
Learning-based Robust Control: Guaranteeing Stability while Improving
Performance

Felix Berkenkamp and Angela P. Schoellig

Abstract— To control dynamic systems, modern control the-
ory relies on accurate mathematical models that describe the
system behavior. Machine learning methods have proven to
be an effective method to compensate for initial errors in
these models and to achieve high-performance maneuvers by
adapting the system model and control online. However, these
methods usually do not guarantee stability during the learning
process. On the other hand, the control community has tradi-
tionally accounted for model uncertainties by designing robust
controllers. Robust controllers use a mathematical description
of the uncertainty in the dynamic system derived prior to
operation and guarantee robust stability for all uncertainties.
Unlike machine learning methods, robust control does not
improve the control performance by adapting the model online.
This paper combines machine learning and robust control
theory for the first time with the goal of improving control
performance while guaranteeing stability. Data gathered during
operation is used to reduce the uncertainty in the model and to
learn systematic errors. Specifically, a nonlinear, nonparametric
model of the unknown dynamics is learned with a Gaussian Pro-
cess. This model is used for the computation of a linear robust
controller, which guarantees stability around an operating point
for all uncertainties. As a result, the robust controller improves
its performance online while guaranteeing robust stability. A
simulation example illustrates the performance improvements
due to the learning-based robust controller.

NOTE

This is a workshop paper. Please consider reading the
conference paper instead: [1].

I. INTRODUCTION

Mathematical models are an important prerequisite when
designing model-based controllers for dynamic systems us-
ing, for example, techniques such as Linear Quadratic Regu-
lators [2] or Model Predictive Control [3]. The performance
of the resulting controllers depends directly on the accuracy
of the model. While established methods for system model-
ing and identification exist [4], [5], the resulting models are
always an approximation of the real-system behavior. The
goal of this paper is to use data gathered during operation to
improve the model and, thus, the control performance while
giving stability guarantees during the learning process (see
Fig. 1).

In order to overcome the limitations of approximate mod-
els, machine learning techniques have been used before.
These methods leverage online measurements to improve the
control performance. One such example is iterative learning

Felix Berkenkamp is with ETH Zurich, Zurich, Switzerland. Email:
befelix@ethz.ch

Angela P. Schoellig is with the University of Toronto Institute
for Aerospace Studies (UTIAS), Toronto, Canada. Email:
schoellig@utias.utoronto.ca

K
y u

wPz

q p
∆ Gaussian Process

K

Update
uncertain model

Update
controller K

Robust Controller Design Framework

Real system

Fig. 1. Learning-based robust controller design. Using input-output data of
the real system, the plant model P is updated and the uncertainty estimate ∆
is gradually reduced. As a result, the performance of the robust controller K
improves.

control (ILC), which achieves high-performance tracking by
learning feed-forward inputs through a repeated execution
of the task [6]. Other approaches improve the system model
directly: an example are Neural Networks (NNs) [7]. Re-
cently, the focus of the community has shifted to Gaussian
Processes (GP) [8]. Learned GP models have, for example,
been successfully used for dynamic programming [9] and to
improve trajectory tracking of a robot traversing unknown,
rough terrain [10]. An interesting property of GPs is that
they provide uncertainty estimates for their predictions,
which have been used in [11] to minimize the expected
squared error in a model predictive control setting. While all
these methods achieve impressive control performance after
learning, they do not guarantee stability during the learning
process. The reason for this is that these methods focus
on updating the estimated model of the dynamics without
explicitly considering the mismatch between the learned
model and the real dynamics of the system. This mismatch
has been studied in the adaptive control community, for
example in [12], but the resulting approaches do not model
uncertainties explicitly.

In the control community, model errors have been explic-
itly considered in the field of robust control established in
the 1980s [13]. Robust control focuses on linear systems,
incorporates an a priori estimate of the model uncertainty
in the controller design and guarantees the stability of the
system for all modeled uncertainties [14]. However, this
uncertainty estimate is not updated during the operation of
the system. The uncertainty specification provides stability
guarantees but may decrease controller performance. The
latter is due to the fact that the robust controller minimizes
its performance objective for all possible system dynamics
that lie in the uncertainty specification.

Since machine learning methods provide excellent perfor-

mance after learning and robust control provides stability
guarantees by explicitly taking model uncertainties into ac-
count, it is of interest to combine the two. The goal is a robust
controller that learns from data gathered during operation in
order to improve its performance while guaranteeing stability
for all uncertainties during learning. Guaranteeing stability
during learning has recently been stated as an open problem
in robotics [15].

The main challenge in combining the two approaches
lies in identifying the unknown plant dynamics and the
corresponding uncertainty in a way that can be used in a
robust controller design framework. Classical offline system
identification methods focus on fitting linear models to
observed data using either time or frequency domain methods
[4], [5]. While these approaches can be extended to include
uncertainty estimates [16], [17], fitting a linear model to the
unknown nonlinear dynamics can lead to errors. In [18] a
way to avert these errors and quantify the resulting uncer-
tainty was shown by applying periodic inputs to the system,
but this is generally not possible in an online setting. Thus,
to achieve bias-free online system identification one must
turn to nonlinear, nonparametric identification methods [19].
GPs are of particular interest, since they provide uncer-
tainty estimates [8]. Combining robustness with nonlinear,
nonparametric system identification was explored in [20],
where a linear controller for the nominal plant was used to
show robustness assuming that the learned dynamics can be
considered as a bounded disturbance. While this approach
guaranteed robustness, it did not adapt the a priori model
uncertainty and neglected the fact that learned dynamics
generally cannot be described via bounded disturbances.

This paper uses GPs for online learning of the system
dynamics. The learned GP model and its uncertainty es-
timates are linearized using properties of GPs that have
not been leveraged in a robust control framework before.
The linearization point itself is considered to be uncertain
and identified as well. Robust controller design methods are
applied to the obtained uncertain model resulting in a convex
optimization problem solvable online [21].

The remainder of this paper is structured as follows: in
Sec. II the system model is presented and the robust control
problem is stated. GPs are introduced in Sec. III and their
application to online model learning is shown in Sec. IV.
In Sec. V a robust control method is presented that is
applicable to the GP model of Sec. IV. A discussion of the
presented approach is provided Sec. VI. Finally, a simulation
example is presented in Sec. VII and conclusions are drawn
in Sec. VIII.

II. PROBLEM STATEMENT

This section introduces the system model and the robust
control problem considered in this paper.

Let x ∈ Rn, u ∈ Rm and y ∈ Rp denote the system states,
inputs and measured outputs, respectively. The discrete sys-
tem dynamics are separated into two components, a known
function f(x,u) (derived, for example, from first principles)
and an unknown function g(x,u). The function g represents

unknown, deterministic dynamics that are not captured by
the a priori model f . Both functions are assumed to be con-
tinuously differentiable, f ,g ∈ C1. Measurements are made
via a known matrix C ∈ Rp×n and are corrupted by zero-
mean Gaussian noise, ω ∼ N (0,Σn). The corresponding
discrete system dynamics are given by

xk+1 = f(xk,uk)︸ ︷︷ ︸
a priori model

+ g(xk,uk)︸ ︷︷ ︸
unknown model

yk = Cxk + ωk,

(1)

where k refers to the k th time step.
The goal of this paper is to find an estimate of g(x,u) and

an associated confidence interval of this estimate from mea-
surement data. This information is used to design a robust
controller that stabilizes the system despite the uncertainty in
the estimate. As the estimate of g(x,u) becomes more accu-
rate, the robust controller performance gradually improves.
In this paper, we model the unknown dynamics, g(x,u), as a
GP (see Sec. III) and consider linear robust control around a
specific operating point xs with a corresponding steady-state
input us, where

xs = f(xs,us) + g(xs,us). (2)

Both xs and us are initially unknown and are also estimated
from measurement data, see Sec. IV-A.

Throughout this paper, we assume that C is full-rank
such that noisy full-state information is available. While
it is possible to extend the obtained results to partial-state
information, this is outside of the scope of this paper.
Pointers to relevant publications for the extension to partial-
state information are provided in the relevant sections below.

III. GAUSSIAN PROCESS

In this section, we introduce the basic properties of GPs.
GPs are used to model the unknown dynamics, g(x,u),
in (1). More details on how GPs are used in this context
are given in Sec. IV.

GPs are a popular choice for nonparametric regression in
machine learning, where the goal is to find an approximation
of a nonlinear map, g(a) : Rdim(a) 7→ R, from an input
vector a to the function value g(a). This is accomplished by
assuming that the function values g(a) are random variables
and that any finite number of these random variables have a
joint Gaussian distribution depending on the values of a [8].

For the nonparametric regression we need to define a prior
for the mean of g(a) and for the covariance between any
two function values, g(ai) and g(aj), also known as the
kernel. The mean is assumed to be zero, since the GP is
used to learn the dynamics g(x,u) in (1) for which no
prior knowledge is available. There are several possibilities
for the covariance function. While the learning-based robust
control approach presented in this paper works for any kernel
with continuous first derivative, we focus on the often used
squared-exponential function in the following discussion. For
a squared-exponential function, points that are close to each
other (in terms of their scaled, squared distance) have similar

function values. The covariance between two data points
g(ai) and g(aj) is given by

k(ai,aj) = σ2
f exp

(
−1

2
(ai − aj)

TM−2(ai − aj)

)
+δijσ

2
n,

(3)
where δij = 1 if i = j and 0 otherwise. The covari-
ance is parameterized by three hyperparameters: the mea-
surement noise, σ2

n, the process variation, σ2
f , and length

scales, l ∈ Rdim(a), in the matrix M = diag(l) correspond-
ing to the rate of change of the function g with respect to a.
These hyperparameters are learned from observed data by
solving a log maximum likelihood problem using gradient
ascent methods [8].

A. Prediction

The introduced framework can be used to predict the
function value of g(a∗) at an arbitrary input, a∗, based on a
set of N past observations, D = {ai, ĝ(ai)}Ni=1. We assume
that observations are noisy measurements of the true function
value, g(a): ĝ(a) = g(a) + ωn with ωn ∼ N (0, σ2

n). The
joint probability distribution of the function value g(a∗) and
the observed data is given by[

ĝ
g(a∗)

]
∼ N

(
0N ,

[
K kT(a∗)

k(a∗) k(a∗,a∗)

])
, (4)

where ĝ =
[
ĝ(a1), . . . , ĝ(aN)

]T
is the vector of observed

function values and 0N ∈ RN is a vector of zeros. The
covariance matrix K ∈ RN×N has entries Kij = k(ai,aj),
and k(a∗) =

[
k(a∗,a1) . . . k(a∗,aN)

]
contains the

covariances between the new input a∗ and the observed
data points. Using standard properties of joint Gaussian
distributions the prediction of g(a∗) conditioned on the data
set D is given by a g(a∗)|D ∼ N (µ(a∗), σ2(a∗)) [8] with

µ(a∗) = k(a∗)K−1ĝ, (5)

σ2(a∗) = k(a∗,a∗)− k(a∗)K−1kT(a∗). (6)

Notice that the prediction depends on the inverse of the
N ×N matrix K, which is an expensive O(N3) compu-
tation. However, the inverse must be computed only once
for a given data set in order to make predictions.

So far we considered a scalar function g. The extension
to a vector-valued function, as required for approximat-
ing g(x,u) in (1), can be done by extending (4) resulting
in a matrix K of size nN × nN . Such a matrix is usually
too big to be inverted efficiently. To maintain computational
feasibility, independent GPs are trained for each dimension
of g(x,u) neglecting any additional information that could
be gained from the correlation between the outputs intro-
duced, for example, by the measurement noise.

B. Derivatives

An extension to the general GP framework, which is
important for Sec. IV, is that the derivative of a GP is a
GP as well [8]. This follows from the fact that the derivative

is a linear operator. From (4), we get[
ĝ

∂g(a)
∂a

∣∣∣
a∗

]
∼ N

0N ,

 K ∂kT(a)
∂a

∣∣∣
a∗

∂k(a)
∂a

∣∣∣
a∗

∂2k(a,a)
∂a∂a

∣∣∣
a∗

 , (7)

where h(a)|a∗ means h(a) evaluated at a = a∗. The
derivatives of the squared-exponential function are given by

∂k(:,i)(a)

∂a

∣∣∣∣
a∗

=M−2(ai − a∗)k(a∗,ai), (8)

∂2k(a,a)

∂a∂a

∣∣∣∣
a∗

=σ2
fM

−2, (9)

where k(:,i) refers to the ith column of k. In the literature,
this property has mainly been used to include derivative
observations; however, following the same reasoning as in
the previous section predictions of the derivatives are given
by ∂g(a)

∂a

∣∣∣
a∗
|D ∼ N (µ′(a∗),Σ′(a∗)) with

µ′(a∗) =

(
∂k(a)

∂a

∣∣∣∣
a∗

K−1
)T

ĝ, (10)

Σ′(a∗) =
∂2k(a,a)

∂a∂a

∣∣∣∣
a∗
− ∂k(a)

∂a

∣∣∣∣
a∗

K−1
∂kT(a)

∂a

∣∣∣∣
a∗
.

(11)

From (11) it can be seen that σ2
fM

−2 is the prior variance of
the first derivative, which confirms the interpretation of the
length-scale hyperparameters as corresponding to the rate of
change of g. It is important to notice that (10) is just the
derivative of the predicted mean in (5), but this does not
hold for the variance.

IV. MODEL UPDATE

In this section, we show how the nonlinear GPs introduced
in Sec. III are used for the online identification of a linear
model of the unknown dynamics g(x,u) in (1) around a
linearization point. This model is used in Sec. V to update
the robust controller, see Fig. 1.

We use separate GPs to identify each dimension of the
unknown dynamics. The input ak = (xk,uk) consists of the
current state and input while the training target of the GPs
is the model error ĝ(ak) = xk+1− f(xk,uk). As a result, it
is possible to make predictions about the function value and
first derivative of the unknown dynamics g(x,u) using (5)-
(6) and (10)-(11), respectively. As mentioned in Sec. II, this
requires the full state x to be known. Extensions to partial-
state measurements can be found in [22], [23].

A. Operating Point

The goal of the control problem considered in this paper is
to stabilize the system around a fixed desired operating point.
Since the a priori operating point and associated steady-state
input of the known dynamics f with x̄s = f(x̄s, ūs) are not
necessarily equal to (2), we regularly update the operating
point as the unknown dynamics are learned.

Given the prior operating point x̄s, an updated steady-state
operating point that satisfies (2) with the mean estimate for
g from (5) is found via the optimization problem

min
xs,us

‖x̄s − xs‖Q

subject to

xs = f(xs,us) + µ(xs,us),

(12)

where µ ∈ Rn is the learned mean consisting of the individ-
ual predictions for each state according to (5) and ‖x‖Q =
xTQx refers to the norm with a weighting matrix Q that
accounts for the prior uncertainty in the different states as
well as for scaling. This nonlinear, constrained optimization
problem can be solved quickly using x̄s as an initial guess.
Notice that if xs is known a simpler optimization problem
can be formulated, which is solvable via gradient descent:

min
us

‖xs − f(xs,us)− µ(xs,us)‖Q. (13)

B. Linearization

In the previous section, an operating point including
steady-state input was found. The second step of the model
update (Fig. 1) linearizes system (1) is linearized around
this operating point and obtains corresponding elementwise
confidence intervals. This information is used in Sec. V to
update the robust controller.

The dynamics (1) are linearized around the operating
point a∗ = (xs,us) using the properties of GPs presented
in Sec. III-B. Denoting the derivative of the ith compo-
nent in g with respect to all states and inputs in a by
∂gi(a)
∂a

∣∣∣
a∗
∼ N (µ′i(a

∗),Σ′i(a
∗)), we obtain

[
A B

]
=
∂f(x,u)

∂a

∣∣∣∣
a∗

+

µ
′
1(a∗)

...
µ′n(a∗)

 (14)

and the uncertainty is represented by

[
Au Bu

]
= 2

diag(Σ′

1/2
1 (a∗))T

...
diag(Σ′

1/2
n (a∗))T

 , (15)

where a = (x,u) and each element of the matrices Au and
Bu in (15) is equal to the 2σ (95%) confidence interval for
the corresponding element in A and B. Consequently, the
linearized dynamics are given by

xk+1 = (A + Au ◦∆x)xk + (B + Bu ◦∆u)uk, (16)

where ◦ is the elementwise matrix product and ∆(x,u)

represents an interval uncertainty with matrix entries in
[−1, 1]; that is, the state matrix is A + Au where every
element in Au is independently scaled by a factor in [−1, 1].

V. ROBUST CONTROL

We derive a robust controller of the form uk = Kxk
for the linear model in (16), which stabilizes the system
despite the uncertainties introduced by ∆(x,u). In the general
framework of robust control (see Fig. 1), the objective is to

minimize an error signal z caused by a disturbance w for all
possible uncertainties introduced via the uncertain signal p,
cf. [14]:

xk+1 = Axk + Buk + Bwwk + Bppk (17)
zk = Czxk + Dzuuk + Dzwwk (18)
qk = Cqxk + Dquk (19)
pk = ∆qk, (20)

where ∆ = diag(δ1, . . . , δr) with |δi| ≤ 1, i = 1, . . . , r,
together with Cq,Dq, and Bp represents the uncertainty in
the system (15) and (A, B) the nominal system (14). The
uncertainty (15) can be represented by choosing

Cq =

diag(Au,(1,:))

...
diag(Au,(n,:))

0nm×n

 , Dq =

0n2×m

diag(Bu,(1,:))
...

diag(Bu,(n,:))

 , (21)

where Au,(i,:) refers to the ith row of Au. Thus
the required uncertainty can be represented by picking
Bp =

[
In ⊗ 1n×1 In ⊗ 1m×1

]
with ⊗ denoting the Kro-

necker product, In ∈ Rn×n the identity matrix and
0i×j ,11×j ∈ Ri×j vectors with respectively zeros and ones
as the entries.

The matrices Bw,Cz,Dzu and Dzw define the control
objective to be minimized by the robust controller. Possible
choices can be found in [14]. A popular measure for the
error signal z is the infinity norm (H∞ control), which
corresponds to minimizing the worst case gain of the transfer
function Tzw from the disturbance w to the error z over
all uncertainties. The corresponding optimization problem is
minK max∆ ‖Tzw‖∞ where Tzw = (C+DzuK)(zI−(A+
BK + Bp∆(Cq + DqK)))−1Bw + Dzw depends on the
controller K and ∆.

Methods for solving this kind of problem have been
proposed in [14]. In this paper, we use a method that
requires finding a single Lyapunov function that guarantees
stability for all possible ∆. While this method can be
more conservative than others, it obtains the discrete-time
controller by solving a convex optimization problem in terms
of linear matrix inequalities (LMIs). Efficient solvers for
LMIs exist [24], making these techniques applicable to online
applications as considered in this paper. In fact, in [25] this
method was applied to find a model predictive controller,
which required solving an LMI at every time step.

The choice of control method is independent of the system
identification approach shown in the previous sections. In this
paper, the control law is based on [21], where an H∞ state-
feedback controller was found under the assumption that p
is bounded by pTp ≤ α(xTHTHx+uTFTFu) for a given
constant α and matrices F and H. We modify the uncertainty
representation in [21] to fit our uncertainty definition in (17)-
(20). The proof is similar to [21] and omitted here, but
can be found in [26]. Denoting symmetric matrix elements
by • and with Λ = diag(τ1, . . . , τr) and β = α−2, the
resulting optimization problem to find a controller such that
‖Tzw‖2∞ ≤ γ is given by (22).

For α = 1, the resulting closed-loop system is robustly sta-
ble for all uncertainties. Whenever this optimization problem
is infeasible, a line search maximizing α with 0 ≤ α < 1
leads to the best possible controller given the assumptions in
[21]. From (22), we obtain Q and R, and the resulting robust
controller is given by uk = Kxk with K = RCQ−1C−1.
This controller is re-calculated regularly based on the most
up-to-date model obtained from Sec. IV. Results in [21] can
be extended to the case of partial-state information.

min
Q=QT,R,Λ,γ,β=1

γ (22)

subject to
−Q • • • • •
0 −γI • • • •
0 0 −Λ • • •

AQ + BRC Bw BpΛ −Q • •
CqQ + DqRC 0 0 0 −βΛ •
CzQ + DzuRC Dzw 0 0 0 −I

 ≤ 0.

VI. DISCUSSION

To initialize the learning-based robust controller, the hy-
perparameters of the kernel function (3) must be specified
and provide an initial guess for the uncertainty. There are
two options to do this, the first of which is typical for robust
control: we assume that we know the prior uncertainty in
our system and derive a robust controller that is robustly
stable against all uncertainties. After operating the system
for some time the hyperparameters are calculated using the
observed data. As we operate and observe the system our
knowledge of the system improves and the prior controller
is replaced as soon as the online calculated robust controller
outperforms the a priori one; that is, the γ value is smaller.
The second option is typical for robotics applications, where
either an expert controls the system or the system is allowed
to fail while identifying the hyperparameters. This allows
the GP to gather data prior to applying our learning-based
framework. Whichever method is chosen, in the long term
additional operation data provides more information about
the unknown dynamics and the controller improves.

As for all system identification methods the system needs
to be excited sufficiently. If this is not the case, the hyperpa-
rameters may not reflect the true uncertainty in the system.

The proposed approach learns a linear model around a
desired operating point. The controller only stabilizes the
system in the vicinity of the operating point. For global
stability, one would have to turn to nonlinear robust control.
However, since we use a nonlinear method for the model
update the approach presented in this paper is extendable to
robust tracking of nonlinear systems or gain scheduling.

Lastly, if the functional form of g(x,u) in (1) is known,
other methods such as (extended) Kalman Filters are better
suited for learning, since they use this additional knowledge
about the system. However, if g(x,u) is unknown the
proposed method has an advantage over assuming g(x,u)
to be linear (as, for example, done in a Kalman filter): the
hyperparameters define a region in which the system behaves
linearly around the operating point, which enables GPs to

l
ψ

m

x
F

M

g

θ

Fig. 2. Simulation example: an inverted pendulum on a tilted slope.

learn only from data points within this linear domain. Linear
methods would try to fit a linear model to the entire state
space.

VII. EXAMPLE

In this section, we demonstrate our approach for an in-
verted cart-pendulum system on a slope (Fig. 2). The position
of the cart is given by x, the pendulum angle is ψ , and F
is a force that serves as the control input. The frictionless
surface is tilted by an angle θ. The cart has a mass M . The
massless pendulum is of length l with a mass m attached
at its end. The nonlinear, non-minimum-phase equations of
motion governing the behavior of the system are given by

ẍ =
(
F − (m+M)g sin(θ)−mg cos(ψ) sin(ψ − θ)
+mlψ̇2 sin(ψ)

)
/
(
M +m sin2(ψ)

)
, (23)

ψ̈ =
(
(m+M)g sin(ψ − θ)− cosψ (F − (m+M)g sin θ)

−mlψ̇2 sinψ cosψ
)
/
(
l
(
M +m sin2 ψ

))
.

Depending on the inclination of the slope, the steady-state
input and equilibrium point of the system change. Defining
the system state as x = (x, ẋ, ψ, ψ̇) and the input u = F , the
equilibrium point and corresponding steady-state input are
given by xs = (0, 0, θ, 0) and us = (m+M)g sin(θ), respec-
tively, and explicitly depend on θ. The a priori model (23)
is discretized with a sampling time of Ts = 0.05s to arrive
at the required model representation in (1).

To illustrate the proposed learning-based robust control
approach, we assume that all modeled system parameters
have an error and that the real slope has an inclination of
30◦, while the model assumes θ = 0◦. The modeled and
real parameters are shown in Tab. I. As a result, the initial
operating point and steady-state input are incorrect.

We start with a robust controller that stabilizes the system
(cf. Sec. VI). The system is excited using an input signal
drawn from a uniform distribution. This is not necessary,
but ensures that a broad spectrum of states is explored
quickly. From the first 50 input-output samples the hyperpa-
rameters are learned. With these hyperparameters, the robust

TABLE I
MODELED AND REAL PARAMETERS (FIG. 2).

real modeled error
M [kg] 1.5 1.4 0.1
m [kg] 0.175 0.16 0.015
l [m] 0.28 0.26 0.02
θ [deg] 30◦ 0◦ 30◦

0 0.25 0.5 0.75 1 1.25 1.5
0

0.04

0.08

time [s]

p
o

si
ti

o
n

 [
m

]

Position response (Impulse on angle)

N = 50, γ=0.97

N = 250, γ=0.75

N = 1000, γ=0.63

0 0.25 0.5 0.75 1 1.25 1.5

25

30

35
Angle response (Impulse on angle)

time [s]

an
g

le
 [

d
eg

]

Fig. 3. System response of the learning-based robust controller to an
impulse on the angle. The performance of the controller increases (that
is, γ decreases) as the Gaussian Process learns the system dynamics from an
increasing number of input-output samples N . After 1000 samples (red line)
the performance index is 0.63 and the controller reacts more aggressively.

controllers are calculated after different learning periods,
N = 50, 250 and 1000 (see Sec. IV and V). For simplicity
a straight-forward control objective is chosen, which may
not be appropriate for real-world examples. The matrices
corresponding to the objective are:

Cz =

[
Q

0m×n

]
, Dzu =

[
0n×m

R

]
, Bw =

0 0
Ts 0
0 0
0 Ts

 (24)

and Dzw = 0, where Q and R are diagonal matrices
corresponding to a weighting of state and input costs. The
matrix Bw models two disturbance forces acting on the
masses M and m.

In Fig. 3 the response of the nonlinear system with the
learning-based controllers to an impulse of 5◦ on the angle
is shown.

It can be seen that the performance criterion γ decreases
as we learn a more accurate model of the dynamics. For the
chosen objective function, this results in a more aggressive
controller with decreasing settling time as N increases. Over-
all the system remains robustly stable, while its performance
increases. For better comparability, we assume the accurate
operating point is known for Fig. 3. In normal operation,
the steady-state input is identified, but small errors lead to a
negligible steady-state error in the position of ' 0.01m.

VIII. CONCLUSION

In this paper, a method to combine online learning with
robust control theory has been introduced with the goal
of designing a learning controller that guarantees stability
while gradually improving performance. A Gaussian Process
(GP) was used to learn a nonlinear model of the unknown
dynamics. Based on this model the a priori operating point
was corrected and a linearization of the learned system
model about this point was obtained including uncertainty
information. Finally, a controller that is robust to the learned
model uncertainties was calculated by solving a convex
optimization problem. This control law is updated as better
models of the system are learned, which gradually increases

the control performance. The entire process was illustrated
on an inverted pendulum. The control performance increased
as the model improved. Ultimately, the GP framework has
proven to be a powerful tool for combining nonlinear learn-
ing methods with standard robust control theory.

REFERENCES

[1] F. Berkenkamp and A. P. Schoellig, “Safe and robust learning control
with processes,” in Proc. of the European Control Conference (ECC),
2015, pp. 2501–2506.

[2] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Courier Dover Publications, 2007.

[3] E. F. Camacho and C. B. Alba, Model predictive control. Springer,
2013.

[4] L. Ljung, System identification: theory for the user. Pearson
Education, 1998.

[5] R. Pintelon and J. Schoukens, System identification: a frequency
domain approach. John Wiley & Sons, 2012.

[6] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems, vol. 26, no. 3, pp. 96–114,
2006.

[7] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Transactions on
Neural Networks, vol. 1, no. 1, pp. 4–27, 1990.

[8] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine
learning. Cambridge: MIT Press, 2006.

[9] M. P. Deisenroth, J. Peters, and C. E. Rasmussen, “Approximate
dynamic programming with Gaussian processes,” in Proc. of the
American Control Conference (ACC), 2008, pp. 4480–4485.

[10] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Learning-based
nonlinear model predictive control to improve vision-based mobile
robot path-tracking in challenging outdoor environments,” in Proc. of
the IEEE International Conference on Robotics & Automation (ICRA),
2014, pp. 4029–4036.

[11] R. Murray-Smith and D. Sbarbaro, “Nonlinear adaptive control using
nonparametric Gaussian process prior models,” in Proc. of the 15th
IFAC World Congress on Automatic Control, 2002.

[12] W. S. Lee, B. Anderson, R. Kosut, and I. Mareels, “On adaptive
robust control and control-relevant system identification,” in Proc. of
the American Control Conference (ACC), 1992, pp. 2834–2841.

[13] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice Hall
Upper Saddle River, NJ, 1998, vol. 104.

[14] S. Skogestad and I. Postlethwaite, Multivariable feedback control:
analysis and design. Wiley New York, 2007, vol. 2.

[15] S. Schaal and C. G. Atkeson, “Learning control in robotics,” IEEE
Robotics & Automation Magazine, vol. 17, no. 2, pp. 20–29, 2010.

[16] P. M. Van Den Hof and R. J. Schrama, “Identification and control -
closed-loop issues,” Automatica, vol. 31, no. 12, pp. 1751–1770, 1995.

[17] S. G. Douma and P. M. Van den Hof, “Relations between uncertainty
structures in identification for robust control,” Automatica, vol. 41,
no. 3, pp. 439–457, 2005.

[18] J. Schoukens, T. Dobrowiecki, and R. Pintelon, “Parametric and non-
parametric identification of linear systems in the presence of nonlinear
distortions - a frequency domain approach,” IEEE Transactions on
Automatic Control, vol. 43, no. 2, pp. 176–190, 1998.

[19] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y.
Glorennec, H. Hjalmarsson, and A. Juditsky, “Nonlinear black-box
modeling in system identification: a unified overview,” Automatica,
vol. 31, no. 12, pp. 1691–1724, 1995.

[20] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[21] N. Bedioui, S. Salhi, and M. Ksouri, “Robust stabilization approach
and H∞ performance via static output feedback for a class of
nonlinear systems,” Mathematical Problems in Engineering, 2009.

[22] J. Ko and D. Fox, “Learning GP-bayesfilters via Gaussian process
latent variable models,” Autonomous Robots, vol. 30, no. 1, pp. 3–23,
2011.

[23] R. D. Turner, M. P. Deisenroth, and C. E. Rasmussen, “State-space
inference and learning with Gaussian processes,” in Proc. of the
International Conference on Artificial Intelligence and Statistics, 2010,
pp. 868–875.

[24] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in system and control theory. Society for Industrial and
Applied Mathematics, 1994, vol. 15.

[25] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained
model predictive control using linear matrix inequalities,” Automatica,
vol. 32, no. 10, pp. 1361–1379, 1996.

[26] F. Berkenkamp and A. Schoellig. (2014) Robust control proof.
[Online]. Available: http://www.tiny.cc/robust control

http://www.tiny.cc/robust_control

	Introduction
	Problem Statement
	Gaussian Process
	Prediction
	Derivatives

	Model Update
	Operating Point
	Linearization

	Robust Control
	Discussion
	Example
	Conclusion
	References

