajectory moves too fast for the quadrotor
to track perfectly within the actuator limits, so that the
best parameters just barely satisfy the safety constraint
on the average deviation from the reference. Overall, this
approach allows us to find context-dependent parameters,
while remaining within the safety constraints.

6 Conclusion and Future Work
We presented a generalization of the Safe Bayesian
Optimization algorithm of Sui et al. (2015) that allows
multiple, separate safety constraints to be specified and
applied it to nonlinear control problems on a quadrotor
vehicle. Overall, the algorithm enabled efficient and
automatic optimization of parameters without violating the
safety constraints, which would lead to system failures.
Currently, the algorithm is mostly applicable to low-
dimensional problems due to the computational burdon
of optimizing (15) and the statistical problem of defining
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Figure 9. Trajectories with optimal parameters for speeds
of 1 m/s (red) and 1.8[m/s] (green) when tracking the black
reference. At slower speeds there exist aggressive controller
parameters that allow the quadrotor to track the reference
almost perfectly. At higher speeds, actuator saturation limits
the achievable performance. Due to the safe optimization
framework the maximum speed can be found that does not
deviate more from the reference trajectory than is allowed by
the safety constraint. The corresponding performance
functions can be seen in Figure 8.

suitable GP priors in high-dimensions. While interesting
progress has been made in this direction in the standard
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Bayesian optimization case, future work could explore this
in the safety-critical case.
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7 Proofs
In this section, we provide the proofs for Theorem 1
and Lemma 2.

Since we consider the surrogate function h(a, i) in (4),
we obtain q + 1 individual measurements at each iteration,
each with individual noise. A measure of how difficult
it is to learn an accurate GP model of a function is
given by the information capacity. This corresponds to the
maximum amount of mutual information between a scalar
function h and measurements ĥD at a set of parametersD of
size n. The measurements ĥD are corrupted by zero-mean,
Gaussian noise. The information capacity is then defined as

γn := max
D⊂A×I,|D|=n

I(ĥD;h), (38)

which is the maximum amount of information we can
obtain about the function h from n measurements. The
information gain is known to be sublinear in n for
many commonly used kernels Srinivas et al. (2012).
Intuitively, the first samples for the GP model provide a
lot of information, since each sample improves the prior
significantly. After some iterations the domainA is covered
with samples in D, so that additional samples are more
correlated with previous data points in D, rendering the
samples less informative. The more prior information we
encode in the GP prior, the less information can be gained
from the same number of samples.

In our setting, we obtain |I| = q + 1 measurements at
every iteration step n, each with different, independent
noise. The mutual information with regards to these
multiple measurements at parameters Ā ⊂ A can be
bounded with

I(ĥĀ×I ;h) ≤ max
Ā⊂A,|Ā|≤n

I(ĥĀ×I ;h), (39)

≤ max
D⊂A×I,|D|≤n|I|

I(ĥD;h), (40)

= γ|I|n, (41)

where Ā × I is the cartesian product that means we obtain
one measurement for every function indexed by i ∈ I at
each parameter in Ā. The first inequality bounds the mutual
information gained by Algorithm 1 by the worst-case
mutual information, while the second inequality bounds
this again by the worst-case mutual information when

optimizing over the |I| measurements at each iteration
step individually. Intuitively, obtaining multiple optimal
samples does not fundamentally change the properties of
the information gain, but accelerates the rate at which
information can be obtained in the worst case by |I|.

In the following, we assume that h(a, i) has bounded
RKHS norm. Lemma 1 provides requirements for βn,
which will be used in the following to prove the results.

Lemma 1. (based on Chowdhury and Gopalan (2017)).
Assume that h(a, i) has RKHS norm bounded by B
and that measurements are corrupted by σ-sub-Gaussian
noise. If β1/2

n = B + 4σ
√
γ(n−1)|I| + 1 + ln(1/δ), then

the following holds for all parameters a ∈ A, function
indices i ∈ I, and iterations n ≥ 1 jointly with probability
at least 1− δ:∣∣h(a, i)− µn−1(a, i)

∣∣ ≤ β1/2
n σn−1(a, i). (18)

Proof. Directly follows from Chowdhury and Gopalan
(2017). The only difference is that we obtain |I|
measurements at every iteration, which causes the
information capacity γ to grow at a faster rate.

Note Where needed in the following lemmas, we
implicitly assume that the assumptions of Lemma 1 hold,
and that βn is defined as above.

Corollary 1. For βn as above, the following holds with
probability at least 1− δ:

∀n ≥ 1, ∀i ∈ I, ∀a ∈ A, h(a, i) ∈ Cn(a, i).

Proof. From Lemma 1 we know that the true functions are
contained in Qn(a, i) for all iterations n with probability
at least 1− δ. As a consequence, the true functions will
be contained in the intersection of these sets with the same
probability.

Corollary 1 gives a choice of βn, which ensures that
all the function values of h are contained within their
respective confidence intervals with high probability. In
the remainder of the paper, we follow the outline of the
proofs in Sui et al. (2015), but extended them to account
for multiple constraints.

We start by showing the dynamics of important sets and
functions. Most importantly, the upper confidence bounds
are decreasing, lower confidence bounds increasing with
the number of iterations, since the sets Cn+1 ⊆ Cn for all
iterations n.

Lemma 3. The following hold for any n ≥ 1:

(i) ∀a ∈ A,∀i ∈ I, uin+1(a) ≤ uin(a),

(ii) ∀a ∈ A,∀i ∈ I, lin+1(a) ≥ lin(a),
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(iii) ∀a ∈ A,∀i ∈ I, wn+1(a, i) ≤ wn(a, i),

(iv) Sn+1 ⊇ Sn ⊇ S0,

(v) S ⊆ R⇒ Rε(S) ⊆ Rε(R),

(vi) S ⊆ R⇒ R̄ε(S) ⊆ R̄ε(R).

Proof. (i), (ii), and (iii) follow directly from their
definitions and the definition of Cn(a).

(iv) Proof by induction. Consider the initial safe set, S0.
By definition of C0 we have for all a ∈ S0 and i ∈ I
that

li1(a)− L‖a− a‖ = li1(a) ≥ li0(a) ≥ 0.

It then follows from the definition of Sn that a ∈ S1.

For the induction step, assume that for some n ≥
2, Sn−1 ⊆ Sn and let a ∈ Sn. This means that for
all i ∈ Ig , ∃zi ∈ Sn−1, l

i
n(zi)− L‖zi − a‖ ≥ 0 by

the definition of the safe set. But, since Sn−1 ⊆ Sn,
this implies that zi ∈ Sn, ∀i ∈ Ig . Furthermore, by
part (ii), lin+1(z) ≥ lin(zi). Therefore, we conclude
that for all i ∈ Ig , lin+1(zi)− L‖zi − a‖ ≥ 0, which
implies that a ∈ Sn+1.

(v) Let a ∈ Rε(S). Then, by definition, for
all i ∈ Ig , ∃zi ∈ S, gi(zi)− L‖zi − a‖ ≥ 0.
But, since S ⊆ R, it means that zi ∈ R∀i ∈ Ig , and,
therefore, gi(zi)− L‖zi − a‖ ≥ 0 for all i ∈ Ig also
implies that a ∈ Rε(R).

(vi) This follows directly by repeatedly applying the
result of part (v).

Using the previous results, we start by showing that, after
a finite number of iterations, the safe set has to expand if
possible. As a first step, note that the set of expanders and
maximizers are contained in each other as well if the safe
set does not increase:

Lemma 4. For any n1 ≥ n0 ≥ 1, if Sn1
= Sn0

, then, for
any n, such that n0 ≤ n < n1, it holds that

Gn+1 ∪Mn+1 ⊆ Gn ∪Mn.

Proof. Given the assumption that Sn does not change,
both Gn+1 ⊆ Gn and Mn+1 ⊆Mn follow directly from
the definitions of Gn and Mn. In particular, for Gn,
note that for any a ∈ Sn, ein(a) is decreasing in n for
all i ∈ Ig , since uin(a) are decreasing in n. For Mn, note
that maxa′∈Sn l

f
n(a′) is increasing in n, while ufn(a) is

decreasing in n (see Lemma 3 (i), (ii)).

When running the SAFEOPT-MC algorithm, we repeat-
edly choose the most uncertain element from Gn and Mn.
Since these sets are contained in each other if the safe set
does not expand, we gain more information about these sets
with each sample. Since the information gain is bounded,
this allows us to bound the uncertainty in terms of the
information gain over the entire set:

Lemma 5. For any n1 ≥ n0 ≥ 1, if Sn1 = Sn0 and C1 :=
8/ log(1 + σ−2), then, for any n, such that n0 ≤ t ≤ n1, it
holds for all i ∈ I that

wn(an, i) ≤
√
C1βnγ|I|n

n− n0
.

Proof. Given Lemma 4, the definition of an :=
argmaxa∈Gn∪Mn

(wn(a)), and the fact that,
win(an) ≤ 2β

1/2
n max∈∈I σn−1(an, i) = 2β

1/2
n (an, in),

the proof is completely analogous to that of Lemma
5.3 by Srinivas et al. (2012). We only highlight the
main differences here, which results from having several
functions.

win(an) ≤ 2β1/2
n max

∈∈I
σn−1(an, i), (42)

which following (Srinivas et al. 2012, Lemma 5.4) leads to

n∑
j=1

w2
j (aj , ij) ≤ β1/2

|I|nI(ĥD̄n ;h), (43)

where D̄n = {an, in}. Now using monotonicity of the
mutual information, we have that

n∑
j=1

w2
j (aj , ij) ≤ C1β

1/2
|I|nI(ĥDn×I ;h), (44)

≤ C1β
1/2
|I|nγ|I|n (45)

by (41).

Corollary 2. For any n ≥ 1, if C1 is defined as
above, Nn is the smallest positive integer satisfy-

ing
Nn

βn+Nnγ|I|(n+Nn)
≥ C1

ε2
, and Sn+Nn = Sn, then, for

any a ∈ Gn+Nn ∪Mn+Nn , and for all i ∈ I it holds that

wn+Nn(a, i) ≤ ε.

Note Where needed in the following lemmas, we assume
that C1 and Nn are defined as above.

That is, after a finite number of evaluations Nn the most
uncertain element within these sets is at most ε. Given
that the reachability operator in (8) is defined in terms
of the same accuracy, it allows us to show that after at
most Nn evaluations, the safe set has to increase unless it is
impossible to do so:
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Lemma 6. For any n ≥ 1, if R̄ε(S0) \ Sn 6= ∅,
then Rε(Sn) \ Sn 6= ∅.

Proof. Assume, to the contrary, that Rε(Sn) \ Sn =
∅. By definition, Rε(Sn) ⊇ Sn, therefore Rε(Sn) = Sn.
Iteratively applying Rε to both sides, we get in the
limit R̄ε(Sn) = Sn. But then, by Lemma 3 (iv) and (vi),
we get

R̄ε(S0) ⊆ R̄ε(Sn) = Sn, (46)

which contradicts the lemma’s assumption that R̄ε(S0) \
Sn 6= ∅.

Lemma 7. For any n ≥ 1, if R̄ε(S0) \ Sn 6= ∅, then the
following holds with probability at least 1− δ:

Sn+Nn ) Sn.

Proof. By Lemma 6, we get that, Rε(Sn) \ Sn 6= ∅,
Equivalently, by definition, for all i ∈ Ig

∃a ∈ Rε(Sn) \ Sn, ∃zi ∈ Sn : gi(zi)− ε− L‖zi − a‖ ≥ 0.
(47)

Now, assume, to the contrary, that Sn+Nn = Sn (see
Lemma 3 (iv)), which implies that a ∈ A \ Sn+Nn

and zI ∈ Sn+Nn∀i ∈ Ig . Then, we have for all i ∈ Ig

uin+Nn(zi)− L‖zi − a‖ ≥ gi(zi)− L‖z− a‖
by Lemma 1

≥ gi(zi)− ε− L‖z− a‖
≥ 0. by (47)

Therefore, by definition, en+Nn(zi) > 0, which
implies zi ∈ Gn+Nn , ∀i ∈ Ig .

Finally, since Sn+Nn = Sn and zi ∈ Gn+Nn∀i ∈ Ig , we
know that for all i ∈ I, wn+Nn(a′, i) ≤ ε. (Corollary 2).
Hence, for all i ∈ Ig ,

lin+Nn(zi)− L‖zi − a‖ ≥ gi(zi)− w(zi, i)− L‖a− zi‖
by Lemma 1

≥ gi(z)− ε− L‖a− zi‖
by Corollary 2

≥ 0. by (47)

This means we get a ∈ Sn+Nn , which is a contradiction.

Intuitively, repeatedly applying the previous result leads
to full safe exploration within a finite domain A. In
particular, it follows that if Sn+Nn = Sn, then the safely
reachable set has been fully explored to the desired
accuracy. From this it follows, that the pessimistic estimate
in (17) is also ε-close to the optimum value within the safely
reachable set, R̄ε(S0):

Lemma 8. For any n ≥ 1, if Sn+Nn = Sn, then the
following holds with probability at least 1− δ:

f(an+Nn) ≥ max
a∈R̄ε(S0)

f(a)− ε.

Proof. Let a∗ := argmaxa∈Sn+Nn
f(a). Note that a∗ ∈

Mn+Nn , since

ufn+Nn
(a∗) ≥ f(a∗) by Lemma 1

≥ f(a) by definition of a∗

≥ lfn+Nn
(a) by Lemma 1

≥ max
a∈Sn+Nn

lfn+Nn
(a). by definition of a

We will first show that f(an+Nn) ≥ f(a∗)− ε. Assume,
to the contrary, that

f(an+Nn) < f(a∗)− ε. (48)

Then, we have

lfn+Nn
(a∗) ≤ lfn+Nn

(a) by definition of a

≤ f(a) by Lemma 1
< f(a∗)− ε by (48)

≤ ufn+Nn
(a∗)− ε by Lemma 1

≤ lfn+Nn
(a∗),

by Corollary 2 and a∗ ∈Mn+Nn

which is a contradiction.
Finally, since Sn+Nn = Sn, Lemma 7 implies

that R̄ε(S0) ⊆ Sn = Sn+Nn . Therefore,

max
a∈R̄ε(S0)

f(a)− ε ≤ max
a∈Sn+Nn

f(a)− ε

R̄ε(S0) ⊆ Sn+Nn

= f(a∗)− ε by definition of a∗

≤ f(an+Nn). proven above

Corollary 3. For any n ≥ 1, if Sn+Nn = Sn, then the
following holds with probability at least 1− δ:

∀n′ ≥ 0, f(an+Nn+n′) ≥ max
a∈R̄ε(S0)

f(a)− ε.

Proof. This is a direct consequence of the proof of
the preceding lemma, combined with the facts that
both Sn+Nn+n′ and lfn+Nn+n′(an+Nn+n′) are increasing
in n′ (by Lemma 3 (iv) and (ii) respectively), which
imply that maxa∈Sn+Nn+n′ l

f
n+Nn+n′(a) can only increase

in n′.
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Moreover, since we know the true function is contained
within the confidence intervals, we cannot go beyond the
safe set if we knew the function perfectly everywhere, R̄0:

Lemma 9. For any n ≥ 0, the following holds with
probability at least 1− δ:

Sn ⊆ R̄0(S0).

Proof. Proof by induction. For the base case, n = 0, we
have by definition that S0 ⊆ R̄0(S0).

For the induction step, assume that for some n ≥
1, Sn−1 ⊆ R̄0(S0). Let a ∈ Sn, which, by definition,
means that for all i ∈ Ig ∃zi ∈ Sn−1, such that

lin(zi)− L‖zi − a‖ ≥ 0

⇒ gi(zi)− L‖zi − a‖ ≥ 0. by Lemma 1

Then, by definition of R̄0 and the fact that zi ∈ R̄0(S0) for
all i ∈ Ig , it follows that a ∈ R̄0(S0).

The previous results is enough to show that we eventually
explore the full safe set by repeatedly applying Lemma 7:

Lemma 10. Let n∗ be the smallest integer, such
that n∗ ≥ |R̄0(S0)|Tn∗ . Then, there exists n0 ≤ n∗, such
that Sn0+Tn0

= Sn0
.

Proof. Assume, to the contrary, that for any n ≤ n∗, Sn (
Sn+Tn . (By Lemma 3 (iv), we know that Sn ⊆ Sn+Tn .)
Since Nn is increasing in n, we have

S0 ( Sn0
⊆ STn∗ ( STn∗+TTn∗

⊆ S2Tn∗ ( · · · ,

which implies that, for any 0 ≤ k ≤ |R̄0(S0)|, it holds
that |SkTn∗ | > k. In particular, for k∗ := |R̄0(S0)|, we get

|Sk∗T | > |R̄0(S0)|

which contradicts Sk∗T ⊆ R̄0(S0) by Lemma 9.

Corollary 4. Let n∗ be the smallest integer, such

that
n∗

βn∗γ|I|n∗
≥ C1|R̄0(S0)|

ε2
. Then, there exists n0 ≤ n∗,

such that Sn0+Tn0
= Sn0 .

Proof. This is a direct consequence of combining
Lemma 10 and Corollary 2.

Since we showed that we completely explore the safe
set and that we remain safe throughout the exploration
procedure, we are ready to state the main results:

Lemma 11. If h is L-Lipschitz continuous, then, for
any n ≥ 0, the following holds with probability at least 1−
δ for all i ∈ Ig:

∀a ∈ Sn, gi(a) ≥ 0.

Proof. We will prove this by induction. For the base
case n = 0, by definition, for any a ∈ S0 and i ∈
Ig , gi(a) ≥ 0.

For the induction step, assume that for some n ≥ 1,
for any a ∈ Sn−1 and for all i ∈ Ig , gi(a) ≥ 0. Then, for
any a ∈ Sn, by definition, for all i ∈ Ig , ∃zi ∈ Sn−1,

0 ≤ lin(zi)− L‖zi − a‖
≤ gi(zi)− L‖zi − a‖ by Lemma 1
≤ gi(a). by L-Lipschitz-continuity

Theorem 1. Assume that h(a, i) has bounded norm in an
RKHS and that the measurement noise is σ-sub-Gaussian.
Also, assume that S0 6= ∅ and gi(a) ≥ 0 for all a ∈ S0

and i ∈ Ig . Choose βn as in Lemma 1, define ân as in (17),
and let n∗(ε, δ) be the smallest positive integer satisfying

n∗

βn∗γ|I|n∗
≥ C1(|R̄0(S0)|+ 1)

ε2
, (20)

where C1 = 8/ log(1 + σ−2). For any ε > 0
and δ ∈ (0, 1), when running Algorithm 1 the following
inequalities jointly hold with probability at least 1− δ:

1. Safety: ∀n ≥ 1,∀i ∈ Ig : gi(an) ≥ 0

2. Optimality: ∀n ≥ n∗, f(ân) ≥ f∗ε − ε

Proof. The first part of the theorem is a direct consequence
of Lemma 11. The second part follows from combining
Corollary 3 and Corollary 4.
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