
Safe and Robust Learning Control with Gaussian Processes

Felix Berkenkamp and Angela P. Schoellig

Abstract— This paper introduces a learning-based robust
control algorithm that provides robust stability and perfor-
mance guarantees during learning. The approach uses Gaus-
sian process (GP) regression based on data gathered during
operation to update an initial model of the system and to
gradually decrease the uncertainty related to this model. Em-
bedding this data-based update scheme in a robust control
framework guarantees stability during the learning process.
Traditional robust control approaches have not considered
online adaptation of the model and its uncertainty before.
As a result, their controllers do not improve performance
during operation. Typical machine learning algorithms that
have achieved similar high-performance behavior by adapting
the model and controller online do not provide the guarantees
presented in this paper. In particular, this paper considers
a stabilization task, linearizes the nonlinear, GP-based model
around a desired operating point, and solves a convex optimiza-
tion problem to obtain a linear robust controller. The resulting
performance improvements due to the learning-based controller
are demonstrated in experiments on a quadrotor vehicle.

I. INTRODUCTION

Mathematical models are an important prerequisite when
designing model-based controllers using, for example, tech-
niques such as Linear Quadratic Regulators [1] or Model
Predictive Control [2]. The performance of the resulting
controllers directly depends on the accuracy of the model.
While established methods for system modeling and iden-
tification exist [3], [4], the resulting models are always an
approximation of the real system behavior.

The goal of this paper is to use data gathered during op-
eration to improve the model and, consequently, the control
performance while providing stability guarantees during the
learning process. Guaranteeing stability during learning has
recently been stated as an open problem in robotics [5].
The proposed approach combines robust control theory with
machine learning, where the latter updates the model and
model uncertainty based on data obtained during operation.
This information is used in the robust controller design to
guarantee stability despite the present uncertainty (Fig. 1).

Machine learning methods have been used before to over-
come the limitations of approximate models. These methods
leverage online measurements to improve the control perfor-
mance. One such example is iterative learning control (ILC),
which achieves high-performance tracking by learning feed-
forward inputs through repeated executions of a task [6].

Felix Berkenkamp is with ETH Zurich, Switzerland. Email:
befelix@ethz.ch . Angela P. Schoellig is with the Dynamic Systems
Lab (www.dynsyslab.org) at the University of Toronto Institute for
Aerospace Studies (UTIAS), Canada. Email: schoellig@utias.utoronto.ca .

This work was supported by the Natural Sciences and Engineering
Research Council of Canada under the grant RGPIN-2014-04634.

Associated video at: http://tiny.cc/ecc15 video.

K
ỹk ũk

wkP
zk

qk pk Gaussian Process

Update
uncertain model

Update
controller K

Robust Controller Design Framework

Real system

∆

K

Fig. 1. Framework of the learning-based robust controller design. Using
input-output data of the real system, the plant model P is updated and the
uncertainty estimate ∆ is gradually reduced. As a result, the performance
of the regularly updated robust controller K improves.

Other approaches improve the system model directly, such
as Neural Networks (NN) [7]. Recently, the focus of the
community has shifted to Gaussian Processes (GPs) [8], as
they outperform NNs under certain conditions [9]. Learned
GP models have been successfully used for dynamic pro-
gramming [10] and to improve trajectory tracking of a robot
traversing unknown, rough terrain [11]. GPs also provide
uncertainty estimates for their predictions, which have been
used in [12] to minimize the expected squared error in a
model predictive control setting. While all these methods
achieve impressive control performance after learning, they
do not guarantee stability during the learning process. The
reason for this is that these methods focus on updating
the estimated model of the dynamics without explicitly
considering the mismatch between the learned model and
the real dynamics of the system.

In the control community, model errors have been explic-
itly considered in the field of robust control, established in
the 1980s [13]. Robust control focuses on linear systems,
incorporates an a priori estimate of the model uncertainty
in the controller design, and guarantees stability and per-
formance of the system for all modeled uncertainties [14].
However, this uncertainty estimate is not updated during
operation. While the uncertainty specification provides stabil-
ity guarantees, robust control methods may decrease overall
controller performance, because the performance objective
is minimized over all possible models that lie within the
uncertainty specification.

In this paper, we combine machine learning with robust
control to achieve both good controller performance after
learning, inherited from machine learning, and stability and
performance guarantees, inherited from robust control. The
main challenge in combining the two approaches lies in
identifying the unknown plant dynamics and the correspond-
ing uncertainty in a way that can be used in a robust

2015 European Control Conference (ECC)
July 15-17, 2015. Linz, Austria

978-3-9524269-3-7 ©2015 EUCA 2496

controller design framework. Classical offline system identi-
fication methods focus on fitting linear models to observed
data using either time or frequency domain methods [3],
[4]. While these approaches can be extended to include
uncertainty estimates [15], [16], fitting a linear model to the
unknown, nonlinear dynamics can lead to errors. In [17] a
way to avert these errors and quantify the uncertainty was
presented involving periodic inputs to the system. Such a
solution is generally not possible in an online setting. Thus,
to achieve bias-free online system identification, one must
turn to nonlinear, nonparametric identification methods [18].
GPs are of particular interest, since they provide uncertainty
estimates [8].

Combining robust stability with nonlinear, nonparametric
system identification was explored in [19]. There, the learned
dynamics were considered to be bounded disturbances and a
linear controller for the nominal plant was used to guarantee
robustness. Compared to our approach, this work did not
adapt the a priori model uncertainty. In [20] robust stability
guarantees were obtained for a nonlinear model predictive
controller by switching between safe and nominal control
actions based on level sets. This work only considered
nominal performance. As a result, the performance of the
uncertain system is not guaranteed.

Another large field of research related to our approach is
(robust) adaptive control; because of space limitations, we
do not refer to specific papers but want to highlight that
the majority of work in this area considers the adaptation of
a finite number of control parameters, while our approach
considers nonparametric, nonlinear model learning based on
GPs.

This paper uses GPs for online learning of the system
dynamics. The learned GP model and its uncertainty es-
timates are linearized using properties of GPs that have
not been applied to robust control before. The linearization
point itself is considered to be uncertain and identified as
well. Robust controller design methods are applied to the
obtained uncertain model resulting in a convex optimization
problem that is solvable online [21]. Initial simulation results
of this approach were presented in [22]. This paper presents
experimental results on quadrotor vehicles, see associated
video at: http://tiny.cc/ecc15 video.

The remainder of this paper is structured as follows:
in Sec. II the robust control problem is stated. GPs are
introduced in Sec. III and their application to online model
learning is shown in Sec. IV. Sec. V presents a robust control
design based on the GP model of Sec. IV. A discussion of
the presented approach is provided in Sec. VI. Finally, the
method is applied to a quadrotor vehicle in Sec. VII, and
conclusions are drawn in Sec. VIII.

II. PROBLEM STATEMENT

This section introduces the system model and the robust
control problem considered in this paper.

Let x ∈ Rn, u ∈ Rm and y ∈ Rp denote the system
states, inputs and measured outputs, respectively. The sys-
tem dynamics are separated into two components, a known

function, f(x,u), derived, for example, from first principles,
and an unknown function, g(x,u). The function g(x,u)
represents unknown, deterministic dynamics that are not
captured by the a priori model f(x,u). Both functions
are assumed to be continuously differentiable, f ,g ∈ C1.
Measurements are made via a known matrix C ∈ Rp×n and
are corrupted by zero-mean Gaussian noise with covariance
matrix Σω , ω ∼ N (0,Σω). The corresponding discrete-time
system dynamics are given by

xk+1 = f(xk,uk)︸ ︷︷ ︸
a priori model

+ g(xk,uk)︸ ︷︷ ︸
unknown model

yk = Cxk + ωk,

(1)

where k refers to the k th time step.
The goal of this paper is to find an estimate of the

function g(x,u) and an associated confidence interval of this
estimate from measurement data. This information is used to
design a robust controller that stabilizes the system despite
the uncertainty in the estimate. As the estimate of g(x,u)
becomes more certain and accurate, the robust controller
performance improves. In this paper, we model the unknown
dynamics g(x,u) as a GP (see Sec. III) and consider linear
robust control around a specific operating point, xs, with a
corresponding steady-state input, us, where

xs = f(xs,us) + g(xs,us). (2)

Both xs and us are initially unknown and are also estimated
from measurement data, see Sec. IV-A.

Throughout this paper, we assume that noisy full-state
information is available; that is, C is full-rank or, without
loss of generality, C = I. While it is possible to extend the
obtained results to partial-state information, this is outside
of the scope of this paper.

III. GAUSSIAN PROCESSES (GPS)

In this section, we introduce the basic properties of GPs.
GPs are used in Sec. IV to model the unknown dynam-
ics, g(x,u), see (1).

GPs are a popular choice for nonparametric regression in
machine learning, where the goal is to find an approximation
of a nonlinear map, g(a) : Rdim(a) 7→ R, from an input
vector a to the function value g(a). This is accomplished by
assuming that function values g(a), associated with different
values of a, are random variables and that any finite number
of these random variables have a joint Gaussian distribution
depending on the values of a [8].

For the nonparametric regression we need to define a
prior for the mean of g(a) and for the covariance between
any two function values, g(ai) and g(aj), i, j ∈ N. The
latter is also known as the kernel. In this work, the mean
is assumed to be zero, since GPs are used to approximate
the dynamics g(x,u) in (1) for which no prior knowledge
is available.

In the following discussion, we choose the often used
squared-exponential function as the covariance function, [8];
however, any kernel with continuous first derivative can

2497

be used in general. For a squared-exponential function,
input vectors a that are close to each other (in terms of
their scaled, squared distance) are assumed to have similar
function values. The covariance between two data points,
g(ai) and g(aj), is given by

k(ai,aj) = σ2
η exp

(
−1

2
(ai − aj)

TM−2(ai − aj)

)
+ δijσ

2
ω,

(3)
where δij = 1 if i = j and 0 otherwise. The covariance is
parameterized by three hyperparameters: measurement noise,
σ2
ω , process variation, σ2

η , and length scales, l ∈ Rdim(a),
which are the diagonal elements of the diagonal matrix M,
M = diag(l), and correspond to the rate of change of the
function g with respect to a. These hyperparameters are
learned from observed data by solving a maximum log-
likelihood problem using gradient ascent methods [8].

A. Prediction

The GP framework above can be used to predict the
function value of g(a∗) at an arbitrary input, a∗, based on a
set of N past observations, D = {ai, ĝ(ai)}Ni=1. We assume
that observations are noisy measurements of the true function
value, g(a); that is, ĝ(a) = g(a) + ω with ω ∼ N (0, σ2

ω).
The joint probability distribution of the function value g(a∗)
and the observed data is given by[

ĝ
g(a∗)

]
∼ N

(
0N ,

[
K kT(a∗)

k(a∗) k(a∗,a∗)

])
, (4)

where ĝ =
[
ĝ(a1), . . . , ĝ(aN)

]T
is the vector of observed

function values and 0N ∈ RN is a vector of zeros. The co-
variance matrix K ∈ RN×N has entries K(i,j) = k(ai,aj),
i, j ∈ {1, . . . , N}, and k(a∗) =

[
k(a∗,a1), . . . , k(a∗,aN)

]
contains the covariances between the new input a∗ and the
observed data points in D. Using the properties of joint
Gaussian distributions, the prediction of g(a∗) conditioned
on the data set D is given by g(a∗)|D ∼ N (µ(a∗), σ2(a∗))
(cf. [8]) with

µ(a∗) = k(a∗)K
−1

ĝ, (5)

σ2(a∗) = k(a∗,a∗)− k(a∗)K
−1

kT(a∗). (6)

The prediction depends on the inverse of the (N ×N) ma-
trix K, which is an expensive O(N3) computation. However,
in order to make predictions, the inverse must be computed
only once for a given data set.

So far, we have considered a scalar function, g(a). The
extension to a vector-valued function, as required for ap-
proximating g(x,u) in (1), can be done by extending (4),
resulting in a matrix K of size (nN × nN). Such a matrix
is usually too big to be inverted efficiently. To maintain
computational feasibility, independent GPs are trained for
each dimension of g(x,u). As a result, any additional in-
formation that could be gained from the correlation between
the components in g(x,u) (for example, introduced by the
measurement noise) are neglected.

B. Derivatives

An additional characteristic of the GP framework impor-
tant for Sec. IV is that the derivative of a GP is a GP as well
[8]. This follows from the fact that the derivative is a linear
operator. From (4), we get[

ĝ
∂g(a)
∂a

∣∣∣
a∗

]
∼ N

0N ,

 K ∂kT(a)
∂a

∣∣∣
a∗

∂k(a)
∂a

∣∣∣
a∗

∂2k(a,a)
∂a∂a

∣∣∣
a∗

 , (7)

where h(a)|a∗ means h(a) evaluated at a = a∗. The deriva-
tives of the squared-exponential function are given by

∂k(i)(a)

∂a

∣∣∣∣
a∗

= M−2(ai − a∗)k(a∗,ai), (8)

∂2k(a,a)

∂a∂a

∣∣∣∣
a∗

= σ2
ηM
−2, (9)

where k(i)(a) is the ith element of k(a) and (8) represents
the ith column of ∂k(a)/∂a.

In the literature, this property has mainly been used
to include derivative observations; however, following the
same reasoning as in the previous section predictions of the
derivatives are given by ∂g(a)

∂a

∣∣
a∗
|D ∼ N (µ′(a∗),Σ′(a∗))

with

µ′(a∗) =
∂k(a)

∂a

∣∣∣∣
a∗

K
−1

ĝ, (10)

Σ′(a∗) =
∂2k(a,a)

∂a∂a

∣∣∣∣
a∗
− ∂k(a)

∂a

∣∣∣∣
a∗

K
−1
(
∂k(a)

∂a

∣∣∣∣
a∗

)T
. (11)

From (11) and (9) it can be seen that σ2
ηM
−2 is the prior

variance of the first derivative, which confirms the interpre-
tation of the length-scale hyperparameters as corresponding
to the rate of change of g.

IV. MODEL UPDATE

In this section, we show how GPs, introduced in Sec. III as
a means to approximate g(x,u) in (1), can be used to derive
a linear model of the unknown dynamics g(x,u) around
a linearization point. This linear model and the associated
uncertainty estimates are used in Sec. V to update the robust
controller, see Fig. 1.

We use separate GPs, gi, to identify each dimension of
the unknown dynamics g(x,u); that is, gi corresponds to
the ith element of the model error, g(i)(x,u). The input
vector, ak = (xk,uk), is the same for each GP and consists
of the current state and input, while the training target of the
GPs is the model error, ĝ(ak) = xk+1 − f(xk,uk), obtained
from measurements, cf. (1). As a result, we can predict the
function value and the derivative of the unknown dynam-
ics g(x,u) using (5)-(6) and (10)-(11). As mentioned in
Sec. II, this requires the full state x to be known. Extensions
to partial-state measurements can be found in [23], [24].

A. Operating Point

The goal of the control problem considered in this paper
is to stabilize the system around a desired operating point.
Since the a priori operating point of the known dynamics f

2498

with x̄s = f(x̄s, ūs) is not necessarily equal to (2), an
optional step that reduces steady-state errors and further
improves the control performance is to regularly update the
operating point as the unknown dynamics are learned.

Given the prior operating point x̄s, an updated steady-state
operating point that satisfies (2) with the mean estimate for g
from (5) is found via the optimization problem

min
xs,us

‖x̄s − xs‖Q

subject to xs = f(xs,us) + µ(xs,us),
(12)

where µ ∈ Rn is the learned mean consisting of the in-
dividual predictions for each dimension according to (5)
and ‖x‖Q = xTQx refers to the 2-norm with a positive-
definite weighting matrix Q that accounts for the prior
uncertainty in the different states and for scaling. If xs is
known, a simpler optimization problem can be formulated,
which is solvable via gradient descent:

min
us

‖xs − f(xs,us)− µ(xs,us)‖Q. (13)

B. Linearization

In the previous section, an operating point including
steady-state input was found. The second step of the model
update (see Fig. 1) linearizes system (1) around this operating
point and obtains elementwise confidence intervals.

The dynamics (1) are linearized around the operating
point a∗ = (xs,us) using the properties of GPs presented in
Sec. III-B. We denote the derivative of the ith GP, gi, with re-
spect to a, a = (x,u), by ∂gi(a)

∂a

∣∣
a∗
∼ N (µ′i(a

∗),Σ′i(a
∗)),

and obtain[
A B

]
=
∂f(x,u)

∂a

∣∣∣∣
a∗

+
[
µ′1(a∗), . . . ,µ′n(a∗)

]T
. (14)

The uncertainty is represented by

[
Au Bu

]
= 2

√

diag(Σ′1(a∗))
...√

diag(Σ′n(a∗))

 , (15)

where diag(M) is a row vector consisting of the diagonal
elements of the matrix M, and the square root in (15)
acts elementwise. Each element of the matrices Au and
Bu in (15) is equal to the 2σ (95%) confidence interval
for the corresponding element in A and B. Truncating the
elementwise uncertainty to 2σ may lead to problems in very
rare cases when the disturbance is outside of the 2σ interval.
Consequently, the linearized dynamics are given by

x̃k+1 = (A + Au ◦∆x)x̃k + (B + Bu ◦∆u)ũk, (16)

where x̃k = xk − xs and ũk = uk − us are deviations
around the linearization point, ◦ is the elementwise matrix
product, and ∆x and ∆u represent interval uncertainties
with matrix entries in [−1, 1]; that is, the state matrix is
(A + Au), where every element in Au is independently
scaled by a factor in [−1, 1].

V. ROBUST CONTROL

We derive a robust controller of the form
uk = K(xk − xs) + us for the linearized system in (16),
which stabilizes the system despite the uncertainties
introduced by ∆x and ∆u.

In the general framework of robust control (see Fig. 1), the
objective is to minimize an error signal, z ∈ Rr, caused by a
disturbance, w ∈ Rq , for all possible uncertainties introduced
via an uncertain signal, p ∈ Rf , cf. [14].

x̃k+1 = Ax̃k + Bũk + Bwwk + Bppk (17)
zk = Czx̃k + Dzũk (18)
qk = Cqx̃k + Dqũk (19)
pk = α∆qk, (20)

where ∆ = diag(δ1, . . . , δf) with |δi| ≤ 1, i = 1, . . . , f , to-
gether with Cq , Dq , and Bp represent the uncertainty in the
system (16), (A,B) is the nominal system from (14), and
α = 1. The uncertainty (15) can be represented by choosing

Cq =

diag((Au)(1,:))

...
diag((Au)(n,:))

0nm×n

 ,Dq =

0n2×m

diag((Bu)(1,:))
...

diag((Bu)(n,:))

 , (21)

where (Au)(i,:) is the ith row of Au, In ∈ Rn×n is the iden-
tity matrix, 0i×j ,1i×j ∈ Ri×j are matrices with entries zero
or one, respectively, and Bp =

[
In ⊗ 11×n, In ⊗ 11×m

]
,

where ⊗ denotes the Kronecker product.
The matrices Bw,Cz and Dz define the control objective

to be minimized by the robust controller. Possible choices
can be found in [14]. The disturbance input matrix, Bw, can
be interpreted as the expected disturbances at the operating
point (xs,us). We represent increasing knowledge about the
operating point by Bw = diag(σ1, . . . , σn), where σi is the
variance of the ith GP, gi, from (6).

A popular measure for the error signal, z, is theH2 system
norm, which is a generalization of the well-known Linear
Quadratic Regulator. The corresponding optimization prob-
lem is minK max∆ ‖Tzw‖2, where the transfer function from
wk to zk, Tzw, depends on the controller K and on ∆.

Methods to solve this kind of problem are given in [14].
The computations in this paper are based on [21], which
derives a controller that guarantees stability and performance
for all possible ∆. While the method in [21] is potentially
more conservative than others in [14], it obtains the discrete-
time controller by solving a convex optimization problem in
terms of linear matrix inequalities (LMIs). Efficient solvers
for LMIs exist [25], making this technique applicable to
online applications as considered in this paper. In fact,
in [26] this technique was applied to find a model predictive
controller, which required solving an LMI at every time step.

We modify the uncertainty representation in [21] to find
an H2 state-feedback controller for our uncertainty definition
in (17)-(20). In the following, symmetric matrix elements are
denoted by • and P > 0 means that P is positive definite.

2499

Theorem 1: System (17)-(20) is robustly stable under the
state feedback law ũk=Kx̃k with K=RQ−1 and ‖Tzw‖22<γ
if the following optimization problem is feasible:

min
W=WT,Q=QT,R,Λ=diag(τ1,...,τf),γ,β=1

γ (22)

subject to

trace(W) < γ,

[
W CzQ + DzR
• Q

]
> 0,

Q • • • •
0q×n Iq • • •
0f×n 0f×q Λ • •

AQ + BR Bw BpΛ Q •
CqQ + DqR 0f×q 0f×f 0f×n βΛ

 > 0.

Proof: The proof can be found in [27].

For β = α−2 = 1, the resulting closed-loop system is
robustly stable for all uncertainties. Whenever this opti-
mization problem is infeasible, a line search maximizing α
with 0 ≤ α < 1 leads to the best possible controller given the
assumptions in [21]. The control matrix, K from Thm. 1, is
recalculated regularly based on the most up-to-date model
obtained from Sec. IV. The control input for the nonlinear
system (1) is given by uk = K(xk − xs) + us.

VI. DISCUSSION

To initialize the learning-based robust controller, the hy-
perparameters of the kernel function (3) must be specified
as they provide the initial model uncertainty. There are two
options to do this: first, it is typical for robust control to
assume that bounds for the system uncertainty are known
a priori. This prior information can be used to determine
the hyperparameters and to calculate the initial controller.
Second, for robotics applications it is typical to calculate
the initial hyperparameters based on experimental data ob-
tained from either an expert controlling the system or from
autonomous operation where the controller is allowed to fail.
As for all system identification methods, the system needs
to be excited sufficiently, so that the hyperparameters reflect
the true uncertainty in the system. Whichever method is cho-
sen, in the long term additional experimental data becomes
available and can be used for controller improvements.

The proposed approach learns a linear model around a
desired operating point. The controller only stabilizes the
system in the vicinity of the operating point. For global
stability, one would have to turn to nonlinear robust control.
However, since we use a nonlinear method for the model
update the approach presented in this paper is extendable to
robust tracking of nonlinear systems or gain scheduling.

Lastly, if the functional form of g(x,u) in (1) is known,
other methods that take this additional information into
account, such as (extended) Kalman Filters, may be better
suited for the system identification step. However, if g(x,u)
is unknown and nonlinear, the proposed method has an
advantage: the hyperparameters define a region around the
operating point in which the system behaves linearly and the
GPs only learn from data points within this linear domain.
Linear methods, such as the Kalman filter, would try to fit a

(x, y, z)

eIx

eIy

eIz

eBx

eByeBzωx
ωy

ωz

Fig. 2. Coordinate frames and variable definitions for the quadrotor.

linear model to the entire state space, which would degrade
the accuracy of the estimated model.

VII. QUADROTOR EXPERIMENTS

In this section, we demonstrate our approach on a commer-
cial quadrotor, the AR.Drone 2.0 from Parrot. The quadrotor
is well suited as a test platform for our algorithm. Its dynam-
ics are highly nonlinear and include aerodynamic effects that
are difficult to model. Moreover, the AR.Drone comes with
an unknown on-board controller. Both effects are learned and
compensated for by our robust learning controller. A video
of the results can be found at: http://tiny.cc/ecc15 video.

The quadrotor dynamics are described by 12 states (see
Fig. 2): positions in the global frame I , (x, y, z); veloc-
ities, (ẋ, ẏ, ż); ZYX-Euler angles, (ψ, θ, φ); and, angular
velocities in the body frame B, (ωx, ωy, ωz). Measurements
of all states are available from an overhead motion capture
camera system. The quadrotor’s on-board controller has four
inputs: desired roll, φdes; desired pitch, θdes; desired angular
velocity around eBz , ωz,des; and, desired z-velocity, żdes.

The goal is to robustly stabilize the position of the
quadrotor. For the sake of simplicity, we focus on the
x, y-position control, while the z-position and the yaw are
kept constant by separately learned robust controllers. To
show the broad applicability of the presented approach,
we make the (unrealistic) assumption that no prior model
information is available; that is, f(xk,uk) = xk. To account
for the dynamics of the on-board controller and delays in
the command transmission, the GP input vector is extended
with two past inputs, ak = (xk,uk,uk−1,uk−2).

The quadrotor is flown manually, and state and input data
is collected at 80 Hz. The hyperparameters are learned using
the first 800 data points. A Gaussian Process is trained using
N = 800, 1000, 2000 and 3000 data points following the
procedure in Sec. III. For each of these data sets a robust
H2 controller is obtained, cf. Sec. V. We chose a simple
quadratic cost to balance tracking errors and input magni-
tude: ‖x−xs‖Q′ + ‖u−us‖R′ , where the positive-definite,
diagonal matrices Q′ and R′ correspond to a weighting of
state and input costs. The cost matrices in Sec. V then are

Cz =

[
Q′

1
2

0m×n

]
and Dz =

[
0n×m
R′

1
2

]
. (23)

Calculating the control law from (22) takes ∼ 1s on a
2GHz dual core processor. Updates to the controller can be
done at low frequencies, since any controller obtained from
Thm. 1 locally stabilizes the true system in (1).

The step responses of the different learned controllers are
shown in Fig. 3. Given the cost function above, the tracking

2500

0 2 4 6 8 10

−1

−0.5

0

time [s]

x
 p

o
si

ti
o
n
 [

m
]

0 2 4 6 8 10

−1

−0.5

0

time [s]

y
 p

o
si

ti
o
n
 [

m
]

N=800

N=1000

N=2000

N=3000

desired

N=800

N=1000

N=2000

N=3000

desired

Fig. 3. Quadrotor response to a simultaneous 1m step in the x- and
y-reference position. The performance of the controller increases (that is,
lower tracking error) as the Gaussian process learns the system dynamics
from an increasing number of input-output samples N . After 3000 samples
(corresponding to 37.5 s of flight time) the controller knows the quadrotor
dynamics well and achieves a low tracking error (black, solid line).

error decreases as we learn a more accurate model of the
system dynamics, resulting in a more aggressive controller
with decreasing settling time as N increases. During the first
800 samples the y-direction of the system was excited more
than the x-direction. As a result, the GP is is more certain
about the dynamics in the y-direction, leading to an initial
controller with higher performance in y-direction than in x-
direction. During the learning process, the GP obtains more
information about the x-direction and finally achieves similar
performance in both x- and y-direction, which is expected
for the symmetric quadrotor platform. Overall, the system
remains robustly stable, while its performance increases.

VIII. CONCLUSION

In this paper, a method that combines online learning
with robust control theory has been introduced with the goal
of designing a learning controller that guarantees stability
while gradually improving performance. A Gaussian Process
(GP) is used to learn a nonlinear model of the unknown
dynamics and corresponding uncertainty estimates. Based on
this model, the operating point of the system is updated,
and a linearization of the learned system model about this
point is obtained including uncertainty information. Finally,
a controller that is robust to the learned model uncertainties
is calculated by solving a convex optimization problem. This
controller is updated as more accurate and certain models of
the system become available. Experiments on a quadrotor
vehicle showed that the controller performance improved as
more data became available. Ultimately, the GP framework
has proven to be a powerful tool to combine nonlinear
learning methods with standard robust control theory.

REFERENCES

[1] B. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Courier Dover Publications, 2007.

[2] E. F. Camacho and C. B. Alba, Model predictive control. Springer,
2013.

[3] L. Ljung, System Identification: Theory for the User. Pearson
Education, 1998.

[4] R. Pintelon and J. Schoukens, System identification: a frequency
domain approach. John Wiley & Sons, 2012.

[5] S. Schaal and C. G. Atkeson, “Learning control in robotics,” IEEE
Robotics & Automation Magazine, vol. 17, no. 2, pp. 20–29, 2010.

[6] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems, vol. 26, no. 3, pp. 96–114,
2006.

[7] K. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Transactions on
Neural Networks, vol. 1, no. 1, pp. 4–27, 1990.

[8] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine
learning. Cambridge [MA]: MIT Press, 2006.

[9] R. C. Grande, G. Chowdhary, and J. P. How, “Experimental validation
of bayesian nonparametric adaptive control using Gaussian processes,”
Journal of Aerospace Information Systems, vol. 11, no. 9, pp. 565–578,
2014.

[10] M. P. Deisenroth, J. Peters, and C. E. Rasmussen, “Approximate
dynamic programming with Gaussian processes,” in Proc. of the IEEE
American Control Conference (ACC), 2008, pp. 4480–4485.

[11] C. J. Ostafew, A. P. Schoellig, and Timothy D. Barfoot, “Learning-
based nonlinear model predictive control to improve vision-based
mobile robot path-tracking in challenging outdoor environments,” in
Proc. of the IEEE International Conference on Robotics & Automation
(ICRA), 2014, pp. 4029–4036.

[12] R. Murray-Smith and D. Sbarbaro, “Nonlinear adaptive control using
non-parametric Gaussian process prior models,” in Proc. of the IFAC
World Congress on Automatic Control, 2002, pp. 1038–1038.

[13] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall
Upper Saddle River, NJ, 1998, vol. 104.

[14] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design. Wiley New York, 2007, vol. 2.

[15] P. M. J. Van Den Hof and R. J. P. Schrama, “Identification and control
– closed-loop issues,” Automatica, vol. 31, no. 12, pp. 1751–1770,
1995.

[16] S. G. Douma and P. M. J. Van den Hof, “Relations between uncertainty
structures in identification for robust control,” Automatica, vol. 41,
no. 3, pp. 439–457, 2005.

[17] J. Schoukens, T. Dobrowiecki, and R. Pintelon, “Parametric and non-
parametric identification of linear systems in the presence of nonlinear
distortions – a frequency domain approach,” IEEE Transactions on
Automatic Control, vol. 43, no. 2, pp. 176–190, 1998.

[18] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y.
Glorennec, H. Hjalmarsson, and A. Juditsky, “Nonlinear black-box
modeling in system identification: a unified overview,” Automatica,
vol. 31, no. 12, pp. 1691–1724, 1995.

[19] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[20] A. K. Akametalu, S. Kaynama, J. F. Fisac, M. N. Zeilinger, J. H.
Gillula, and C. J. Tomlin, “Reachability-based safe learning with
Gaussian processes,” in Proc. of the IEEE Conference on Decisions
and Control (CDC), 2014.

[21] N. Bedioui, S. Salhi, and M. Ksouri, “H2 performance via static output
feedback for a class of nonlinear systems,” in Proc. of the IEEE
International Conference on Signals, Circuits and Systems (SCS),
2009, pp. 1–6.

[22] F. Berkenkamp and A. P. Schoellig, “Learning-based robust control:
Guaranteeing stability while improving performance,” in Workshop on
Machine Learning in Planning and Control of Robot Motion, Proc.
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2014.

[23] J. Ko and D. Fox, “Learning gp-BayesFilters via gaussian process
latent variable models,” Autonomous Robots, vol. 30, no. 1, pp. 3–23,
2011.

[24] R. D. Turner, M. P. Deisenroth, and C. E. Rasmussen, “State-space
inference and learning with Gaussian processes,” in Proc. of the
International Conference on Artificial Intelligence and Statistics, 2010,
pp. 868–875.

[25] S. P. Boyd, Linear matrix inequalities in system and control theory.
Philadelphia: Society for Industrial and Applied Mathematics (SIAM),
1994, vol. 15.

[26] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained
model predictive control using linear matrix inequalities,” Automatica,
vol. 32, no. 10, pp. 1361–1379, 1996.

[27] F. Berkenkamp and A. P. Schoellig, “Derivation of a linear, robust
H2 controller for systems with parametric uncertainty,” ETH Zürich,
Tech. Rep., 2015, DOI: 10.3929/ethz-a-010405770.

2501

