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Abstract— One of the most fundamental problems when
designing controllers for dynamic systems is the tuning of the
controller parameters. Typically, a model of the system is used
to design an initial controller, but ultimately, the controller
parameters must be tuned manually on the real system to
achieve the best performance. To avoid this manual tuning,
methods from machine learning, such as Bayesian optimization,
have been used. However, as these methods evaluate different
controller parameters, safety-critical system failures may hap-
pen. We overcome this problem by applying, for the first time,
a recently developed safe optimization algorithm, SAFEOPT, to
the problem of automatic controller parameter tuning. Given
an initial, low-performance controller, SAFEOPT automatically
optimizes the parameters of a control law while guaranteeing
system safety and stability. It achieves this by modeling the
underlying performance measure as a Gaussian process and
only exploring new controller parameters whose performance
lies above a safe performance threshold with high probability.
Experimental results on a quadrotor vehicle indicate that the
proposed method enables fast, automatic, and safe optimization
of controller parameters without human intervention.

I. INTRODUCTION

An extended version of this paper including a link to the
associated Python code is found in [1].

Tuning controller parameters is a challenging task, which
requires significant domain knowledge and which can be
very time consuming. Classical approaches to automate this
process, such as the ones in [2] and [3], either rely on model
assumptions (e.g., linearity), which may be the very reason
why the initial, model-based controller performs poorly,
or require gradient approximations, which are difficult to
obtain from noisy measurements. Moreover, gradient-based
methods are not guaranteed to find the global optimum.

Recently, Bayesian optimization, a method popular in the
field of machine learning, has been used to automate the
controller optimization process [4], [5], [6]. In Bayesian op-
timization, the performance function, which maps controller
parameters to performance values, is often modeled as a
Gaussian process (GP), which guides the sampling process
to informative parameter combinations. As a result, the
controller that globally maximizes the performance measure
can be found within few evaluations on the real system.
Another major advantage of the method is that it explicitly
models noise in the performance measure evaluations, which
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results in a more robust procedure compared to non-Bayesian
methods. Moreover, in [7] it was experimentally shown that
the Bayesian optimization algorithm in [8] outperforms other
Bayesian and non-Bayesian global optimization methods.

Despite experimental success, Bayesian Optimization has
one weakness when it comes to real-world experiments.
While gradient-ascent methods, such as [3], typically im-
prove at every iteration and thereby ensure that the resulting
controllers continue to be stable, informative samples in a
Bayesian optimization setting are typically far away from the
original control law to gain maximum information. This often
leads to the evaluation of unstable controllers and system
failures early on in the optimization process.

In this paper, we overcome this problem by using
SAFEOPT [9], a Bayesian optimization algorithm that builds
on the results from [8] and, in addition, guarantees safety by
only evaluating controllers that have a performance above
a safe threshold with high probability. The result is a safe,
automatic controller tuning algorithm, which we demonstrate
in an aerial-vehicle experiment. A video can be found
at http://tiny.cc/iros15 video.

II. PROBLEM STATEMENT

The goal of this work is to automatically find the optimal
controller parameters for a nonlinear control law, which
maximize a given performance measure. The control law
may have internal states (e.g., an integrator component). We
assume that the overall system is safety-critical; that is, the
optimization algorithm must ensure stability when evaluating
new controller parameters. In order to start the optimization
procedure, we assume an initial set of stabilizing controller
parameters (with poor performance) is available.

We encode the safety criterion as a performance threshold
below which we do not want to fall with high probability.
For example, we may set the threshold at 95% of the
performance of the initial control law. Conceptually, this
ensures stability, since unstable systems have a significantly
lower performance.

III. METHODOLOGY

Our approach builds upon the safe optimization algorithm
SAFEOPT [9]. This algorithm models the nonlinear perfor-
mance function as a GP, where the controller parameters
are the inputs and the associated controller performance
is the output data. The GP provides not only a mean
estimate of the performance function but also corresponding
uncertainty information. This information is used to provide
high-probability safety guarantees by only evaluating control
laws on the real system, where the 3σ (99%) confidence
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Fig. 1. Based on the mean estimate (blue) and the 3σ confidence interval
(light blue), the SAFEOPT algorithm selects safe points (red), which are
either potential maximizers (green) or expand the safe set (magenta).

interval of the GP’s estimated performance is above a safety
threshold.

In this setting, the challenge is to find an evaluation
strategy that increases the set of controllers known to be safe
(exploration) and simultaneously finds the global maximum
within this safe set (exploitation). SAFEOPT provides a
solution to this problem by choosing to evaluate the safe
controller parameters about whose performance we are most
uncertain from two sets: the set of potential maximizers,
whose performance may lie above the current maximum
according to our GP estimate, and the set of potential
expanders, which are parameters that can expand the set of
safe controllers (see Fig. 1). For details refer to [9], [1].

IV. RESULTS

We have demonstrated our algorithm on a quadrotor
vehicle, the Parrot AR.Drone 2.0, by learning the optimal
controller gains for the position controller in x-direction. The
position controller generates a pitch command u, which is, in
turn, the input to an unknown, on-board attitude controller.
The goal is to find the best state-feedback controller u = Kx,
with x = (x− xr, ẋ) and K = (k1, k2), which minimizes
the cost during a 1-meter reference position change, xr.
Specifically, the cost is

∑N
k=0 x

T
kQxk +Ru2k, with weight-

ing matrices Q and R, over a time horizon of 5 s (N = 350).
We define the performance function as the cost improvement
relative to 95% of the cost of the initial controller. The safe
threshold is set to 0.

We discretize the parameter space uniformly into 10, 000
parameter combinations in [−0.6, 0.1]2, explicitly including
positive controller gains, which certainly lead to crashes. We
set the initial parameters to (−0.4,−0.4), which lead to poor
performance. Lower controller gains lead to instability.

The estimated performance function after 30 experiments
is shown in Fig. 2. The optimization routine can be roughly
separated into three stages. Initially, the algorithm evaluates
parameters close to the initial controller parameters to gain
information about the safe set. Once a region of safe con-
troller parameters is determined, the algorithm evaluates the
performance function more coarsely in order to expand the
safe set. Eventually, the controller is refined by evaluating
high-performance parameters that are potential maximizers.

Ultimately, the algorithm identifies the controller gains
that maximize the performance measure. Because we omitted
the on-board controller and its internal states and due to
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Fig. 2. SAFEOPT adaptively decides where to sample based on safety and
informativeness. The bottom-left corner shows the zoomed-in section of the
first three samples, which are close together to determine the location of
the safe region. The top-left corner shows the zoomed-in section around
the maximum, which has more samples to determine the precise location
of the maximum. Other areas are more coarsely sampled to expand the safe
region.

the nonlinearity of the quadrotor dynamics, the resulting
performance function in Fig. 2 is similar to, but not the same
as, the quadratic function that one would have expected from
linear quadratic control theory.

V. CONCLUSION
We presented the first application of SAFEOPT on a real

robotic system by successfully optimizing the position con-
troller of a quadrotor vehicle. It was shown that the algorithm
enables efficient, automatic, and global optimization of the
controller parameters without risking dangerous
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[2] K. J. Åström, T. Hägglund, C. C. Hang, and W. K. Ho, “Automatic tun-
ing and adaptation for PID controllers - a survey,” Control Engineering
Practice, vol. 1, no. 4, pp. 699–714, 1993.

[3] N. J. Killingsworth and M. Krstić, “PID tuning using extremum seeking:
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