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A B S T R A C T

In mining operations, blast-induced rock fragmentation affects the productivity and efficiency of downstream
operations including digging, hauling, crushing, and grinding. Continuous measurement of rock fragmentation
is essential for optimizing blast design. Current methods of rock fragmentation analysis rely on either physical
screening of blasted rock material or image analysis of the blasted muckpiles; both are time consuming. This
study aims to present and evaluate the measurement of rock fragmentation using deep learning strategies. A
deep neural network (DNN) architecture was used to predict characteristic sizes of rock fragments from a 2D
image of a muckpile. The data set used for training the DNN model is composed of 61,853 labelled images of
blasted rock fragments. An exclusive data set of 1,263 labelled images were used to test the DNN model. The
percent error for coarse characteristic size prediction ranges within ±25% when evaluated using the test set.
Model validation on orthomosaics for two muckpiles shows that the deep learning method achieves a good
accuracy (lower mean percent error) compared to manual image labelling. Validation on screened piles shows
that the DNN model prediction is similar to manual labelling accuracy when compared with sieving analysis.
. Introduction

The main objective of blasting in mines is to break in-situ rock mass
o smaller rock fragments. More specifically, the goal is to achieve

specific fragment size distribution that eases handling, while min-
mizing damage to the final pit wall.1 Fragmentation can affect the
roductivity and efficiency of downstream operations including dig-
ing, crushing, and grinding. To manage downstream effects, blast
esigns can be optimized through monitoring, analysis and modelling.
ptimizing for cost, there are a range of close-to-optimal blast designs,
ut good blast design should adapt to the different rock mass conditions
ncountered at a mine site.2,3

Fragmentation as one of the important blast outcomes has been the
ocus of numerous studies because it plays an important role in creating
ownstream benefits during blasting. Both prediction and measurement
f rock fragmentation have been used as a basis for blast optimization.
o model the effect of rock mass condition and blast design on fragmen-
ation, many empirical models have been developed. Notable fragmen-
ation models include the Kuznetsov,4 Kuz–Ram,5 extended Kuz–Ram,6
CO,7 and 𝑥𝑝-frag8 models. More recently, fragmentation prediction
as been reviewed in detail by Ouchterlony and Sanchidrián.9. The
ocus of fragmentation prediction includes characteristic sizes such
s: 𝑥50 (median, 50% weight passing), 𝑥80, 𝑥20 and 𝑥max (maximum
ize), uniformity factor (𝑛) for the Rosin–Rammler distribution, and
urve-undulation parameter (𝑏) for the Swebrec function. The 𝑥𝑝-frag
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model proposed by Ouchterlony et al.8 emphasizes being distribution-
free and only predicts characteristic sizes (𝑥𝑝) so that the limitations
of being fit to a specific distribution are reduced. Regardless of the
model used, predicted parameters are commonly used to describe rock
fragmentation with respect to fines generation, mid-range sizes, and
oversize fraction. These studies acknowledge that predicted parameters
will conform with trends, not absolute measures. To obtain evidence of
an optimized blast, actual measurement is required.

Numerous techniques have been developed to measure fragmenta-
tion. Common methods include: qualitative visual observation, sieving,
digital image analysis, and equipment monitoring. Visual observation
and equipment monitoring methods provide inaccurate, qualitative and
imprecise results. In the case of sieving, results are accurate but it is
expensive and time-consuming. While digital image analysis methods
have their own limitations, they have emerged as a common technique
to measure fragmentation.10 Many image analysis approaches have
been developed using different sensors and data processing techniques
to estimate the rock size distribution of a captured rock pile sur-
face. These include photography,11 stereo photography,11 and laser
scanning.12 Raina13 suggests that these methods can be grouped to-
gether as digital image analysis methods because they share similar
limitations.

Major treatises have been published by the research community to
describe digital image analysis methods and their limitations, namely
vailable online 25 June 2021
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those by Franklin and Katsabanis14 and Sanchidrián and Singh.15

anchidrián et al.10 suggests that image analysis techniques generally
hare four main sources of error: only sampling a surface to estimate
nternal characteristics, image quality, delineation of fragments, and
stimation of fines. The most persistent limitation is poor/wrong rock
egmentation which can result in disintegration and fusion of rock
ragments.16 Due to this, extensive manual editing is usually required
o correctly delineate fragments in captured rock images, a process that
s time-intensive. As Ramezani et al.17 noted, the main challenge in
ock segmentation is being robust when there are variations in lighting,
mage contrast, and complex rock texture and shape. The studies using
tereo photogrammetry11,18 and laser scanning19 present techniques to

improve automated rock segmentation. While these techniques have
improved rock segmentation, a number of other limitations still remain.
For example, Sanchidrián et al.10 and Thurley19 both find that fines
estimation still remains a major source of error in image analysis. To re-
duce this error when measuring muckpile fragmentation, Ouchterlony
and Sanchidrián9 splices results from digital image analysis (+10 cm)
r in-pit sorting (+2.5 cm) with laboratory sieving results. However,
mplementing sieve sampling or in-pit sorting methods are expensive
nd can disrupt production.

To increase the measurement frequency, area covered, and resolu-
ion of fragmentation measurement for muckpiles, Unmanned Aerial
ystem (UAS) photography has been proposed by a number of
tudies.20–23 Through frequent data collection by UAS methods, the sta-
istical reliability of the fragmentation measurement can be improved,
s more samples are collected to understand population characteristics.
owever, these benefits are significantly hindered because poor/wrong
utomated rock segmentation has to be corrected through extensive
anual editing. Ramezani et al.17 and Schenk et al.24 used deep neural
etworks (DNNs) as a first step in fragment segmentation to improve
utomated delineation. Their methods and results are discussed in more
etail in Section 2. The results from Ramezani et al.17 and Schenk
t al.24 have enabled fast and automated measurement but their strat-
gy requires further investigation to better understand the accuracy
nd limitations of using DNNs for fragmentation measurement. Also,
t should be noted that any limitations presented by data used to train
NNs are transferred to their results. For example, a DNN trained using
D images will only be able to sample the surface of the pile.

This study presents the results of using deep learning strategies for
ock fragmentation analysis. A convolution neural network architecture
as been trained to predict scaled characteristic sizes of blasted rock
ragments directly from a 2D image using an end-to-end deep learning
trategy. The study evaluates the accuracy and performance of the DNN
odel as a tool for automated and fast rock fragmentation analysis.
he outcomes of this evaluation demonstrate ±25% percent error for
oarse size prediction on the test set where 50% of the test set has a
ercent error of ±10%. Validation of the DNN model on sieved piles
hows accurate prediction compared to manual image labelling.

. Fragmentation and deep learning

Ramezani et al.17 proposed using a DNN, a form of an artificial
eural network (ANN), prior to watershed segmentation to improve
utomated delineation. Their network used a pixel classifier that uses
square patch of raw pixels to predict if an image pixel in the patch

entre is an edge, rock, or fines. The network is trained using images
aptured primarily by cameras targeting shovel buckets, which can
imit image resolution of the rock pile.11 The prediction is then refined
sing watershed segmentation to close edges. When tested using 64 im-
ges, Ramezani et al.17 reported that their pixel error was 4.09 ± 1.4%.
t was not clear how many images were included in their training
ata set. Ramezani et al.17 also compared the results of their DNN
echnique with sieving. Only 2 measurements were compared but the
NN automatic segmentation produced results that were within 10%
f the sieving measurements. Their results are promising but require
2

urther investigation to better understand their method’s accuracy and
imitations.

Schenk et al.24 applied Mask R-CNN, developed by He et al.,25

o rock segmentation. Their network used feature extraction over the
hole image, followed by bounding box recognition to predict the
xistence of fragments and their masks to define size and shape. Only
ragment and background classes are predicted by the network. The
etwork was initialized on Mask R-CNN weights trained on the MS
OCO data set26 and fine-tuned using images from a laboratory setup.
total of 4323 laboratory images with a size of 1024 × 1024 were used

to label approximately 1000 mid-size to coarse fragments (greater than
10 mm) over 4 different rock pile configurations. The labelling of only
mid-size to coarse fragments extremely limited the method’s ability
to estimate fines. Their data was augmented for training using 50%
overlap between images, mirroring, rotating, cropping and up/down
scaling. Only 8 laboratory validation results were reported by Schenk
et al.24 for correct prediction of the median size range, 𝑥50, as measured
through sieving. The performance of predicting other fragmentation
parameters, such as 𝑥80 or 𝑛, was not considered. An average absolute
percent error of 59% and 33% for 𝑥50 size prediction was calculated by
the authors of this study using presented data for single-scale and multi-
scale equivalent circle methods, respectively. This range of percent
error is high but expected because they have compared the results of
2D image analysis with sieving measurements. Schenk et al.24 also
presented qualitative results of applying their network to muckpile
images captured by UAS methods in the field. While these qualitative
results indicate the quality of coarse fragment segmentation, they do
not provide the performance of their method when predicting other
fragmentation parameters, such as the median size, 𝑥80, or 𝑛. Their
esults are encouraging but as Schenk et al.24 indicated, more data
cquisition and annotation is required to improve their results.

. Proposed deep learning approach

An early version of the DNN model used a pixel classifier to segment
ocks; however, the results were not satisfactory. This was attributed
o only having a small data set of 1200 sample images available at the
ime it was trained. Fig. 1 shows a comparison of the manually labelled
nd pixel classifier image results. While major regions were identified,
ock edges were poorly defined or absent when the pixel classifier was
sed. To achieve accurate measurement, post-processing and manual
diting would have been required to define rock edges. To improve the
erformance of the DNN model, this study explored an end-to-end deep
earning strategy.

The fragmentation parameters measured using size analysis are
irectly predicted by the DNN model in this study. Size analysis pa-
ameters include characteristic sizes 𝑥20, 𝑥50, 𝑥80, and 𝑥max. These

fragmentation parameters were chosen as important features for the
labelled images in the data set due to their importance in fragmentation
prediction models.10 Using these parameters, it is possible to make
a comparison between the predicted and measured fragmentation. As
shown in Fig. 2, the input to the proposed DNN model is a 2D image and
the output are the four measured characteristic sizes 𝑥20, 𝑥50, 𝑥80, and
𝑥max. The details of the DNN model architecture illustrated in Fig. 2
are described in Section 5. As noted in Section 1, this deep learning
approach will still be limited by the data used to train the proposed
DNN model. For example, the DNN model will only be able to sample
the surface of the pile because the input data is a 2D image.

4. Data set

Deep learning strategies work best when training is based on a large
representative data set. This allows DNNs to generalize to differing
conditions such as lighting, scale, rock type, fragmentation, rock texture
and environment. The data set used for training and testing the DNN
model is composed of 2D images that have been manually analysed and
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Fig. 1. Manually labelled image (left) and pixel classifier output (right) from early version of the DNN model. Rock faces and edges are represented by blue and red, respectively.
As seen in the pixel classifier output (right), rock edges are poorly defined or missing when compared with the manually labelled image (left). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. DNN model architecture illustration. The ResNet50 base model is followed by global average pooling and a dense layer with 128 nodes before the fully connected output
layer.
labelled using Split-Desktop by Split Engineering LLC.,27 a commercial
image analysis software for fragmentation measurement. The images
are labelled to indicate regions of rock, edge, fines, and background.
Background represents areas that do not contain the analysed rock
pile. Fig. 3 presents an example of raw and labelled source image.
The data is composed of image sets of muckpiles in varying lighting,
scale, rock type, fragmentation, and perspective taken in open pit mines
and quarries. Table 1 provides a summary of the image sets currently
used for training and testing the DNN model. As indicated in Table 1,
there are a total of 443 source images in our current image sets. Note
that these image sets had different perspectives: terrestrial and aerial.
Ideally, the training data should have the same perspective and quality
as the final application. The initial application during DNN model
development was to measure fragmentation using data collected from
the aerial perspective. However, this type of data was limited, thus,
ground-based images were used as the main source of training data.
This was found to influence the DNN model when testing performance
using aerial-based images as described in Section 7.1. Once more data
is available, future work should focus on training DNN models using
data collected with the same perspective and quality.

To generate samples with uniform size, patches were extracted
from the labelled images from each image set. The grids in Fig. 3
illustrate the patches extracted from the source image. The developed
deep learning code is able to use any image size; however, once a
neural network is trained at a certain input size, this size is fixed for
that network. A size of 512 × 512 pixels was chosen for this study
because it was found to have enough coverage to identify oversize rock
3

Table 1
Image sets used to create train and test data sets for the DNN model.

Image set name Source images Patches
extracted (No
overlap)

Perspective Analysis

2017 10 60 Aerial Split-Desktop
2018 430 2743 Terrestrial Split-Desktop
2019
Orthomosaics

3 498 Aerial Photo editor

Total 443 3301

fragments and variations in fragmentation within the source images.
With a uniform size of 512 × 512 and without patch overlap, patch
extraction produced 3301 sample images. These sample images contain
a total of 1,348,440 measured fragments.

While this is a large number of images, more samples are required
to produce the best deep learning results. One method of adding
more sample images would be collecting and labelling more source
images; however, this would require significant expense and time.
Another method of adding more sample images is data augmentation.
To augment the data, an overlap and rotation method was used when
extracting patches. With an overlap of 128 pixels, 63,116 sample im-
ages were produced. These sample images contain a total of 23,125,486
measured fragments. Increasing to this sample size, created signifi-
cant improvements when iterating to find the best DNN weights and
resulting performance.
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Fig. 3. Source image of Muckpile 1 (left) with its labelled image (right). Rock edges, fines, and background are represented by blue, red, and cyan, respectively. The white grid
shows 512 × 512 sample images extracted using patch extraction with 0 px overlap. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
Fig. 4. Fragment size, 𝑑, as the equivalent diameter of the fragment’s area, 𝐴. Volume,
𝑉 , is the equivalent spherical volume of 𝐴.

In this study, a fragmentation parameter, such as 𝑥50, is directly
predicted from an input image by the DNN. As described in Section 3,
four characteristic sizes were chosen as features for the DNN model to
measure due to their prominence in fragmentation prediction models.
To achieve this, each sample label image has to be analysed to measure
each parameter. An analysis code was written to measure various
fragmentation parameters from a manually labelled image. The analysis
code first creates a mask for the labelled rock faces using a predefined
colour in the manually labelled image. Then the properties of the rock
regions in the mask are measured to calculate equivalent size, area
and volume. Equivalent size, area and volume are then combined with
measurements of the manually labelled rock edges and fines areas to
perform an area analysis and size analysis based on Cunningham28

and Maerz et al.,29 respectively. The result of these analyses are the
fragmentation parameters listed in Table 2.

This study defines fragment size as the equivalent diameter of the
fragment’s area as illustrated in Fig. 4. Fines are defined as having a
fragment size less than 3 px. This definition of fines is based on image
pixels so that the DNN model does not predict image scale. As such, the
fines definition varies according to image scale, not physical fragment
size. Oversize fragments are defined as having a fragment size greater
than 20% of the image width, or 102 px. This oversize definition was
made so that oversize fragments are greater than 1 m in size when
images are captured with a ground sampling distance (GSD) of 1 cm/px.

Once the fragmentation parameters were measured using the la-
belled images, they were randomly shuffled and split into three subsets.
This splits the data set into 61,853 samples for training, 631 for
validation, and 632 for testing. These subsets were generated prior to
DNN model exploration and were not regenerated during training and
4

testing. In addition to the images used in the validation and testing
data sets, Section 7 presents the result of additional testing in which
an exclusive set of orthomosaics (250 samples) and screening image (8
samples) data were used for testing the accuracy of the model. These
images were not employed during training. Fig. 5 presents histograms
for each fragmentation parameter included in the training and testing
(validation and test) data sets. These histograms show that the training
and testing data sets have similar distributions for each fragmentation
parameter. Note that the units in this study are based on image pixels
because image scale is applied in post-processing. The validation set
was used when exploring training hyperparameters and trying different
architectures to avoid over-fitting to the test set. The results presented
in Section 6 are calculated using only the test set. To improve training,
each fragmentation parameter is scaled from 0 to 1 using the minimum
and maximum value of each parameter within the data set. The scaling
transformation was saved so that DNN predictions could be rescaled
back to the original parameter’s range. All the figures show DNN
outputs after they have been rescaled.

5. Model architecture and training

A convolutional neural network (CNN) is a DNN class that is
commonly applied to analysing images. In this study, a CNN with
ResNet5030 as a base and global average pooling followed by dense
fully connected layers as the top was constructed to predict fragmenta-
tion parameters from an input image. The ResNet50 base architecture is
composed of 50 layers, including 49 convolution layers and one dense
layer. This base architecture also has one max pooling and one global
average pooling layer which do not have trainable weights. Batch
normalization and the rectified linear unit (ReLU) activation function
was applied after every convolution layer. In Table 3, each square
bracket in the first column represents a bottleneck residual block, and
every row in the brackets represents one layer of operation. The inner
structure of a bottleneck residual block is described in He et al.30 As
found by He et al.,30 the use of bottleneck residual blocks leads to
an effective and computationally efficient training process of the base
network.

DNNs are more commonly used in logistic regression to solve clas-
sification problems; however, since the parameters being predicted are
in a continuous, rather than a discrete series, regression is used. To
achieve this in the DNN architecture, the final fully connected layer
uses a linear activation function before the output. The ReLU activation
function is used in the hidden dense layer. This study only presents
the most recent architecture; however, a large number of iterations
through many different architectures was used to reach the results in
Section 6. Early iterations attempted to predict parameters separately
using the same architecture; however, this resulted in sub-optimal
results when considering the total size of the models used. In this study,
one model was used to predict all parameters for fragmentation size
analysis. We propose that size analysis parameter prediction benefits
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Table 2
Parameters measured by the analysis code. Area analysis and size analysis were based on the studies by Cunningham28 and
Maerz et al.,29 respectively. The particle size, 𝑑, follows the definition in Fig. 4.
Area analysis Size analysis

Surface area (not background) Fragment count (𝑑 > 3 px)
Fragment area (𝑑 > 3 px) Granulation histogram
Oversize count (𝑑 > 20% image min [𝑤, ℎ]) Granulation curve (cumulative sum)
Size index (Fragment area / surface area) % Passing sizes (𝑥10, 𝑥20, . . . , 𝑥90, 𝑥99)
Subsize index (100% - size index) Average sphericity
% Optical fines (Edges, fines, 𝑑 < 3 px) Fragment size statistics (min, max, mean, median,

mode, standard deviation)
% Mid-range sizes (3 px < 𝑑 < 20% image min) Ros-Ram distribution (𝑥𝑐 , 𝑛)
% Oversize (𝑑 > 20% image min) Swebrec distribution (𝑥max, 𝑥50, 𝑏)
Fig. 5. Histograms of fragmentation parameters included in the training and testing (validation and test) data sets used to train and test the DNN model. The data sets contain
61,853 training samples and a total of 1263 validation and test samples.
from sharing information between parameters and thus benefits from
multi-task learning applied using one model. The architecture used is
illustrated and summarized in Fig. 2 and Table 3, respectively.

During training, base network weights were initialized to ResNet50
weights pre-trained on ImageNet. This was done to help avoid over-
fitting to the training data set and was found to produce better perfor-
mance than using random weight initialization.31 Top network weights
were initialized to random values. The training set described in Sec-
tion 4 was used to provide input images and their measured outputs.
The network predicted output was compared to the actual output
parameter value and the mean squared error (MSE) was calculated.
The Adam32 minimization algorithm was applied to determine new
values for network weights through backpropagation. Due to the size
of the training set, batches of training data had to be used because
the computer used for training did not have enough GPU memory.
This was implemented using process-based threading so that a queue of
5

batches could be loaded into memory using parallel CPU processes. The
training process was implemented in the Keras Python deep learning
library.33 Table 4 provides the computer configuration and approx-
imate computation time during training. The batch size, number of
epochs (iterations on the training set), training loss (MSE for whole
training set), and validation loss (MSE for validation set) calculated
during training are provided in Table 5 for the DNN model. During
training of the DNN model, training and validation loss for each epoch
were monitored to stop training once model improvement slowed to
avoid over-fitting the model to the training set. See Fig. 6 for the
training and validation loss calculated after each epoch of training. As
can be seen in Fig. 6, when the number of epochs reaches about 60, no
significant improvement in training loss and validation loss is observed.
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Fig. 6. Training and validation data set loss calculated after each epoch of training.
Table 3
DNN model architecture summary.
Layer (Operation) Output shape

Input 1 512 × 512 × 3
Convolution (Conv) 1 (Conv 7 × 7, 64) 256 × 256 × 64
Max Pool 1 (Max pool 3 × 3) 128 × 128 × 64

Block 1_x
⎡

⎢

⎢

⎣

Conv 1 × 1, 64
Conv 3 × 3, 64
Conv 1 × 1, 256

⎤

⎥

⎥

⎦

× 3 128 × 128 × 256

Block 2_x
⎡

⎢

⎢

⎣

Conv 1 × 1, 128
Conv 3 × 3, 128
Conv 1 × 1, 512

⎤

⎥

⎥

⎦

× 4 64 × 64 × 512

Block 3_x
⎡

⎢

⎢

⎣

Conv 1 × 1, 256
Conv 3 × 3, 256
Conv 1 × 1, 1024

⎤

⎥

⎥

⎦

× 6 32 × 32 × 1024

Block 4_x
⎡

⎢

⎢

⎣

Conv 1 × 1, 512
Conv 3 × 3, 512
Conv 1 × 1, 2048

⎤

⎥

⎥

⎦

× 3 16 × 16 × 2048

Global Average Pooling 2 2048
Dense 1 128
Dense 2 5

Total parameters 23,850,629

Table 4
Computer configuration used during model training.

Specification Configuration

Graphics processor (GPU) Nvidia GeForce GTX 2080 Ti
GPU cores 4352
GPU total memory 11 GB
Computer processor (CPU) Intel Core i9-7920X Skylake-X CPU

at 2.9 GHz
CPU cores 12
Memory 64 GB
Computation time per epoch for
training set described in Section 4
and the architecture summarized in
Table 3.

2160 s

6. Test set

The test set described in Section 4 was used to evaluate the perfor-
mance of the trained network. Table 5 presents the testing loss (MSE)
for the DNN model. The percent error statistics are illustrated as box
plots in Fig. 7. As shown in the figure, the percent error for 𝑥 , 𝑥 and
6

50 80
Table 5
Training parameters and results calculated for the DNN model. Human,
training, validation, and test losses are MSEs for the human error,
training, validation, and testing data sets, respectively.
Training Size analysis

Epochs 60
Batch size 8
Human loss 0.008474
Training loss 0.000195
Validation loss 0.000262
Testing loss 0.000224

𝑥max range within ±25%, where 50% of the test set has a percent error
of ±10%. This range of error was considered acceptable because it is
within the reported 30%–40% percent error found for coarse fragments
when using digital image analysis for fragmentation measurement.10

Although, depending on the application, this amount of error is con-
sidered acceptable; however, further improvement may be required if
greater accuracy is needed. As expected, the percent error for 𝑥20 has a
wider range from −70% to 20%. Note that a negative percent error
indicates overestimation whereas positive indicates underestimation.
This behaviour was expected because digital image analysis was found
to produce less accurate results when measuring small fragment sizes.10

As reported by Sanchidrián,10 digital image analysis methods had a
percent error of 80%–90% when measuring small fragments, so the
error found for 𝑥20 is considered acceptable. To improve the DNN
model’s performance on the test set more data could be collected, other
neural network architectures and hyperparameters could be searched,
and regularization techniques could be used during training.

Fig. 8 presents residual plots throughout the range of predicted
values. These plots show that residuals are symmetrically distributed,
clustering toward the middle of the plot, and they are clustered around
low values (±20 px). This was considered acceptable behaviour for the
DNN model since no problematic pattern in residuals was observed.

While tuning the architecture and network training, image collec-
tions for the best and worst predictions were examined. This helped
understand how the network performed for different types of image
conditions and fragmentation. A collection of sample images for the
best and worst fragmentation analysis predictions for the network
trained in Section 5 are presented in Fig. 9 and Fig. 10, respectively.
Fig. 9 illustrates that the best predictions for size analysis are made
for images with well-defined rock boundaries and mid-range to coarse
fragmentation. Fig. 10 shows that predictions are poor for images
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Fig. 7. Percent error box plots for fragmentation parameters predicted from the test set. Orange solid line and green dashed lines are median and mean, respectively. Whiskers
are at the 5% and 95% percentiles. Outliers beyond the whisker range are not plotted.
Fig. 8. Residual plots for each fragmentation parameter predicted. Blue contour plots represent density of predicted points. Black dots are outliers beyond the 5% and 95% residual
percentiles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
containing more background and fine to very fine or oversize fragmen-
tation. These results align with the findings of Sanchidrián et al.10 that
digital image analysis techniques perform well for coarse fragmentation
and poor for fine fragmentation. An interesting finding when inspecting
Fig. 9 and Fig. 10 is that scale objects are found in both collections.
This indicates that the model may have trained to mask scale objects
for various types of fragmentation.
7

7. Model validation

7.1. Comparison with labelled orthomosaics

To further validate the results in Section 6 with additional field data,
two blasted muckpiles were manually labelled and compared with their
predicted fragmentation parameters using the DNN model. Muckpile 1
and Muckpile 2 were the results of production blasts in quarries. An
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Fig. 9. Collection of sample images for the best size analysis predictions.
orthomosaic was generated for each muckpile and manually labelled
using a photo editor. These orthomosaics were not used during neural
network training so that they could be used for model validation.
These muckpiles were chosen because they show a range of different
fragmentation.

Muckpile 1, shown in Fig. 1, had an orthomosaic labelled at a GSD
of 5 cm/px. The orthomosaic was manually delineated by an expert
and novice with 3 years and 3 months of experience with fragmenta-
tion image analysis, respectively. The expert and novice took 11.5 h
and 13.5 h for manual labelling, respectively. To compare the expert
and novice analyses, patch extraction and analysis code were used to
generate 153 non-overlapping image samples at a GSD of 1 cm/px
with their measured fragmentation parameters. The MSE loss between
novice and expert analysis was calculated for size analyses parameters
and is assumed to be the amount of human error present in image
labelling. This human loss was used as a target when iterating through
different models and architectures, assuming that the expert analysis
has minimum error compared to novice analysis. However, further data
labelling will be required to better understand human error since it is
understood that even an expert does not produce perfect delineation.
Table 5 provides the MSE loss between novice and expert analysis for
size analysis parameters (human loss). For size analysis, the trained
models performed better than the calculated human loss using the test
set. Fig. 11 shows fragmentation parameter percent error calculated
between novice and expert analysis (red box plots). For 𝑥20, 𝑥50, 𝑥80,
and 𝑥max the mean percent error is −50.52%, −16.55%, −24.22%,
and −20.65%, respectively. As this illustrates, novice analysis when
8

compared with expert analysis is bias to overprediction of characteristic
sizes. When comparing novice and expert labelling, the novice does
not delineate fine particles whereas fines regions are delineated by the
expert.

The generated image samples were then used as input to the predic-
tive neural network to compute predicted parameters. The DNN took a
total of 5 s to compute predicted parameters for all 153 image samples.
Fig. 11 provides a comparison of model predictions with respect to the
expert analysis using percent error box plots (blue box plots) for each
fragmentation parameter. As Fig. 11 illustrates, DNN model predictions
have an error range less than novice analysis when compared with
expert analysis, except for 𝑥20. For 𝑥20, 𝑥50, 𝑥80, and 𝑥max the mean
percent error is −144.14%, 2.85%, 5.49%, and 3.40%, respectively. As
this illustrates, the DNN model has a better mean percent error than
the novice analysis, except for 𝑥20. The error ranges for coarse and fine
sizes are considered acceptable because the range is less than novice
analysis and most predictions fall within the ranges reported for image
analysis error by Sanchidrián et al.10. Fig. 11 also shows that the DNN
model when compared with expert analysis is bias to underprediction
of characteristic sizes, except for 𝑥20. We propose that this is caused by
data mismatch between the training data set and the orthomosaic for
Muckpile 1. To reduce this error, more muckpile orthomosaics should
be collected and labelled for inclusion during neural network training.
When collecting this data, GSD should be kept constant or similar to
ensure that the non-dimensional size ranges remain comparable to each
other.

Muckpile 2, shown in Fig. 12, had an orthomosaic labelled at a
GSD of 1.5 cm/px. This orthomosaic was manually labelled for 32.5
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Fig. 10. Collection of sample images for the worst size analysis predictions.
Fig. 11. Percent error box plots for each fragmentation parameter measured for Muckpile 1 by novice analysis and DNN model compared with expert manual labelling. Whiskers
are at the 5% and 95% percentiles. Outliers beyond the whisker range are not plotted. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
h by the expert. This increase in effort was caused by the decrease in
GSD when compared with Muckpile 1. Patch extraction and analysis
code were used to generate 97 non-overlapping image samples with
9

their measured fragmentation parameters at a GSD of 1 cm/px. These
image samples were then used as input to the DNN model to compute
predicted parameters in approximately 3 s. Fig. 13 shows percent error
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Fig. 12. Absolute percent error of 𝑥50 prediction for Muckpile 2 compared with manual labelling (left). Patches coloured blue represent an absolute percent error greater than
20%. All other patches have an absolute percent error less than 20%. Manual labelling image for Muckpile 2 (right). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 13. Percent error box plots for each fragmentation parameter measured for Muckpile 2 by DNN model compared with expert manual labelling.
box plots for each predicted fragmentation parameter when compared
with manual labelling. As the figure illustrates, the percent error for the
characteristic sizes ranges from −40% to 20%, where more than 50%
of the data set has a percent error of −10% to 15%. This range of error
is considered acceptable because it is lower than the ranges reported
for digital image analysis. To understand how the network performed
for different conditions, the orthomosaic was overlain with patches
for each image sample that had an absolute percent error for 𝑥50
greater than 20%. Fig. 12 shows Muckpile 2 overlain with these patches
highlighted in blue. As can be seen in the figure, the network under
performs in image samples where the edge of a large shadow forms
two distinct regions and where boulders and fines regions are contained
within the same sample. These results are expected because digital
image analysis methods also struggle in these types of conditions. To
help make the DNN model more robust to these cases, more data for
these complex conditions should be collected and labelled for training
the neural network.

7.2. Fragmentation size distribution

Granulation curves for rock fragments are presented in Fig. 14 for
Muckpile 1 and Muckpile 2. These curves are commonly used by mine
technical staff to assess blast fragmentation. To create these curves,
a size distribution curve was fit to the characteristic sizes for each
sample image. Using the size distribution, a granulation histogram was
generated for each sample. By summing the bins of the sample image
10
granulation histograms, an overall granulation histogram was compiled
for each muckpile analysis. Then these overall granulation histograms
were used to create the granulation curves shown in Fig. 14. The DNN
model underprediction and novice analysis overprediction errors that
have been described for Muckpile 1 in Section 7.1 are evident when
inspecting these curves. The predicted granulation curve with the DNN
model is closer to expert analysis than results produced by novice
analysis. Even though some image samples have a large range of error,
the DNN model is still able to capture the heterogeneity of fragmen-
tation, visible throughout Muckpile 1. For Muckpile 2, the predicted
granulation curve with the DNN model is even closer to the manually
labelled granulation curve, where much of the size range matches
the manually labelled results. These results show that DNN model
predictions for Muckpile 1 and Muckpile 2 perform relatively well in
comparison with the manual labelling, without requiring significant
time for analysis.

When comparing all granulation curves in Fig. 14 with manual
analyses generated without using patch extraction (not shown), all the
curves generated using patch extraction are shifted towards finer sizes.
This is thought to be caused by patch extraction because it disintegrates
coarse and oversize fragments along image sample borders. This is also
thought to be caused by distribution fitting which has been observed
to cause the original granulation curve for each patch to narrow. To
reduce this error, larger patches could be extracted or fragments that
are located along patch borders can be excluded when generating
data sets. Image scaling could also be implemented to reduce this
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Fig. 14. Granulation curves generated for Muckpile 1 and Muckpile 2.
error for coarse fragments, similar to the zooming technique described
by Santamarina et al.34 and Schenk et al.24 to capture fine fragments.
To use this technique, a merging method needs to be developed to
merge predictions made by the DNN model at different image scales.

7.3. Comparison with sieving

Sieving analysis is commonly used to determine the accuracy of
fragmentation analysis methods. A sieving validation data set was used
to compare sieving analysis with DNN model predictions and manual
image labelling. The sieving validation data set is composed of 8 images
of screened piles created using run-of-mine material in an open pit
mine. These include 1 image capturing a pile with fragment sizes less
than 4’’ (A), 4 images of piles with fragments ranging in size from 4’’
to 8’’ (B-E), and 3 images of piles with sizes greater than 8’’ (F-H).
Fig. 15 shows 3 examples alongside their manual labelling, one for each
fragment size range. These screened piles and their construction have
been described in Bamford.22 Analysis code was used to measure the
fragmentation parameters determined by manual labelling. To deter-
mine the predicted parameters, the raw images were used as input to
the DNN model. Once the fragmentation parameters were predicted,
the GSD for each image was used to scale the parameters from pixels
to inches for comparison with each image’s sieving analysis.

Table 6 provides the percent of fragments within the sieved size
range for each pile for manual labelling analysis and the DNN model.
The percent within sieve size range varies from 60% to 100% for
manual labelling, whereas the DNN model has a range from 47% to
81%. For some piles, where the fragments within the sieved range are
only 47% to 74%, the amount of error is considered to be relatively
high. However, it is not expected that these digital image analysis
techniques will be in full agreement with sieving analysis because non-
contact methods only measure the surface of the pile. The GSD used to
scale the parameters could also contribute to this difference. Each pile
used a central rock fragment that was also visible in an orthomosaic of
the screening area to measure the GSD. This was required to determine
GSD because scale objects were not available in this data set. Due to the
difference in perspective of these central fragments and orthomosaic
model reconstruction error, the GSD could produce significant error.
For most piles (B-G) the DNN model has comparable accuracy to
manual labelling. However, for very fine and very coarse examples
(A and H), the DNN model did not perform at the same accuracy of
manual labelling. It is thought that this decrease in performance is
11
Fig. 15. Example source images (left) with their labelled image (right) from screening
data set. (a) Fragment sizes less than 4’’, (b) sizes ranging from 4’’ to 8’’ and (c)
fragments greater than 8’’.

caused by less training examples with these types of fragmentation. To
help make the DNN model more robust to these cases, more data for
these conditions should be collected and labelled for training the neural
network.

8. Conclusion

The results of a deep neural network model for measurement of
blast-induced rock fragmentation was presented in this study. The DNN
model provides reasonable fragmentation measurement compared with
manual labelling in significantly less time. The percent error for coarse
characteristic size prediction ranges within ±25% when evaluated using
the test set. With this quality of results, the DNN model only required a



International Journal of Rock Mechanics and Mining Sciences 145 (2021) 104839T. Bamford et al.
Table 6
Percent within sieved range for each screened pile image for manual labelling and DNN
model.

Pile Pile description Manual labelling DNN model

A Sizes less than 4’’ 100% 47%
B Sizes from 4’’ to 8’’ 68% 78%
C Sizes from 4’’ to 8’’ 74% 65%
D Sizes from 4’’ to 8’’ 73% 70%
E Sizes from 4’’ to 8’’ 60% 65%
F Sizes greater than 8’’ 81% 80%
G Sizes greater than 8’’ 77% 81%
H Sizes greater than 8’’ 88% 68%

fraction of the time for analysis when compared with manual labelling.
For example, for an orthomosaic with 153 image samples the DNN
model only required 5 s for analysis whereas manual labelling took
11.5 h. The best measurements of characteristic size using the test set
were found for images with well-defined rock boundaries and mid-
range to coarse fragmentations. The worst measurements were found
for images containing more background and fine to very fine or oversize
fragmentation. For orthomosaic images, the worst measurements were
found for samples where the edge of a large shadow forms two distinct
regions and where boulders and fines regions are contained within
the same sample. The results presented in this study show that the
current DNN model has surpassed the accuracy of novice analysis with
smaller error range and mean percent error. Even though this study’s
comparison with sieving shows that the DNN model was comparable
with manual labelling accuracy for the majority of screened piles (6/8),
more improvement is still necessary to better the prediction.

To accelerate towards this improvement, the deep learning code has
been structured so that any fragmentation parameter measured by the
analysis code can be used to train a neural network with any specified
architecture. Once a more accurate architecture is developed, the model
can be trained quickly and applied to any fragmentation parameter
that blast engineers use to track blast performance. This could range
from percent optical fines, oversize count, to the full granulation curve.
Comparing these measurements to the blast’s predicted fragmentation
can be used to guide blast design optimization.

The prediction of additional fragmentation parameters and imple-
menting fragment segmentation using DNNs is currently under inves-
tigation. Future work aims to improve the accuracy of the method
for data collected by aerial methods and data collected in varying
conditions. This will be done by collecting and labelling aerial data in
variable lighting and rock mass conditions, such as texture, moisture,
homogeneity/heterogeneity of fragmentation, etc., to create larger data
sets for training. In addition, data sets from alternative perspectives,
such as conveyor belt, primary crusher and shovel camera sources, will
also be used to explore the deep learning approach for fragmentation
measurement. More data labelling will also help to understand how
much human error is present when labelling images and how well the
DNN model is able to generalize.
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