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Abstract— This work investigates the application of Un-
manned Aerial Vehicle (UAV) technology for measurement of
rock fragmentation without placement of scale objects in the
scene to determine image scale. Commonly practiced image-
based rock fragmentation analysis requires a technician to walk
to a rock pile, place a scale object of known size in the area of
interest, and capture individual 2D images. Our previous work
has used UAV technology for the first time to acquire real-time
rock fragmentation data and has shown comparable quality
of results; however, it still required the (potentially dangerous)
placement of scale objects, and continued to make the assump-
tion that the rock pile surface is planar and that the scale
objects lie on the surface plane. This work improves our UAV-
based approach to enable rock fragmentation measurement
without placement of scale objects and without the assumption
of planarity. This is achieved by first generating a point cloud
of the rock pile from 2D images, taking into account intrinsic
and extrinsic camera parameters, and then taking 2D images
for fragmentation analysis. This work represents an important
step towards automating post-blast rock fragmentation analysis.
In experiments, a rock pile with known size distribution was
photographed by the UAV with and without using scale objects.
For fragmentation analysis without scale objects, a point cloud
of the rock pile was generated and used to compute image
scale. Comparison of the rock size distributions show that
this point-cloud-based method enables producing measurements
with better or comparable accuracy (within 10% of the ground
truth) to the manual method with scale objects.

I. INTRODUCTION

In recent years, Unmanned Aerial Vehicle (UAV) technol-
ogy has been introduced to the minerals industry to conduct
terrain surveying, monitoring and volume calculation tasks.
These tasks are essential for mining operations, but they do
not leverage all of the benefits that UAVs can offer to the
industry. In general, UAVs can be used for the acquisition
of any kind of high-resolution (aerial) data, which may be
beneficial in blast design, mill operations and other mine-
to-mill optimization campaigns. Moreover, compared to tra-
ditional and typically manual measurement techniques, data
acquisition with UAVs can be automated to provide higher
spatial- and temporal-resolution data, which in turn improves
the statistical reliability of measurements. Other benefits of
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Fig. 1. Typical photo captured during manual image-based rock fragmenta-
tion analysis. The scale object (basket ball) is required in order to determine
the size of the rock fragments from single 2D images [1].

UAV-based data collection in the minerals industry include:
no disruption of production, safer for technicians, and being
able to collect data from typically inaccessible and hazardous
areas. While UAVs can be configured to carry stereo cam-
eras and Light Detection and Ranging (LiDAR) systems,
currently commercially available UAVs are configured with
high-resolution monocular cameras.

Production blasting in mining operations acts to reduce the
size of rock blocks so that the rock can be transported from
an in-situ location to downstream mining and comminution
processes. Measuring post-blast rock fragmentation is impor-
tant to many mining operations because rock fragmentation
greatly influences the efficiency of all downstream mining
and comminution processes. Post-blast rock fragmentation
is an important metric for blasting engineers in the opti-
mization of a mining operation. Many methods have been
developed throughout human history for estimating rock size
distribution, including visual observation by an expert, sieve
analysis, and more recently 2D and 3D image analysis [2].

Image analysis techniques for rock fragmentation are
commonly used in modern mining operations because they
enable practical, fast, and relatively accurate measurement
of rock fragmentation [3]. There are many established ap-
proaches for image analysis for measurement of rock size
distribution which use different sensors and approaches for
image capturing, processing and data collection [4]. While
more accurate image analysis techniques are being developed
using LiDAR sensing [5] and Deep Neural Network image
segmentation [6], the most common technique is to use a
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Fig. 2. Aerial vehicle in lab environment conducting aerial fragmentation
analysis with known, red scale objects to determine image scale from single
2D images.

monocular camera and scale objects (see Fig. 1), and to
capture images from fixed ground locations. As identified
in our previous work [7], there are limitations with the
use of fixed monocular cameras and scale objects for rock
fragmentation analysis which include:
• Limited accuracy: the surface of the pile is assumed to

be planar and the rock size distribution, a 3D quantity, is
extracted from the 2D surface (more precisely, images
of it).

• Low temporal and spatial resolution: it is time consum-
ing for technicians to conduct it more frequently.

• Challenging and potentially hazardous operating envi-
ronment: technicians have to work at the base of the
rock pile.

To overcome these limitations and to automate the data
collection process, our work has focused on using UAVs to
conduct aerial rock fragmentation analysis (see Fig. 2).

Previous work has been conducted using UAVs with
monocular cameras for aerial fragmentation analysis in a
controlled lab environment to compare time effort and ac-
curacy with respect to conventional methods [7] and as a
case study in an active quarry [8]. Both of these works
required manual placement of scale objects either physically
or virtually (using orthomosaic software), which increases
the amount of time required to complete the fragmentation
analysis. Also, identified in [9], the location of the scale
object in the image has an impact on the accuracy of
the results, because the rock pile is assumed to be planar,
which is rarely the case for a rock pile. As a result, the
scale objects’ locations may result in better or worse planar
approximations, making manual placement a potential source
of error. Also important to note is that if physical scale
objects have to be placed on a rock pile in an active mining
environment, the technician is put at risk navigating loose
rock and potentially undetonated explosives.

This paper presents a method of computing image scale for
aerial fragmentation analysis using a point cloud generated
from a series of images and camera poses. The latter are

estimated from interoceptive (camera orientation) and global
positioning system (GPS) measurements obtained from the
onboard UAV sensors. Our work is essential for the automa-
tion of aerial fragmentation analysis, because the mining
environment rarely provides ideal conditions for placement
of scale objects and manual picture-taking.

First, we present a point-cloud-based method used for
computing image scale without having to place scale objects
and, most importantly, without assuming the pile is perfectly
planar. Structure-from-motion (SFM) point cloud creation
lies at the core of our proposed methodology. We then
introduce the lab environment used for proof-of-concept
experiments. We compare our results in terms of accuracy
and time effort with the conventional approach (using scale
objects). The point-cloud-based method produced rock size
distributions with errors less than 10% relative to ground
truth for an average of 5.5 minutes of additional time effort
for point cloud generation and image scale computation. In
addition, a statistical analysis of repeated experiments shows
that aerial fragmentation analysis with and without using
scale objects robustly produces the same measurements.
Finally, the paper concludes with a discussion of the ex-
perimental results and how sources of variability introduced
in a field-scale environment may impact accuracy.

II. METHODOLOGY

This section describes a point-cloud-based method used
to calculate image scale. The proposed method uses a
monocular camera attached to a UAV, interoceptive sensors
onboard the UAV to measure UAV and camera orientation,
and global position information (e.g., GPS or an external
motion capture system) to measure camera position. First,
the UAV flies around the area of interest capturing a series
of overlapping images oriented towards the area’s center.
Then, a point cloud is generated through structure-from-
motion (SFM), creating a surface elevation profile in the
frame of position measurement, referred to as the world
frame (Sec. II-A). Next, the UAV captures photos at planned
locations throughout the area for fragmentation analysis. At
each capture location, the position and orientation of the
camera is logged. Next, camera parameters (Sec. II-B), cam-
era position and orientation (Sec. II-C) are used to project
corner points of the image onto the surface elevation profile.
This projection represents the light rays emitted at corner
points as line equations in the world frame (Sec. II-D). These
line equations are then intersected with the surface elevation
profile to find the locations of the image corners (Sec. II-E).
Finally, these projected points are used to calculate image
scale considering the resolution of the image and the distance
between corner points in the world (Sec. II-F).

A. Structure-From-Motion Point Cloud Creation

The first step in this process is creating a point cloud.
For this step, an open-source structure-from-motion (SFM)
software [10]–[12] is used for sparse and dense 3D recon-
struction. The software takes a set of images, detects and
describes scale-invariant feature transform (SIFT) features



Fig. 3. The point cloud created for the rock fragment pile with the structure-
from-motion algorithm.

in them, matches these features between images, conducts
bundle adjustment to create sparse and then dense 3D
reconstruction of the scene, stores these reconstructions as
a point cloud, and finally transforms the point cloud using
global position information for the set of images. The UAV
is used to take overlapping images around the perimeter of
the investigation area. For example, if the area of interest is
a soccer field, the UAV flies around the perimeter of the field
at 2 meters per second capturing photos aimed at the center
of the field. The result of using the SFM software for the
rock fragment pile in Fig. 2 is illustrated in Fig. 3. When
this method is implemented in a large environment, such as a
mine, this task can be performed by another UAV prior to or
in parallel with a UAV conducting analyses that require the
point-cloud-based method for determining image scale. The
point cloud created in this step can also be used for other
analyses than rock fragmentation analysis, such as drill and
blast optimization campaigns [13].

B. Camera Parameter Matrix

The next step towards obtaining image scale for fragmen-
tation analysis is the introduction of the camera intrinsic
parameters. These parameters are required to transform a
point, represented by pixel coordinates, in the image to a
point on the image in the world frame. The camera parameter
matrix defined as (cf. [14]):

K =

[
fx s cx
0 fy cy
0 0 1

]
, (1)

where fx and fy are focal lengths in the x- and y-direction,
respectively, cx and cy are pixel coordinates of the optical
center, and s is the skew between sensor axes. These pa-
rameters are innate characteristics of the camera and sensor,
and should be estimated through a camera calibration. For
the setup in Sec. III, these parameters are estimated using an
open-source camera calibration package [15].

C. Camera Pose

The pose, translation and rotation, of the camera in the
world frame is required as an origin in the derivation of a
ray equation needed to project image points in the world
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Fig. 4. Camera pose above the rock pile in the world frame. The image
outline is computed by projecting rays from the four corners of the image
to intersect with the rock pile surface.

frame and onto the surface elevation profile. The pose of the
camera is defined as:

T =

[
C r
0T 1

]
, (2)

where T is referred to as the (4 × 4) transformation matrix
of the camera with respect to the world frame origin, C is
a (3 × 3) rotation matrix in the special orthogonal group,
SO(3), and r = (xr, yr, zr) is a translation vector. This
transformation matrix is known as the camera’s extrinsic
parameters, and comprises a minimum of six parameters to
describe translation and rotation in the special Euclidean
group, SE(3). For our experiments in Sec. III, the pose
of the camera is estimated from onboard measurement of
the camera orientation and the UAV pose is obtained from
a motion capture system. In field experiments, the UAV
pose will be estimated by fusing odometry and GPS sensor
measurements. Fig. 4 illustrates the camera pose above the
rock pile, represented by a point cloud.

D. Ray Equation

This section derives an equation to represent a ray from
pixel coordinates in the image to the world frame using the
camera parameter matrix (Sec. II-B) and the camera pose
(Sec. II-C). The derived equation is used to represent each
ray projected from the four corners of the image so that the
rays can be intersected with the surface elevation profile.
Fig. 4 illustrates the four rays projected from the image
corners to intersect with the point cloud. A pixel location in
the image, p, is represented by coordinates u and v, where
u and v are integers. This pixel location, p, is represented in
the image using homogeneous coordinates, p̃ = (u′, v′, w′).
The non-homogeneous pixel coordinates are computed from:

u =
u′

w′
, v =

v′

w′
. (3)

To represent the point, p, in the image as p̃, we set w′ = 1
such that that the center of the image frame is the origin and
points are mapped to the plane w′ = 1. The first step to find
an equation to represent a ray from image pixel coordinates
to the world frame, is to determine the direction of the ray in



the image. The direction of the ray in the image, P̃c, from the
homogeneous pixel location, p̃, for a camera with a camera
parameter matrix from (1), K, is calculated using:

p̃c = K−1p̃. (4)

Using p̃c from (4), the ray direction in the image is trans-
formed into the world frame. This transformation assumes
that camera distortion has been removed from the image to
ensure that the ray in the world frame is straight and follows
the same direction as the ray in the image frame. In the
setup described in Sec. III, the camera distortion is removed
using an open-source image processing package [16] with
the camera distortion model parameters estimated during the
camera calibration. The homogeneous ray direction (4 × 1)
in the world frame, p̃m, is computed using the ray direction
in the image, p̃c, and the camera pose from (2), T, according
to:

p̃m = T
[ p̃c

1

]
, (5)

where p̃m = (xm, ym, zm, 1), with xm, ym, zm representing
the slope along each axis in the world frame. Once the ray
direction in the world frame, p̃m, is determined using (5),
the equation for the ray in the world frame emitting from
the pixel location, p, is represented by:

q̃ =
[ r

1

]
+ αp̃m, (6)

where q̃ = (x, y, z, 1) is a homogeneous point on the ray at
the location q = (x, y, z) in the world frame, x, y, and z are
components in the world frame, and α is a scalar since the
pixel location is projected along the ray. For example, if (6)
is used to represent the ray emitted from a point in the image
in the world frame, and assuming that the ground surface lies
on a plane at z = 0 then (6) can be easily rearranged to solve
for α:

α = − zr
zm

. (7)

E. Plane and Line Parameterization

To find the intersection of the ray with the point cloud, the
point cloud is triangulated using the Delaunay triangulation
and each triangle is represented as a plane. The three corners
of each triangle (p0,p1,p2) represent a plane such that a
general point on the plane is represented by:

p0 + (p1 − p0)η + (p2 − p0)µ, (8)

with η, µ ∈ R. Using two points along the corner point ray,
such as the translation vector of the camera pose pa = r and
the point intersecting the plane at z = 0, pb, a simple line
equation is developed:

pa + (pb − pa)t, (9)

with t ∈ R. The line and plane parameters at the point of
intersection can then be solved according to:

[ t
η
µ

]
=

 (xa − xb) (x1 − x0) (x2 − x0)
(ya − yb) (y1 − y0) (y2 − y0)
(za − zb) (z1 − z0) (z2 − z0)

−1  (xa − x0)
(ya − y0)
(za − z0)

 .
(10)

F. Image Scale for Fragmentation Analysis

Once all four corner points of the image are represented
by (6), the scale is calculated. For the specialized fragmen-
tation analysis software used in Sec. III, the scale is applied
at the top and bottom edge of the image. As such, each pair
of corner points along each edge are used to compute the
image scale:

scale =
image width√

(∆x)2 + (∆y)2 + (∆z)2
, (11)

where the image width is the width in pixels, and ∆x,∆y,
and ∆z are the distances between corner points along the x, y
and z world frame axes, respectively. The distance between
the corner points is in the unit of distance measurement used
in the image analysis software. Assumptions made in the
image software for rock fragmentation analysis are described
in Sec. III-D.

G. Algorithm

Algorithm 1 is used to compute scale for each image
captured in the aerial fragmentation analysis. Fig. 4 illustrates
graphically the corner point intersections found for a given
camera pose using this algorithm. Fig. 5 illustrates the scales
computed for the raw photo in Fig. 6 using the developed
point-cloud-based algorithm.

Algorithm 1 Calculate image scale using the point-cloud-
based method.

Store all corner point rays defined by (6) as lines for (9)
for each triangle created to represent the point cloud do

parameterize 3 points as a plane using (8)
for each corner point line do

compute intersection using (10)
if point on ray, (t ≥ 0), and inside triangle ( η, µ ∈
[0, 1] and η + µ ≤ 1) then

store intersection point for use in (11)
end if

end for
end for
if intersection point not found then

assume on plane z = 0
end if
compute image scale using intersections with (11)

III. EXPERIMENTAL SETUP

A lab experiment was designed and set up to demonstrate
the feasibility and benefits of automated aerial rock frag-
mentation analysis. This step was deemed necessary before
conducting any tests in large-scale field experiments because
in the laboratory we have a ground truth rock size distribution



Fig. 5. Delineated photo in automated aerial fragmentation analysis. Scales
computed using the point-cloud-method are shown at the top and bottom
of the image. Scale variation from left to right could also be computed, the
software Split-Desktop can only set top and bottom scales.

and ideal conditions for vehicle flight. Fig. 2 illustrates the
UAV in flight conducting aerial fragmentation analysis in
the lab environment. The hardware choices, lab configuration
and procedure used to conduct image analysis are presented
in the following subsections. More details are available in [7].

A. Rock Fragment Pile

A pile of rock fragments with different sizes, ranging from
coarse gravel (19 millimeters) to fine sand (<4 millimeters),
was built in the lab. Prior to forming the pile, the rock
fragments were put through sieve analysis to determine the
‘true’ rock size distribution as a reference for experimental
results. The results of the sieve analysis are presented for four
discrete screen sizes, which is referred to as the discrete sieve
series in Fig. 9. To use the sieve analysis as a reference, a
rock size distribution curve was fit to the collected data. The
parameters of this distribution are found in [7]. Spherical
scale objects, with a diameter of 60 millimeters, were used
to provide image scale when applying conventional image
analysis, as seen in Fig. 2. These scale objects are ignored
and masked when applying the point-cloud-based method for
image scale computation.

B. Lab Environment

The indoor lab is equipped with a motion capture system
for precise UAV localization and control. The lab has flu-
orescent lighting, providing optimal lighting conditions for
the image analysis. The environment is also free of wind.

C. Unmanned Aerial Vehicle and Software Framework

A commercially available UAV with integrated camera,
the Parrot Bebop 2, was used in our experiments. This UAV
has the ability to capture stabilized high-resolution photos
and videos, which is essential for accurate image analysis.
In this experiment, the UAV broadcasts a video stream with
an image resolution of 1280×720 pixels which is stabilized
onboard with respect to the world frame during flight. The
camera orientation is changed onboard by moving a virtual
window through the field of view of the integrated fish-eye-
lens. The UAV receives camera commands and transmits the

Fig. 6. Raw photo captured in automated aerial fragmentation analysis
with scale object to determine image scale.

camera orientation in tilt and pan with respect to the world
frame.

The open-source Robot Operating System (ROS) [17] was
chosen to act as the central software node of the experimental
setup. In these experiments, ROS uses a predetermined
high-level flight plan and actual position and orientation
measurements from the motion capture system to send low-
level velocity and camera control commands wirelessly to
the UAV. Images are captured from the UAV video stream
and then analyzed in the specialized fragmentation analysis
software. We use a macro to run the analysis automatically.

D. Rock Fragmentation Analysis

For these experiments, Split-Desktop [18], an industry
standard software for image analysis in mining, was used.
The main software parameters, such as the fines factor,
were calibrated using sieve analysis data as a reference. The
software receives an image and delineates particles using
image segmentation, see Fig. 7. A scale object is then traced
graphically to set the image scale assuming that the spherical
scale object lies on the rock pile surface and that the surface
is planar. Optionally, an image scale can be set uniformly or
at the top and bottom edge of the image without graphical
input assuming that the scale changes linearly from top to
bottom. Fig. 6 gives an example of a raw photo imported
into Split-Desktop, and Fig. 7 illustrates the same photo after
image segmentation.

E. Flight Plan

For these experiments, a flight plan was created to capture
photos for a tilt angle of 83 degrees, at a fixed altitude of
0.5 meters above the rock pile base while ensuring no image
overlap. The tilt angle was chosen so that the camera was
directed as far downward as the UAV specification allowed
such that the images are approximately perpendicular to the
rock pile surface. This is following the suggestions made
in the Split-Desktop software. In future work, adjusting
the camera angle according to the pile geometry will be
investigated. Fig. 8 illustrates the flight plan over the rock
pile with planned and actual image capture locations for a
sample trial. Each planned UAV location captures a single



Fig. 7. Delineated photo in automated aerial fragmentation analysis. Scale
object is measured and masked in light blue.

Fig. 8. Planned flight over the rock pile. Camera poses (in red) are included
for a sample trial. Crosses indicate planned image capture locations and the
dotted line represents the flight trajectory.

scale object near the center of the photo. This is a fair
comparison to conditions in the mine environment since
measurement devices are sparsely placed on a rock pile for
rock fragmentation analysis campaigns such that the largest
area possible can be captured.

IV. EXPERIMENTAL RESULTS

The following section presents experimental results of
applying the method described in Sec. II (point-cloud-based
method) in terms of accuracy and time effort compared with
placing scale objects for image scale (scale-object method).
It then presents a statistical analysis of repeated experiments
to illustrate the robustness of aerial fragmentation analysis
in the scale-object and point-cloud method cases.

A. Rock Size Distribution

Using the experimental setup described in Sec. III, ten
trials of automated aerial fragmentation were conducted and
a rock size distribution was generated for the rock pile.
The flight plan and rock pile morphology remained constant
for all ten trials. Nine photos per trial were taken by the
UAV at the planned locations according to the flight plan
described in Sec. III-E to calculate a rock size distribution.

Fig. 6 illustrates one of these photos for a sample trial with
a single scale object near the center of the image. For each
trial, fragmentation analysis was conducted on the same set
of photos using both the scale-object method and the point-
cloud-based method. For each method, the same delineation
net (a parameter in Split-Desktop) was used and masking was
applied to the scale object and pile boundaries. Figures 5 and
7 show an example of a scaled and delineated photo using the
scale-object and the point-cloud-based method, respectively.
The following subsections provide a comparison between
the scale-object and point-cloud-based method in terms of
prediction accuracy and time effort for a sample trial.

1) Prediction Accuracy: To determine prediction accuracy
of each method for comparison, the percent error residuals
for percent passing with respect to the reference sieve
analysis curve were computed for the discrete sieve series.
The method of computing percent error residuals is described
in detail in [7]. The average rock size distribution for ten
repeated trials with residuals for each method is plotted in
Fig. 9. For this plot, the point-cloud-based method is shown
to have comparable accuracy to the scale-object method.
The 2-norm error was calculated over the full curve for
both methods and the point-cloud-based method has a 6%
improvement over the scale-object method. The point-cloud-
based method performs better in the coarse region of the
rock size distribution but slightly over-predicts the amount
of fines. Both methods can be seen to have residuals less
than 10% with rock size distributions remaining within the
accepted maximum error envelope of 30% recommended
by [3] for industry standard 2D image analysis of measuring
rock fragmentation. All of the other trials exhibited similar
trends, as shown by the standard deviation envelopes in Fig. 9
where the point-cloud-based method has a smaller envelope
than the scale-object method. The decrease in standard de-
viation realized by the point-cloud-based method is thought
to be caused by a better estimation of scale throughout the
image rather than assuming that the pile is planar. This is
because actual photo locations varied in the trials, causing
the scale location in the images to change, while the point-
cloud-based method accounted for this change, the scale-
object method did not. These results are very promising since
the point-cloud-based method has comparable accuracy and
lies well within the industry accepted bounds, which makes
it a suitable replacement for the scale-object method during
field experiments.

2) Time Effort: Table I details the amount of time taken
in seconds for the sampling flight and each extra task
required for the point-cloud-based method for each trial.
For the first trial, the total time taken in addition to flight
time and fragmentation analysis in Split-Desktop was 5.7
minutes. Obviously, the point-cloud-based method requires
more time effort than the scale-object method in the lab
environment due to generating the point cloud and since the
rock pile is easily accessible and only covers a small area.
However, in field experiments, the amount of time for scale
object placement is expected to be much longer, while the
amount of time required for the point-cloud-based method



Fig. 9. Automated aerial rock fragmentation analysis results for ten trials using the point-cloud-based and scale-object methods with respect to the sieve
analysis reference curve (ground truth). Discrete points (average value) and standard deviation envelopes represent the combined results for all ten trials.
The Swebrec rock size distribution function [19] has been fit to the discrete points from sieve analysis, scale-object method, and point-cloud-based method
so that a 2-norm error between the two image analysis methods and the ground truth could be calculated. The gray envelope represents the accepted
maximum error envelope of 30% recommended by [3] for industry standard 2D image analysis of measuring rock fragmentation.

is expected to increase marginally. Additionally, most of the
time taken was in the construction of a point cloud, which
can be used in other analyses for the mining operation.

B. Analysis of Variance
The Analysis of Variance (ANOVA) is a statistical model

used to analyze whether there are any statistically significant
differences between the means of independent factors. One-
dimensional ANOVA with replication was set up to analyze
whether repeated aerial fragmentation analysis statistically
produces the same rock size distribution. This analysis was
set up based on other applications of ANOVA for comparing
rock size distributions, more details on the assumptions made
and the background of ANOVA is available in [20]. The rock
size distributions for all ten trials were used to conduct one-
dimensional ANOVA with replication for the point-cloud-
based and scale-object methods, respectively. The trial and
weight percent passing are sources of variability. However,
we are interested in the effect of varying trial because we are
testing whether the aerial fragmentation analysis is robust.

The critical value Fn,m;α of the Fisher-Snedecor distribu-
tion was set as F9,20;0.05 = 2.39, to have a 5% level of
significance. This critical value is used to reject the null
hypothesis that results are the same with varied trials if
the F -test statistic is greater than 2.39. Tables II and III
show the F -test statistic computed for all trials and for the
full sieve series for both point-cloud-based and scale-object
methods, respectively. As can be seen, both F -test statistics
are much less than 2.39, and the F-test statistic for the point-
cloud-based method is less than the scale-object method.
Therefore, the results for all ten trials are statistically the
same with a 5% level of significance for both the point-cloud-
based method and the scale-object method. This indicates
that aerial fragmentation analysis with and without scale
objects is robust and statistically produces the same results
when experiments are replicated.

V. DISCUSSION

Having shown that the point-cloud-based method produces
comparable accuracy to the scale-object method, we will
apply this method to aerial fragmentation analysis in field-
scale experiments. The results have shown that using the
point-cloud-based method reduced variability while provid-
ing a reduction in error. This is thought to be caused by
applying image scale in a more representative manner than
assuming that a uniform scale exists or that the rock pile
is planar. It is important to note that the results are as only
good as the inputs used to reach them. In the laboratory-
scale environment, the motion capture system provides UAV
localization with 2 millimeter accuracy which has aided the
precision of the point-cloud-based method. In an outdoors
environment, when localization must rely on noisier GPS
sensor measurements, we may expect that the point cloud
and point-cloud-based computation of image scale will not
be as accurate and that a decrease in repeatability will be the
result. Nevertheless, the proposed point-cloud-based method
is considered a valuable tool for automating aerial rock
fragmentation analysis with UAV technology.

VI. CONCLUSIONS

This paper proposed a method to calculate image scale
for point-cloud-based aerial fragmentation as an alternative
for scale objects. We showed that it is equally accurate
compared to conventional image scaling suggesting that no
scale objects are needed for aerial fragmentation analysis.
This will make the process faster, safer and more reliable
when applied in the mining environment. Through statistical
analysis of replicated experiments, this paper also shows that
our aerial fragmentation analysis for both the conventional
and point-cloud-based scale computation is robust and pro-
duces results that are statistically the same with a 5% level
of significance. The main benefit of using UAVs for aerial



TABLE I
TRIAL TIMES FOR SCALE-OBJECT AND POINT-CLOUD-BASED METHODS IN SECONDS.

Trial SFM Flight Sampling Flight Computing Matches Sparse Recst. Dense Recst. Scale Comp. Total
1 93 159 121 14 81 30 339
2 93 162 88 12 54 27 274
3 89 160 124 27 64 29 333
4 87 165 129 19 74 33 342
5 85 157 130 16 59 34 323
6 94 151 119 18 80 34 345
7 88 156 124 18 56 32 318
8 86 157 121 14 69 29 319
9 90 158 184 20 49 7 349

10 86 148 191 39 63 30 409
Average 89 157 133 20 65 29 335

TABLE II
RESULTS OF ONE-WAY ANOVA OF REPLICATED EXPERIMENTS FOR

POINT-CLOUD-BASED METHOD.

Source
of
Variation

Degrees
of
Freedom

Sum
of
Squares

Mean
Square

F-test

Trial 9 1.9 0.21 0.003
Residuals 20 1255.3 62.76

TABLE III
RESULTS OF ONE-WAY ANOVA OF REPLICATED EXPERIMENTS FOR

SCALE-OBJECT METHOD.

Source
of
Variation

Degrees
of
Freedom

Sum
of
Squares

Mean
Square

F-test

Trial 9 8.6 0.96 0.016
Residuals 20 1170.0 58.50

fragmentation analysis is that data can be acquired fast and
often over a large area, which improves the overall reliability
of image-based fragmentation analysis and reduces sampling
error. With the proposed method for computing scale using
point cloud information, this work takes a step towards the
full automation of aerial fragmentation analysis.
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