
Safe Controller Optimization for Quadrotors with Gaussian Processes

Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause

Abstract— One of the most fundamental problems when
designing controllers for dynamic systems is the tuning of the
controller parameters. Typically, a model of the system is used
to obtain an initial controller, but ultimately the controller
parameters must be tuned manually on the real system to
achieve the best performance. To avoid this manual tuning step,
methods from machine learning, such as Bayesian optimization,
have been used. However, as these methods evaluate different
controller parameters on the real system, safety-critical system
failures may happen. In this paper, we overcome this problem
by applying, for the first time, a recently developed safe
optimization algorithm, SAFEOPT, to the problem of automatic
controller parameter tuning. Given an initial, low-performance
controller, SAFEOPT automatically optimizes the parameters
of a control law while guaranteeing safety. It models the
underlying performance measure as a Gaussian process and
only explores new controller parameters whose performance
lies above a safe performance threshold with high probability.
Experimental results on a quadrotor vehicle indicate that the
proposed method enables fast, automatic, and safe optimization
of controller parameters without human intervention.

SUPPLEMENTARY MATERIAL
A video demonstrating the proposed safe, automatic con-

troller optimization on a quadrotor vehicle can be found
at http://tiny.cc/icra16 video. A Python implementation of
the algorithm is available in [1].

I. INTRODUCTION
Tuning controller parameters is a challenging task, which

requires significant domain knowledge and can be very time
consuming. Classical approaches to automate this process,
such as the ones in [2] and [3], either rely on model assump-
tions (e.g., linearity), which may be the very reason why the
initial, model-based controller performs poorly, or require
gradient approximations, which are difficult to obtain from
noisy measurements. Methods without these assumptions,
such as genetic algorithms [4], typically require an impracti-
cal number of evaluations on the real system. Moreover, all
these methods may converge to a local optimum.

In this paper, we present a method to automatically tune
controller parameters without requiring a model of the un-
derlying, dynamic system or the computation of gradients.
Additionally, our approach guarantees safety during the
convergence to the global optimum and only requires few
experiments (see Fig. 1).

Felix Berkenkamp and Andreas Krause are with the Learning & Adaptive
Systems Group (LAS), Department of Computer Science, ETH Zurich,
Switzerland. Email: {befelix, krausea}@ethz.ch

Angela P. Schoellig is with the University of Toronto Institute for
Aerospace Studies (UTIAS), Canada. Email: schoellig@utias.utoronto.ca

This research was supported in part by SNSF grant 200020 159557,
NSERC grant RGPIN-2014-04634, and the Connaught New Researcher
Award.

Fig. 1. Overview of the algorithm. The safe Bayesian optimization
algorithm selects new, safe parameters at which the performance function is
evaluated on the real system. Based on the noisy information gained from
the experiment, the algorithm chooses a new, informative and safe evaluation
point at each iteration n. This is repeated until the optimum is found.

In general, the goal of automatic controller tuning is to
find controller parameters through experiments that optimize
a given performance measure. Yet the function that maps
controller parameters to performance values is unknown a
priori. Finding the global optimum of an unknown function
is an impossible task. However, by making assumptions
about the regularity of the unknown function, the field of
Bayesian optimization has developed practical optimization
algorithms (cf. [5]) that provably find the global optimum,
while evaluating the function at only a few parameter combi-
nations [6], [7]. Another major advantage of these methods is
that they explicitly model noise in the performance function
evaluations. Bayesian optimization methods often model the
unknown function as a Gaussian process (GP) [8], which can
guide function evaluations to locations that are informative
about the optimum of the unknown function [5], [9].

Bayesian optimization has been used in robotics to auto-
mate the process of tuning controller parameters. Examples
include gait optimization of legged robots [10], [11] and
controller optimization for a snake-like robot [12]. These
papers show that Bayesian optimization reliably finds the op-
timal controller parameters within a few experiments. In [13]
the controller parameters of a state-feedback controller were
automatically tuned using Bayesian optimization. In this
work, the cost matrices in the LQR framework were used
as a low-dimensional representation of parameters, which
made the method applicable to higher-dimensional systems.
A comparison of different Bayesian and non-Bayesian global
optimization methods can be found in [10].

Despite the experimental success of Bayesian optimization
methods, they have one weakness in real-world experiments.
While gradient-ascent methods, such as [2], typically im-
prove the controller at every iteration and thereby ensure that
the resulting controllers continue to be stable, informative
samples in Bayesian optimization are typically far away
from the original control law to gain maximum information.
This often leads to the evaluation of unstable controllers and
system failures early on in the optimization process.

Appeared in Proc. of the IEEE International Conference on Robotics and Automation, 2016, pp. 493 – 496, doi: 10.1109/ICRA.2016.7487170 .

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

http://tiny.cc/icra16_video
http://ieeexplore.ieee.org/document/7487170/

In this paper, we overcome the problem of safety by
using a modified version of SAFEOPT [14], a recently
developed safe Bayesian optimization algorithm that builds
on the results from [7] and, in addition, guarantees safety by
only evaluating parameters that achieve a safe performance
threshold with high probability. The algorithm retains the
desirable properties of normal Bayesian optimization, such
as the ability to find the safely reachable optimum [14]. The
result is a safe and automatic controller tuning algorithm,
which is illustrated in Fig. 1.

Other approaches that guarantee system safety in the
presence of unmodeled dynamics make assumptions about
and explicitly model the uncertainties in the nominal model.
In this setting, the controllers are gradually improved by
estimating the unmodeled dynamics from experimental data
and recomputing the control law based on this estimate.
Stability can be guaranteed by ensuring that either the
controller is robustly stable for all possible models within
the uncertainty specification [15] or the system never leaves
a safe subset of the state space [16], [17], [18]. Both methods
require a system model and uncertainty specification to be
known a priori, which must be accurate enough to guarantee
stability. In contrast, the method presented in this paper only
requires the controller structure and initial, safe controller
parameters to be known. We do not use a model of the system
but model the performance function directly.

The problem of Bayesian optimization subject to con-
straints on the performance function was previously studied
in [19]. However, they did not consider this constraint as
safety-critical. As a result, evaluating parameters that do
not satisfy the constraints was allowed, which would mean,
in our case, evaluating unsafe parameters. In contrast, we
explicitly avoid the evaluation of unsafe controller parame-
ters. The problem of safe exploration, without the goal of
optimizing the performance, was considered in [20]. In this
paper, we explore and also optimize the function within the
safe region.

We demonstrate the safety and performance of SAFEOPT
experimentally on a quadrotor vehicle, for which we auto-
matically learn optimal controller parameters without failures
during the experiments. Early results of the approach were
presented in [21].

II. PROBLEM STATEMENT

This section introduces the safe optimization problem
considered in this paper. We assume that we have a nonlinear,
dynamic control law of the form

uk = g(yk, rk,an), (1)

which may include internal states (e.g., integrators). The con-
trol law is parameterized by controller parameters, an ∈ A,
at iteration n in a domain A. At time step k, the controller
maps the noisy measurements of a dynamic system, yk,
and a reference signal, rk, to control actions, uk. The con-
troller aims to achieve a desired objective, such as reference
tracking. This control objective is specified in terms of a
performance measure, J(a) : A 7→ R, which is evaluated on

the real system and assigns higher values to controllers with
better performance. The performance measure can be any-
thing in general, but typically depends on the control inputs
and output errors of the closed-loop system (see Fig. 1). It
is evaluated over a finite time horizon. For example, in [10]
the average walking speed of a bipedal robot over three
experiments was used.

The goal is to automatically find the controller parame-
ters, a, that maximize the performance measure, J(a), based
on noisy evaluations of J for different controller parame-
ters, Ĵ(an) = J(an) + ω, where ω ∼ N (0, σ2

ω) is zero-mean
Gaussian noise. We assume that the system is safety-critical;
that is, the optimization algorithm must ensure safety when
evaluating new controller parameters. We do not assume any
knowledge about the model of the dynamic system, which
means that the dependence of J on a is unknown a priori
and needs to be learned as part of the optimization routine.
Additionally, the optimization procedure must be sample-
efficient; that is, only few evaluations of the performance
function should be carried out in order to save time and avoid
system wear. To start the optimization procedure safely, we
assume that an initial set of stabilizing controller parameters
(with potentially poor performance) is available.

In this paper, we encode the safety criterion as a perfor-
mance threshold, Jmin, below which we do not want to fall;
that is, J(an) ≥ Jmin must hold with high probability for
all an at which J is evaluated. With this definition of safety,
the resulting controllers are likely to be stable, since unstable
systems typically have a significantly lower performance
when considering a sufficiently long time horizon.

III. METHODOLOGY

In this section, we review GPs and Bayesian Optimization
and illustrate the theory behind SAFEOPT.

A. Gaussian Process (GP)

The function J(a) in Sec. II is unknown a priori. We
use a nonparametric model to approximate the unknown
function over its domain A. In particular, we use a GP to
approximate J(a).

GPs are a popular choice for nonparametric regression
in machine learning, where the goal is to find an approx-
imation of a nonlinear map, J(a) : A 7→ R, from an input
vector a ∈ A to the function value J(a). This is accom-
plished by assuming that function values J(a), associated
with different values of a, are random variables and that any
finite number of these random variables have a joint Gaussian
distribution depending on the values of a [8].

For the nonparametric regression, we define a prior mean
function and a covariance function, k(ai,aj), which defines
the covariance of any two function values, J(ai) and J(aj),
i, j ∈ N. The latter is also known as the kernel. In this work,
the mean is assumed to be zero without loss of generality.
The choice of kernel function is problem-dependent and
encodes assumptions about smoothness and rate of change
of the unknown function. A review of different kernels can

be found in [8]. More information about the kernel used in
this paper can be found in Sec. V.

The GP framework can be used to predict the function
value, J(a∗), at an arbitrary input, a∗ ∈ A, based on a set
of n past observations, Dn = {ai, Ĵ(ai)}ni=1. We assume
that observations are noisy measurements of the true function
value, J(a); that is, Ĵ(a) = J(a) + ω with ω ∼ N (0, σ2

ω).
Conditioned on the previous observations, the mean and
variance of the prediction are given by

µn(a
∗) = kn(a

∗)(Kn + Inσ
2
ω)
−1Ĵn, (2)

σ2
n(a
∗) = k(a∗,a∗)− kn(a

∗)(Kn + Inσ
2
ω)
−1kT

n (a
∗), (3)

where Ĵn =
[
Ĵ(a1), . . . , Ĵ(an)

]T
is the vector of observed,

noisy function values, the covariance matrix Kn ∈ Rn×n
has entries [Kn](i,j) = k(ai,aj), i, j ∈ {1, . . . , n}, and the
vector kn(a∗) =

[
k(a∗,a1), . . . , k(a

∗,an)
]

contains the co-
variances between the new input a∗ and the observed data
points in Dn. The identity matrix is denoted by In ∈ Rn×n.

B. Bayesian Optimization

Bayesian optimization aims to find the global maximum of
an unknown function [5]. The assumption is that evaluating
the function is expensive, while computational resources are
cheap. This fits our problem in Sec. II, where each evaluation
of the performance function corresponds to an experiment on
the real system, which takes time and causes wear.

In general, Bayesian optimization models the objective
function as a random function and uses this model to
determine informative sample locations. A popular approach
is to model the underlying function as a GP, see Sec. III-A.
GP-based methods use the mean and variance predictions
in (2) and (3) to compute the next sample location. For
example, [7] evaluates, at iteration n, the parameters

an = argmax
a∈A

µn−1(a) + βnσn−1(a), (4)

where βn is a iteration-varying scalar that defines the
confidence interval of the GP. Intuitively, (4) selects new
evaluation points at locations where the upper bound of the
confidence interval of the GP estimate is maximal. Repeat-
edly evaluating the system at locations given by (4) improves
the mean estimate of the underlying function and decreases
the uncertainty at candidate locations for the maximum, such
that the global maximum is found after a finite number of
iterations, cf. [7].

While (4) is also an optimization problem, solving it does
not require any evaluations on the real system but only uses
the GP model. This corresponds to the assumption of cheap
computational resources.

C. Safe Bayesian Optimization

In this paper, we build upon the safe optimization al-
gorithm SAFEOPT [14]. SAFEOPT is a Bayesian optimiza-
tion algorithm, see Sec. III-B, which aims to maximize an
unknown function by modeling it as a GP over a finite
set of parameters A. However, instead of optimizing the
underlying function globally, it restricts itself to a safe

set S = {a ∈ A | J(a) ≥ Jmin}, which only contains pa-
rameters that lead to a performance value above the safe
threshold, Jmin. This safe set is not known initially, but is
estimated after each function evaluation. In our case, the
initial, safe set, S0, corresponds to the initial, safe controller
parameters, a0.

In this setting, the challenge is to find an evaluation
strategy similar to (4), which at each iteration n not only
aims to find the global maximum within the currently known
safe set Sn (exploitation), but also to increase the set Sn of
controllers that are known to be safe (exploration). SAFEOPT
provides a solution to this problem [14] by choosing for the
next experiment the safe controller parameters about whose
performance we are most uncertain. Parameters are chosen
from two sets: the set of potential maximizers, Mn, whose
values can lie above the current maximum according to the
GP estimate, and the set of potential expanders, Gn, which
can expand the set of safe controllers, Sn (see Fig. 2).

In [14] these two sets were estimated using a Lipschitz
constant. However, in practical applications this represents an
additional tuning parameter. In the next section, we modify
the algorithm in [14] to use the GP’s prediction directly in
order to estimate these sets.

IV. MODIFIED SAFEOPT ALGORITHM
In this section, we modify SAFEOPT from [14], to work

without the specification of a Lipschitz constant. Addition-
ally, we provide an implementation in Python [1], which
is significantly faster than a naive implementation. In con-
trast to the original algorithm in [14], we estimate the
sets, Sn,Gn, and Mn, directly from the GP. In particular,
we define the upper and lower bound of the confidence
interval at iteration n as

un(a) = µn−1(a) + βnσn−1(a), (5)
ln(a) = µn−1(a)− βnσn−1(a), (6)

where βn ∈ R+ defines the confidence interval that we want
to achieve. For example, in our experiments we use βn = 2.
Using these bounds, we define the safe set as all the
parameters a that are very likely to lead to function values
above the safe performance threshold, Jmin, according to the
GP estimate,

Sn = {a ∈ A | ln(a) ≥ Jmin} . (7)

The set of potential maximizers contains all safe param-
eters that could obtain the maximum value given the high-
probability bounds in (5) and (6). It is given by the set of
safe parameters for which the upper confidence interval, un,
is above the best, safe lower bound:

Mn =
{
a ∈ Sn | un(a) ≥ max

a′∈A
ln(a

′)
}
. (8)

The set of potential expanders is more difficult to define
without the Lipschitz constant, as it quantifies whether new
parameters could be classified as safe after a new mea-
surement. We define an optimistic indicator function for
expanders,

gn(a) =
∣∣{a′ ∈ A \ Sn | ln,(a,un(a))(a

′) ≥ Jmin

}∣∣ , (9)

Inputs a

Pe
rf

or
m

an
ce

J(
a)

(a) Initial, safe parameters.

Inputs a
(b) After 5 evaluations: local maximum found.

Inputs a
(c) After 13 evaluations: global maximum found.

Fig. 2. Optimization with modified SAFEOPT algorithm after 1, 5 and 13 evaluations of the performance measure. Based on the mean estimate (blue)
and confidence interval (light blue), the algorithm selects safe evaluation points above the safe threshold Jmin (black dashed) from the safe set Sn (red),
which are either potential maximizers Mn (green) or expanders Gn (magenta). It then learns about the function by drawing noisy samples from the
unknown, underlying function (light gray). This way we expand the safe region (red) as much as possible, and, simultaneously, find the global optimum
of the unknown function (13) (cyan ball).

where ln,(a,un(a)) is the lower bound of the GP, (6), based
on past data and an artificial data point (a, un(a)) with a
noiseless measurement of the upper confidence bound. The
function in (9) counts how many previously unsafe points
can be classified as safe according to (7) assuming that
we measure un(a) when evaluating J(a). This function is
positive if the new data point has a non-negligible chance
to expand the safe set. Consequently, the set of possible
expanders is defined as

Gn = {a ∈ Sn | gn(a) > 0} . (10)

For a graphical representation of the three sets, see Fig. 2.
As in [14], we choose new parameters at which to evaluate

the performance on the real system by selecting the param-
eters about which we are the most uncertain from the union
of the sets Gn and Mn; that is, at iteration n we choose to
evaluate the function at an,

an = argmax
a∈Gn∪Mn

wn(a), (11)

wn(a) = un(a)− ln(a). (12)

This evaluation criterion has many desirable properties, in-
cluding the ability to find the safely reachable optimum [14].
In particular, it works well for expanding the safe set [20],
while at the same time trading-off exploration and ex-
ploitation. For the exploration, the most uncertain parameter
locations are usually on the boundary of the safe set, which
results in efficient exploration. Typical kernel functions can
only classify states in the vicinity of past observations as
safe, which leads to a coarse sampling of the safe parameter
space. The coarse samples already provide information about
the maximizers in Sn during exploration. For example, all
points from the setM5 in Fig. 2b are eliminated as potential
maximizers in Fig. 2c, as we observe larger values during the
safe exploration. We obtain an estimate of the best currently
known parameters from

argmax
a∈Sn

ln(a), (13)

which corresponds to the point that achieves the best lower
bound on the performance.

A summary of the entire algorithm is found in Algo-
rithm 1. It starts by computing the sets Sn,Gn and Mn

Algorithm 1: Modified SAFEOPT algorithm
Inputs: Domain A

Safe threshold Jmin

GP prior (k(ai,aj), σ2
ω)

Initial, safe controller parameters a0
1 Initialize GP with (a0, Ĵ(a0))
2 for n = 1, . . . do
3 Sn ← {a ∈ A | ln ≥ Jmin}
4 Mn ← {a ∈ Sn | un(a) ≥ maxa′ ln(a

′)}
5 Gn ← {a ∈ Sn | gn(a) > 0}
6 an ← argmaxa∈Gn∪Mn

wn(a)

7 Obtain measurement Ĵ(an)← J(an) + ωn
8 Update GP with (an, Ĵ(an))
9 end

in Lines 3–5. Afterwards, a new evaluation point is chosen
from the sets Mn and Gn in Line 6, and the real system is
evaluated in Line 7. Finally, the GP is updated with the new,
noisy measurement in Line 8. This process is repeated until
either the algorithm is aborted by the user or until a desired
confidence, defined by maxa∈Gn∪Mn wn(a), is reached [14].

Computing the complete set Gn in (10) is computation-
ally expensive, since we have to recompute the matrix
inverse in (2) and (3) for every point in Sn. However,
since Algorithm 1 only selects the most uncertain parameter
in Line 6, it suffices to find the expander in Sn \Mn with
the largest value wn above the maximum variance in Mn,
maxa∈Mnwn. As a result, it suffices to iterate over the
points in {a ∈ Sn \Mn | wn(a) > maxa′∈Mn

wn(a
′)} in

order of decreasing values wn and stop the computation
as soon as an expander is found. This significantly reduces
computation time, since typically only few or no parameters
need to be checked as expanders using (9).

It is possible to extend this algorithm to additional con-
straints that do not depend on the performance, such as
constraints on inputs or states. Please refer to [22] for details.

V. QUADROTOR EXPERIMENTS

In this section, we demonstrate the algorithm on a quadro-
tor vehicle, a Parrot AR.Drone 2.0. A video of the ex-
periments can be found at http://tiny.cc/icra16 video. The
quadrotor learns optimal controller gains for the position

http://tiny.cc/icra16_video

controller in x-direction. The other two directions and the
heading angle are stabilized by separate controllers. The sys-
tem’s dynamics can be described by four states: position, x,
velocity, ẋ, pitch, φ, and angular velocity, ω. Measurements
of all states are available from an overhead motion capture
camera system. The control input, u, is the desired pitch
angle, which in turn is the input to an unknown, proprietary,
on-board controller. We define a linear control law, which
computes the control input at time k:

uk = k1(xk − rk) + k2ẋk. (14)

The control law depends on the reference position rk and is
parameterized by two parameters, a = (k1, k2).

The goal is to find controller parameters that maximize
the performance during a 1-meter reference position change.
For an experiment with parameters an at iteration n,

J(an) = C(an)− 0.95C(a0), (15)

C(an) = −
N∑
k=0

xT
kQxk +Ru2k, (16)

where, to compute the cost C, the states x = (x− r, ẋ, φ, ω)
and the input u are weighted by positive semi-definite ma-
trices Q and R. The time horizon is 5 s (N = 350). Here we
have defined performance as the cost improvement relative
to 95% of the initial controller cost. The safe threshold is set
at Jmin = 0. In practice, Jmin can be chosen freely; however,
we cannot set the threshold equal to the performance of
the initial controller, as this does not allow the algorithm
to classify nearby states as safe and expand the safe set.

While the optimal controller gains could be easily com-
puted given an accurate model of the system, we do not
have a model of the dynamics of the proprietary, on-board
controller and the time delays in the system. Moreover, we
want to optimize the performance for the real, nonlinear
quadrotor system, which is difficult to model accurately. An
inaccurate model of the system could be used to improve the
prior GP model of the performance function, with the goal
of achieving faster convergence. In this case, the uncertainty
in the GP model of the performance function would account
for inaccuracies in the system model.

We discretize the controller parameter space uniformly
into 10, 000 combinations in [−0.6, 0.1]2, explicitly includ-
ing positive controller parameters that certainly lead to
crashes. In practice, one would exclude parameters that are
known to be unsafe a priori. The initial controller gains
are (−0.4,−0.4), which result in a controller with poor
performance. Decreasing the controller gains further leads
to unstable controllers.

To run the optimization algorithm we need to define a
kernel for the GP. In this work, we choose the Matèrn kernel
with parameter ν = 3/2 [8],

k(ai,aj) = σ2
η

(
1+
√
3 r(ai,aj)

)
exp

(
−
√
3 r(ai,aj)

)
, (17)

r(ai,aj) =
√
(ai − aj)TM−2(ai − aj), (18)

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1
Controller Gain k1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
on

tr
ol

le
rG

ai
n

k 2

0

30

60

90

120

150

180

Pe
rf

or
m

an
ce

Fig. 3. GP mean estimate of the performance function after 30 evaluations.
The algorithm adaptively decides where to sample based on safety and
informativeness. In the bottom-left corner, there is the magnified section of
the first three samples, which are close together to determine the location
of the initial, safe region. The maximum, magnified in the top-left corner,
also has more samples to determine the precise location of the maximum.
Other areas are more coarsely sampled to expand the safe region.

which is parameterized by three hyperparameters: measure-
ment noise, σ2

ω in (2) and (3), prior variance, σ2
η , and postitive

length-scales, l ∈ R|A|+ , which are the diagonal elements of
the diagonal matrix M, M = diag(l), and correspond to
the rate of change of the function J with respect to a.
This kernel function implies that the underlying function J
is differentiable, takes values within the 2σ confidence
interval [−2ση, 2ση] with high probability and, with high
probability, has a Lipschitz constant that depends on l and σ2

η .
These hyperparameters encode our prior assumptions about
the unknown performance function. While it may be difficult
to find hyperparameters that describe the underlying function
perfectly, it is usually possible to specify parameters that
are conservative (i.e., large σ2

ω and σ2
η , and small length-

scales, l). In general, the more assumptions can be made
(e.g., smoothness), the faster the algorithm will converge.
This leads to a trade-off between ensuring that the function
is well modeled (that is, the safe threshold is not violated),
and the number of experiments we are willing to conduct.

The parameters for the experiments were set as follows:
the length-scales were set to 0.05 for both parameters,
which corresponds to the notion that a 0.05-0.1 change in
the parameters leads to very different performance values.
The prior standard deviation, ση , and the noise standard
deviation, σω , are set to 5% and 10% of the performance of
the inital controller, C(a0), respectively. The noise standard
deviation, σω , mostly models errors due to initial position
offsets, since state measurements have low noise. The size
of these errors depends on the choice of the matrices Q
and R. By choosing σω dependent on the initial performance,
we account for the Q and R dependency. Similarly, ση
specifies the expected size of the performance function
values. Initially, the best we can do is to set this quantity
dependent on the initial performance and leave additional
room for future, larger performance values.

0 1 2 3 4 5
Time [s]

0.0

0.5

1.0

1.5
x-

po
si

tio
n

[m
]

Fig. 4. The quadrotor controller performance is evaluated during a 5 s
evaluation interval, where a 1 m reference position change must be per-
formed. The trajectories correspond to the optimization routine in Fig. 3.
The initial controller (blue) performs poorly but is stable. In contrast, the
optimized controller (red) shows an optimized, smooth, and fast response.
The trajectories of other controller parameters that were evaluated are shown
in gray.

The resulting, estimated performance function after run-
ning Algorithm 1 for 30 experiments is shown in Fig. 3.
The unknown function has been reliably identified. Samples
are spread out over the entire safe set, with more samples
close to the maximum of the function and close to the
initial controller parameters. No unsafe parameters below the
threshold Jmin = 0 were evaluated on the real system.

Typically, the optimization behavior of Algorithm 1 can be
roughly separated into three stages. Initially, the algorithm
evaluates controller parameters close to the initial parameters
in order for the GP to acquire information about the safe set
(see lower-left, zoomed-in section in Fig. 3). Once a region
of safe controller parameters is determined, the algorithm
evaluates the performance function more coarsely in order to
expand the safe set. Eventually, the controller parameters are
refined by evaluating high-performance parameters that are
potential maximizers in a finer grid (see upper-left, zoomed-
in section in Fig. 3). The trajectories of the initial, best and
intermediate controllers can be seen in Fig. 4.

A normal Bayesian optimization algorithm [7] would start
by evaluating a = (0.1, 0.1), where the GP has the largest
uncertainty about the performance. These parameters lead to
an unstable controller. In contrast, our method safely explores
the parameter space without evaluating unsafe parameters.

Ultimately, the algorithm identifies the controller gains
that maximize the performance measure. Because we omitted
the on-board controller and its internal states and due to
the nonlinearity of the quadrotor dynamics, the resulting
performance function in Fig. 3 is similar to, but not the same
as, the quadratic function that one would have expected from
linear quadratic control theory.

VI. CONCLUSION

We presented the first application of Safe Bayesian Opti-
mization on a real robotic system. We modified the algorithm
in [14] to work directly with GP estimates and successfully
applied it to the position control of a quadrotor vehicle. It
was shown that the algorithm enables efficient, automatic,
and global optimization of the controller parameters without
risking dangerous and expensive system failures.

REFERENCES

[1] F. Berkenkamp, A. P. Schoellig, and A. Krause, “SafeOpt source code,”
GitHub, 2016, http://github.com/befelix/SafeOpt-robotics.

[2] N. J. Killingsworth and M. Krstić, “PID tuning using extremum
seeking: online, model-free performance optimization,” IEEE Control
Systems, vol. 26, no. 1, pp. 70–79, 2006.

[3] K. J. Åström, T. Hägglund, C. C. Hang, and W. K. Ho, “Automatic
tuning and adaptation for PID controllers - a survey,” Control Engi-
neering Practice, vol. 1, no. 4, pp. 699–714, 1993.

[4] Y. Davidor, Genetic algorithms and robotics: a heuristic strategy for
optimization. World Scientific, 1991.

[5] J. Mockus, Bayesian approach to global optimization: theory and
applications. Springer Science & Business Media, 2012.

[6] A. D. Bull, “Convergence rates of efficient global optimization algo-
rithms,” Journal of Machine Learning Research, vol. 12, pp. 2879–
2904, 2011.

[7] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian
process optimization in the bandit setting: no regret and experimental
design,” in Proc. of the International Conference on Machine Learning
(ICML), 2010, pp. 1015–1022.

[8] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine
learning. MIT Press, 2006.

[9] D. R. Jones, “A taxonomy of global optimization methods based on
response surfaces,” Journal of Global Optimization, vol. 21, no. 4, pp.
345–383, 2001.

[10] R. Calandra, N. Gopalan, A. Seyfarth, J. Peters, and M. P. Deisenroth,
“Bayesian gait optimization for bipedal locomotion,” in Learning and
Intelligent Optimization. Springer, 2014, pp. 274–290.

[11] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans, “Auto-
matic gait optimization with Gaussian process regression.” in Proc. of
the International Joint Conference on Artificial Intelligence (IJCAI),
vol. 7, 2007, pp. 944–949.

[12] M. Tesch, J. Schneider, and H. Choset, “Using response surfaces and
expected improvement to optimize snake robot gait parameters,” in
Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2011, pp. 1069–1074.

[13] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic
LQR tuning based on Gaussian process global optimization,” in Proc.
of the IEEE International Conference on Robotics and Automation
(ICRA), 2016.

[14] Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause, “Safe exploration
for optimization with Gaussian processes,” in Proc. of the International
Conference on Machine Learning (ICML), 2015, pp. 997–1005.

[15] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe and automatic
controller tuning with Gaussian processes,” in Proc. of the Workshop
on Machine Learning in Planning and Control of Robot Motion,
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015.

[16] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[17] A. K. Akametalu, S. Kaynama, J. F. Fisac, M. N. Zeilinger, J. H.
Gillula, and C. J. Tomlin, “Reachability-based safe learning with
Gaussian processes,” in Proc. of the IEEE Conference on Decision
and Control (CDC), 2014, pp. 1424–1431.

[18] T. M. Moldovan and P. Abbeel, “Safe exploration in Markov decision
processes,” in Proc. of the International Conference on Machine
Learning (ICML), 2012, pp. 1711–1718.

[19] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization
with unknown constraints,” in Proc. of the Conference on Uncertainty
in Artificial Intelligence (UAI), 2014, pp. 250–259.

[20] J. Schreiter, D. Nguyen-Tuong, M. Eberts, B. Bischoff, H. Markert,
and M. Toussaint, “Safe exploration for active learning with Gaussian
processes,” in Proc. of the European Conference on Machine Learning
(ECML), vol. 9284, 2015, pp. 133–149.

[21] F. Berkenkamp and A. P. Schoellig, “Safe and robust learning control
with Gaussian processes,” in Proc. of the European Control Confer-
ence (ECC), 2015, pp. 2501–2506.

[22] F. Berkenkamp, A. Krause, and Angela P. Schoellig, “Bayesian opti-
mization with safety constraints: safe and automatic parameter tuning
in robotics.” arXiv, 2016, arXiv:1602.04450 [cs.RO].

http://github.com/befelix/SafeOpt-robotics
http://arxiv.org/abs/1602.04450

	INTRODUCTION
	PROBLEM STATEMENT
	METHODOLOGY
	Gaussian Process (GP)
	Bayesian Optimization
	Safe Bayesian Optimization

	MODIFIED SafeOpt ALGORITHM
	QUADROTOR EXPERIMENTS
	CONCLUSION
	References

