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ABSTRACT
The current practice of collecting rock fragmentation data for image analysis 
is highly manual and provides data with low temporal and spatial resolution. 
Using Unmanned Aerial Vehicles (UAVs) for collecting images of rock 
fragments improves the quality of the image data and automates the data 
collection process. This work presents the results of laboratory-scale rock 
fragment measurements using a UAV. The goal is to highlight the benefits of 
aerial fragmentation analysis in terms of both prediction accuracy and time 
effort. The pile was manually photographed and the results of the manual 
method were compared to the UAV method.

1. Introduction

Measuring post-blast rock fragmentation is important to many mining operations. Production blasting 
in mining operations acts to reduce the size of rock blocks so that the rock can be transported from 
an in situ location to downstream mining and comminution processes. The rock size distribution 
induced by blasting influences the efficiency of all downstream mining and comminution processes 
[1]. It has been shown that rock fragmentation can influence the volumetric and packing properties of 
the rock (e.g. the fill factor and bulk volume) and, consequently, the efficiency of digging and hauling 
equipment [2]. Similarly, there have been a number of studies that demonstrate the direct influence 
of the rock size distribution fed into the crushing and grinding processes on energy consumption, 
throughput rates and productivity of these processes [1,2]. Due to these impacts, the measurement of 
post-blast rock fragmentation is an important metric in the optimisation of a mining operation. It is 
suggested that real-time fragmentation measurement should be implemented to improve blast design 
over time with the goal of producing an optimal rock size distribution for downstream processes [3].

Throughout the history of mining, there have been many methods developed for estimating rock 
size distribution. The common methods are visual observation, sieve analysis and image analysis. 
Visual observation involves inspecting the rock pile and subjectively judging the quality of the blast. 
This subjective method can lead to inaccurate results. Sieve analysis involves taking a sample of the 
rock pile being studied and passing it through a series of different size sieve trays. The rock size distri-
bution is calculated by measuring the mass or volume of the rock material that remains on each tray. 
This method generates more consistent results; however, it is more expensive, time consuming and 
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in certain cases impractical to perform as the sample rock size distribution may not be statistically 
representative of the whole rock pile. Image analysis methods have been developed with the rise of 
computer image processing and analysis tools. Conducting image analysis, involves taking 2D photos, 
stereo images or 3D laser scans of the rock pile and processing these images to determine particle 
sizes [4–6]. Image analysis techniques enable practical, fast, and relatively accurate measurement of 
rock fragmentation. However, the following limitations of image analysis have been identified [4]:

•  Delineation of particles might be limited due to disintegration and fusion of particles.
•  Transformation of surface measurements of particles into volumes may not be representative of 

the particles being sampled.
•  The resolution of the image system is limited compared to that of sieve analysis. Accuracy of the 

fines regions using image analysis can be very low if the photo captured is not of high enough 
resolution.

•  Mesh sizes assigned to certain rock sizes in image analysis may be different than that assigned 
in sieving due to the effect of particle shape.

•  A constant density is generally applied to all particle sizes so that volume distributions in image 
analysis are directly related to mass distributions.

In a study of image analysis accuracy, Sanchidrián et al. [4] found that image analysis methods resulted 
in an error of less than 30% in the coarse region of the rock size distribution. In the same study, an 
error of less than 85–100% was calculated for the fine region which means that image analysis is not 
reliable for fine particles. Regardless of these limitations, image analysis is still the most common 
method used to measure rock fragmentation in mines. The most common image analysis technique 
applied in mines uses 2D fixed cameras located (i) at the base of a rock pile, (ii) on shovels and truck 
buckets, (iii) at crusher stations, or on conveyors in the processing plant to capture photos [7–9]. These 
2D image analysis techniques have the following limitations:

(i)  Fixed single camera located at the base of a muck pile.

•  Technicians must place scaling objects on the rock pile.
•  Photos have to be taken at a distance of less than 20 m from the rock pile. This can interrupt 

production and may place technicians at risk [5].
•  The shape of the muck pile can influence the accuracy of the image analysis.
•  Only a limited data-set can be collected from a fixed location [8].
•  Dust, fog, rain, snow and particulates can obstruct the image.
•  Lighting conditions can drastically impact the results of the image analysis [5,8].

(ii)  Fixed single camera mounted on shovel booms or truck buckets [8].

•  This requires installing a camera with a clear view at a perspective that is perpendicular to the 
shovel bucket, which can be difficult.

•  Equipment generates large amounts of vibration and shock during operation which can influ-
ence the quality of images.

•  Shielding is required to protect the camera from falling debris and direct sun light.
•  Lighting may not be controlled adequately.
•  If truck or shovel is down, no data are collected.
•  Imaging the same material multiple times biases the results.

(iii)  Fixed single camera installed in crusher stations [9].

•  Detailed masking of images is required.
•  Scale object must be visible in image.
•  Difficult to match material with source.
•  Large amount of dust generation obstructs the image.
•  Imaging the same perspective multiple times biases the results.
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To overcome some of these limitations, 3D measurement techniques have been proposed that use 
LIDAR stations or stereo cameras to capture images [5,6,10,11]. Using 3D measurements for rock 
fragmentation analysis eliminates the need for scale objects and reduces the error produced by the 
shape of the muck pile. If measurements are taken with a LIDAR station, then the error produced by 
uneven and sub-optimal lighting conditions can be eliminated [5] as well. While, these techniques 
reduce the limitations imposed by 2D photos, there are still aspects that can be improved. One exam-
ple of this is the significant capture time required to take detailed images with a LIDAR system [12]. 
Another limitation of these 3D imaging techniques is that they are currently limited to capturing 
images from a fixed location since motion blur can significantly smooth out the 3D data, making 
particle delineation difficult [10].

In summary, the process of using cameras or LIDARs for post-blast rock fragmentation is highly 
manual and results in measurements that have low temporal and spatial resolution. Furthermore, 
there is no current work, to the best of our knowledge, which has focused on determining an optimal 
image collection procedure for rock fragmentation analysis. To overcome these limitations and to 
automate the data collection process, this paper presents the use of Unmanned Aerial Vehicle (UAV) 
technology to conduct real-time rock fragmentation analysis.

In recent years, UAV technology has been introduced into the mining environment to conduct 
terrain surveying, monitoring and volume calculations [13–16]. These tasks are essential to the mining 
operation, but they do not leverage all of the benefits that UAVs can offer [15]. UAV technology has 
the potential to provide acquisition of high resolution data which can be beneficial in blast design, mill 
operations, and other mine-to-mill process optimisation campaigns. In addition, UAVs can provide 
data acquisition fast and often, which improves the statistical reliability of measurements.

This paper presents the results of a series of proof-of-concept, laboratory-scale tests to measure 
rock fragmentation using UAVs at the University of Toronto Institute for Aerospace Studies’ (UTIAS) 
indoor robotics lab. The hardware choices, lab configuration and the procedure used to conduct image 
analysis are presented. We also discuss the results of the experiments, the benefits of utilising UAV 
technology for rock fragmentation measurement, and the image analysis strategy that was developed 
to achieve optimal image analysis results.

2. Experiment setup and methods

2.1. Experiment setup

In order to provide optimal conditions for automated UAV flight for proof-of-concept experiments, 
demonstrating the feasibility and benefits of automated aerial rock fragmentation analysis, a laboratory 
experiment was designed and set up. This step was deemed to be necessary before conducting any 
tests in large-scale field experiments. Figure 1 illustrates the components and overall lab configuration 
used for the proposed automated rock fragmentation analysis. Figure 2 is a photo taken of the UAV 
and the lab setup prior to take-off.

2.1.1. Global positioning system
The indoor robotics lab is equipped with a motion capture camera system for precise UAV localisa-
tion and control. This commercially available system uses 10 4-megapixel Vicon MX-F40 cameras 
and reflective markers are attached to each subject to measure position and orientation at a rate of 
200 Hz. For these experiments, the rock pile’s and the UAV’s position and orientation are collected 
and sent to the Robot Operating System (ROS) to control the motion of the UAV relative to the 
pile [17]. Figure 3 shows a screenshot of the Vicon system with the UAV’s and rock pile’s location 
plotted. For outdoor practical applications, the camera-based system can be replaced by stand-
ard (differential) GPS, a simultaneous localisation and mapping (SLAM) solution using on-board 
cameras for localisation [18], or novel alternative localisation methods such as the ones based on 
ultra-wideband [19].
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2.1.2. Rock fragment pile
A pile of rock fragments with different sizes, ranging from coarse gravel to fine sand, was built in the 
lab. Prior to forming the pile, the rock fragments were put through sieve analysis to determine the 
true rock size distribution as a baseline for the experiments. Locally sourced gravel and sand was 
collected for sieve analysis. The results of the sieve analysis are presented in Table 1. Once the sieve 
analysis was completed, the rock fragments were placed on a cart built for use in the indoor robotics 
lab. Careful attention was given to ensuring that no contamination or material loss occurred during 
the sample transportation and storage.

To use this sieve analysis baseline in the statistical analysis of the manual and automated image 
analysis methods, a rock size distribution curve was fit to the collected data. The three-parameter 

Figure 1. Block diagram of the lab configuration with arrows showing the typical information flow.

Figure 2. Photo of the lab configuration prior to take-off.
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Swebrec function [20] was found to be an excellent fit to the data and predicted the coarse region of 
data much more accurately than the Rosin–Rammler function [21]. The Swebrec function is given by:

with

where P(<x) is percent passing, x is the rock fragment size, xmax is the largest fragment size in the 
distribution, x50 is the size at 50% passing and b is a curve-modulation factor. To best fit the curve, we 
find the optimal curve shaping parameters xmax, x50, and b. A plot of the sieve analysis results and the 
Swebrec function fitted to the data are plotted in Figure 4.

2.1.3. Drone specifications
A commercially available UAV with integrated camera, the Parrot Bebop 2, was used in our experi-
ments. Table 2 lists the main specifications of the UAV. This UAV has the ability to capture high-res-
olution photos and videos, which is essential for accurate image analysis. It also has a GPS receiver, 
which allows us to use it for outdoor field experiments in the future. In this experiment, the UAV 
broadcasts a secure Wi-Fi network to receive control commands and transmit the video stream to 
the ROS, see Figure 1.

2.1.4. Lab environment
The indoor robotics lab has fluorescent lighting, which provides optimal lighting conditions for this 
image analysis experiment. The lab environment is free of wind, which provides optimal condi-
tions for UAV flight. Netting has been installed around the perimeter of a space with dimensions of 
10 m × 10 m × 3 m for operator and vehicle safety, see Figure 2. All of these features allow for testing new 
ideas quickly and safely, and is therefore, an ideal lab environment for proof-of-concept experiments.

(1)P(<x) =
1

1 + f (x)

(2)f (x) =
[
ln(xmax∕x)∕ ln(xmax∕x50)

]b
,

Figure 3. Screenshot of the global sensing system with the uav and rock pile labelled.

Table 1. Sieve analysis results.

Mesh size (mm) Weight (kg) % of total % Passing
fines 1.545 0.42 0.00
4.00 30.140 8.12 0.42
9.53 28.535 7.69 8.54
12.70 167.270 45.07 16.22
19.05 143.680 38.71 61.29
total 371.170 100.00
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2.1.5. Rock fragmentation image analysis
For these experiments, Split-Desktop, an industry standard software for image analysis in mining, was 
used [23]. Live images that were captured from the UAV video stream were automatically imported 
into Split-Desktop and rock fragmentation was computed using appropriate macros and automation 
scripts. Once the image analysis was completed, rock size distribution information was exported from 
Split-Desktop to MATLAB for statistical analysis. To determine the size of rock particles, scale objects 
were required to be placed within the image as a reference. The main software parameters, such as the 
fines factor, were calibrated using sieve analysis data. The fines factor, used for each image, was zero 
and the scale object size was set to 60 mm.

2.1.6. Robot Operating System (ROS)
The open-source ROS was chosen to act as the central software node of the experimental setup. ROS 
is a flexible software framework for writing robot software that has been widely adopted [24]. In these 
experiments, ROS uses high-level path plan and actual position and orientation measurements from 
the global positioning system to send low-level velocity and orientation commands wirelessly to the 
UAV. ROS itself receives sensor data from the UAV and broadcasts it to the network for the subsequent 
image analysis, see Figure 1.

2.1.7. MATLAB® Robotics System Toolbox™
The MATLAB Robotics System Toolbox acts as an interface between ROS and Split-Desktop, while 
providing statistical analysis to the operator in real-time. The Robotics System Toolbox was used to 
capture and save broadcasted images, call a macro to run image analysis on Split-Desktop, and import 
the rock size distribution generated by Split-Desktop for statistical analysis.

Table 2. Parrot Bebop 2 specifications [22].

Camera resolution 14 megapixels
video resolution 1920 × 1080 pixels, 30 frames per second
flight time approx. 25 min
operating range depends on Wi-fi controller device, up to 2 km
Battery lithium polymer 2700 mah
flash storage 8 gB
Weight 500 g
networking Wi-fi MIMo dual Band 2.4 & 5 gHz
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Figure 4. rock size distribution of sample rock pile plotted with fitted Swebrec curve.
note: curve fit parameters: xmax = 27.53 mm, x50 = 17.84 mm, b = 2.79.
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2.2. Aerial rock fragmentation analysis with a UAV

To highlight the benefits of aerial fragmentation analysis in terms of both prediction accuracy and 
time effort, the automated UAV image analysis was tested in the lab. In addition, an image analysis 
approach based on a fixed camera – as is typically done in practice – was also tested. This allowed for 
a direct comparison between these two methods.

To ensure that camera lens bias was not added to the samples, the UAV camera was used for both 
methods using the same image resolution. In order for images being captured from the same sam-
ple surface, a typical rock pile configuration was fixed for both experiments. For comparison, each 
method’s steps were timed, starting at setup and ending at the export of a final rock size distribution. 
Once these analyses were conducted in the lab, statistical analysis was done to compare each method’s 
predictive accuracy. This comparison was then used to propose an optimal strategy for image analysis 
of rock fragmentation.

The following subsections describe the procedure that was followed by the operator for the manual 
and automated image analysis method.

Figure 5. (a) uav set up as a fixed camera for manual image analysis. (b) raw and delineated photo captured in manual image analysis. 
(c) uav in flight for automated image analysis. (d) raw and delineated photo captured in automated image analysis.
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2.2.1. Fixed-camera, manual image analysis
When creating this procedure, it was noted that there is no literature that describes an optimal or 
standard procedure to use, while manually capturing images for rock fragmentation image analysis. 
The procedure used in this work was as follows:

(1)  place scale objects and prepare UAV camera in front of rock pile (Figure 5(a));
(2)  take photos of the muck from different positions around the rock pile base looking hori-

zontally with ~50% overlap to simulate the current practice used for capturing images at the 
base of a rock pile (Figure 6);

(3)  return the UAV camera to the workstation;
(4)  transfer images to the workstation and remove images that are of poor quality;
(5)  conduct image analysis using Split-Desktop to obtain rock size distribution (Figure 5(b)).

2.2.2. UAV-automated image analysis
For the automated analysis, the procedure was as follows (cf. Figure 1):

(1)  place scale objects and prepare and initiate automated UAV fragmentation analysis system;
(2)  if systems are ready and conditions are safe to fly, send command to take-off;
(3)  as UAV automatically moves along the predefined path taking two levels of photos with ~50% 

overlap, ensure that UAV operates safely and intervene if problems occur (Figures 5(c) and 6);
(4)  once the UAV returns to the take-off location, analysis is finished, send command to land;
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Figure 6. location and camera direction used to capture images for fixed-camera, manual image analysis (blue) and uav-based, 
automated image analysis (red).
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(5)  on the MATLAB window, save rock size distribution results after filtering out poor quality 
images (Figure 5(d)).

3. Results and discussion

At the time of this paper, multiple trials have been conducted to develop the UAV-based, automated 
rock fragmentation analysis and to compare it with the conventional, manual method. This paper 
presents the results of one representative trial. Benefits of using aerial fragmentation analysis are 
summarised and quantified in Section 3.3. Finally, extensions for measuring rock fragmentation using 
UAVs are proposed in Section 3.4.

3.1. Summary of collected data

A summary of a typical manual and automated fragmentation analysis experiment are given in Table 
3. Eleven photos were taken in the manual, fixed-camera experiment such that an overlap of 50% was 
achieved between adjacent images. Sixteen photos were taken by the automated UAV method to achieve 
the same amount of overlap and to capture a small (closer) and medium (farther) scale measurement 
through holding two different altitudes above the pile (see Figure 6).

Table 3 also includes a list of time entries for each method. These time entries represent the amount 
of time taken for each step in the procedure described in Section 2.2.1 and 2.2.2 for manual and auto-
mated image analysis, respectively. ‘Preparation’ time is the time taken to complete step 1 for manual 
fragmentation analysis and step 1 for automated analysis. Step 2 in the manual analysis and steps 2–4 
in the automated procedure are measured as the ‘operating’ time. ‘Breakdown’ is described in steps 
3–4 for the manual analysis and step 5 for the automated analysis. ‘Analysis and editing’ time is unique 
to the manual, fixed-camera method since the conventional technique requires a technician to pro-
cess the images and analyse results after data are collected (step 5 in Section 2.2.1), where this step is 
fully automated in the UAV-based procedure. Figure 7(a) and (b) provide the rock size distribution 
calculated by the manual, fixed-camera method and the automated, UAV-based method, respectively.

3.2. Comparison of manual and automated method

To directly compare the proposed UAV automated image analysis with that of the conventional 
fixed-camera method, two metrics were considered: time effort and prediction accuracy.

3.2.1. Time effort
The total time effort that was expended for each method is given in Table 3. As can be seen, the UAV 
image analysis method took approximately 20% of the time that the conventional method takes. The 
fixed-camera method requires a lot of time spent processing images prior to gaining results and after 
data are collected. The majority of this time is spent preparing images and editing the delineations 

Table 3. trial information for image analysis methods.

Manual, fixed camera Automated UAV
number of photos taken 11 16
number of photos used in analysis 10 14

Time entries
Preparation 4:13 min 1:35 min
operating 4:19 min 6:04 min
Breakdown 3:46 min 2:23 min
analysis and editing 43:34 min 0:00 min
total time 55:52 min 10:02 min
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of particles to reduce fusion and disintegration error. Counter to this, the automated UAV method 
generates results in real-time during flight. The time difference between methods is expected to be 
even more pronounced in a field experiment where more data are collected, and consequently, more 
processing time is taken by the conventional method. The UAV image analysis method for this experi-
ment has not been optimised yet and with further development will reduce operating time by choosing 
strategic locations to capture statistically significant measurements. For example, we may get optimal 
results by flying the UAV to only two locations and taking two photos at each location with different 
camera angles. This type of improvement contrasts the numerous locations that were chosen in this 
experiment (see Figure 6).

3.2.2. Prediction accuracy
To determine the prediction accuracy of each method for comparison, the true error in percent passing 
and characteristic rock size was determined. The percent error of percent passing (P(<x)) for each 
sieve size is given by:

 

The resulting error distributions for each method are presented in Figure 8, with the error’s standard 
deviation plotted as bars and the average error plotted as a solid black line. For these plots, it is apparent 
that the UAV method has more variation in results. Through interpretation of the images collected, 

(3)Percent True Error =
P(<x)Image Analysis − P(<x)Sieve Analysis

P(<x)Sieve Analysis
× 100%.
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Figure 7. (a) Manual, fixed-camera rock size distribution. (b) automated uav rock size distribution.
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this variation may result from sub-optimal scale placement and the photo’s location and camera angle. 
In turn, this may mean that the location and orientation of pictures taken by a UAV should be further 
optimised. In addition to this, some of the images captured by the UAV contained the rock pile edges 
and floor. In the aerial method, these were treated as large particles and contributed to the variance 
of the UAV method. This is an error introduced by the experiment set-up. With an optimised com-
bination of picture location and orientation and/or minor (possibly automated) editing, this source 
of error can be eliminated.

The percent difference between these two methods is given by:
 

which results in a difference ranging between 1 and 6% over the 2–1905 mm size range. The largest 
percent difference occurs at the mid-range size of 12.70 mm due to the narrow distribution of particle 
sizes in this region (see Figure 9).

Characteristic rock fragment sizes, such as P80, is the rock fragment size for which a percentage of 
the weight (i.e. 80% for P80) is smaller than. We have chosen three standard characteristic rock frag-
ment sizes to compare the image analysis methods: P80, P50 and P20. To compare the error between 
these sizes, the percent logarithmic error and average percent logarithmic error were used. For example, 
the equations for the percent logarithmic error and average percent logarithmic error for P80 are:

 

(4)Percent Difference =
||P(<x)Manual Method − P(<x)Automated Method

||
P(<x)Manual Method

× 100%,

(5)Percent True Logarithmic Error of Frame i =
log(P80Image Analysis) − log(P80Sieve Analysis)

log(P80Sieve Analysis)
× 100%
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Figure 8. (a) true error distribution of the fixed-camera method. (b) true error distribution of the automated uav method.
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and

where n is the number of frames taken since the start of the analysis. To find these values, the charac-
teristic sizes for each photo had to be determined. This was done by fitting a Swebrec function to the 
rock size distribution estimated by the image analysis method and rearranging Equation (1) to solve 
for the characteristic size. Figure 10 gives a series of plots which illustrate the average characteristic 
size error and the characteristic size error by photo frame. Again, the automated UAV image analysis 
method has a larger variation of error. However, the average characteristic size error of the automated 
method is within 2–5% of the conventional method. In some cases, such as for P80, the automated 
method gave a better prediction than the fixed-camera method. It is also interesting that with more 
photos taken in the UAV method, the error reduces, whereas the error for the manual method stays 
at about the same level. Intuitively, this could mean that gathering more images in the automated 
UAV method may reach an error that is less than that of the conventional method. By expanding this 
intuition, it may be possible to determine a minimum number of photos that would be required to 
reach a desired threshold of error. These ideas will be further analysed in the future.

Overall, based on our preliminary analysis, the automated UAV analysis method performed better 
than the conventional method in terms of time effort (five times faster) and, on average, predicted 
the rock size distribution within 17% of the sieving analysis measurement (see Figure 8(b)). The 
largest error occurred in the coarse region of the rock size distribution. This automated method also 
resulted in a size distribution prediction that was within 6% of the manual image analysis method (see  
Figure 9). This is considered to be very accurate for rock fragmentation image analysis, especially since 
the findings of [4] suggest that image analysis relative to sieve analysis can reach 30% error in coarse 
regions and up to or beyond 100% error in the fines region. As a result, the proposed automated, 
UAV-based technique can provide at least comparable accuracy to the manual methods.

The largest errors produced in this experiment were found to be caused by the scale of the exper-
iment since bin edges interfered with rock size measurement producing error in the coarse fraction. 
This effect is illustrated in Figure 11. With an optimised combination of picture location and orientation 
or minor editing of images, this source of error can be eliminated resulting in even higher accuracy 
of the analysis.

3.3. Discussion of benefits

Throughout the development of the automated aerial fragmentation analysis system, a number of ben-
efits have been identified. The main benefit is that the UAV system collects and analyses images rapidly. 
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Figure 9. Percent difference between the manual and uav methods.
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This serves to reduce the cost to the operator and enables on-demand, real-time and high-resolution 
data collection. On top of this, the system provides results that are considerably accurate. For these 
reasons, the UAV system is considered a valuable tool for rock fragmentation real-time monitoring 
strategies.

note:  from top to bottom: error in P80, P50, and P20.

Figure 10. (a)–(c) characteristic size error and average error using the first n frames calculated for the fixed-camera image analysis 
method. (d)–(f ) characteristic size error and average error using the first n frames calculated for the automated uav image analysis 
method.
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Figure 10. (Continued).

Current benefits provided by the UAV system are:

•  Collection of data does not interrupt the production process.
•  UAV is capable of sampling regions of interest that are otherwise inaccessible by a human operator.
•  Results are available in real-time allowing the real-time adjustment of the UAV’s flight path to 

optimise the results of the fragmentation analysis.
•  Real-time results also allow the immediate adjustment and optimisation of blast designs.
•  Surface sampling errors are reduced with high-frequency measurements (e.g. a UAV measure-

ment campaign every eight hours).
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•  Fragmentation analysis resolution can be easily adjusted to target different regions in the rock 
size distribution by flying closer or further away from the rock pile.

•  Obstruction of the image by particulates can be controlled and avoided.
•  Additional data, such as photogrammetry for volume calculations, can be collected simultane-

ously as part of the UAV mission.
•  Sampling bias (resulting from taking the same image multiple times) can be controlled and 

extreme outliers can be filtered out in real-time.
•  The system keeps operator out of harm’s way in an active mining environment. A UAV is expend-

able; the human operator is not.

3.4. Possible future extensions

Possible extensions of the UAV automated image analysis method that will be investigated in future 
works include:

•  Statistics may be used to determine the number of samples required to reach a desired level of 
significance (at 5% significance level), and the UAV mission plan can be adjusted accordingly. 
Preliminary results given in Figure 12 show the required number of images over time using the 
statistical student’s t-test for the characteristic sizes of P80, P50 and P20 [25]. To understand 
what this plot represents, consider that the technician is most interested in the P80 rock size, at 
frame 10 the required number of photos for a statistically significant measurement is 11 and at 
frame 11 the required number of images is 11. Therefore, at frame 11 the UAV mission can be 
stopped. The coarse region needs more samples to be statistically significant, if the technician 

Figure 11. example of bin edges interfering with rock size measurement in flight: (a) before delineation, and (b) after delineation, 
which predicts a rock size of 228 mm on the left side.
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were interested in the P20 or P50, the UAV mission could have been stopped earlier with less 
photos. This method has many limitations but in a practical situation, where sieve analysis is 
not available, it may help determine the number of photos that would be required to obtain a 
representative measure of rock fragmentation.

•  The shape of the muck pile can be accounted for and the camera angle adjusted accordingly using 
a combination of laser rangefinders or sonar sensors.

•  The flight path and camera angles can be further optimised to achieve better performance on 
both measures: time effort and prediction accuracy.

•  Scale objects can be eliminated through the use of laser rangefinders, on-board stereo cameras, 
modern sensing devices such as the Intel® RealSense™ Technology, or UAV teams.

4. Conclusion

This paper presented the results of a series of proof-of-concept, laboratory-scale tests to measure rock 
fragmentation using UAVs. The configuration of an automated UAV system that collects rock frag-
mentation data in real-time has been described in detail. Procedures for collecting data with the UAV 
system have been outlined from the perspective of the technician collecting the data. The automated 
method of collecting rock size distribution information was compared with conventional techniques. 
UAV technology was shown to only take a fraction of the time (~20%) that a conventional method 
takes to measure rock fragmentation within 6% of the conventional method’s accuracy, where the 
conventional method deviates from the true distribution by up to 14%. In addition to providing god 
accuracy results, a number of benefits were identified throughout the study. The main benefit being 
that UAVs can provide data acquisition fast and often, which improves the statistical reliability of 
measurements and reduces sampling error, while not interrupting production processes.

Future work will focus on implementing this system in an active mining environment to gain 
more insight into the system’s prediction accuracy, the value added, and its ability to be incorporated 
into mine-to-mill optimisation. At the time of this paper, the authors are investigating the impact of 
both the UAV’s location and camera angle, and the artificial lighting from the UAV on the prediction 
results. The authors are also investigating the impact of high-frequency measurement during rock pile 
extraction and its effect on sampling bias. These results will be reported on in a future paper.
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