
1 INTRODUCTION 

Measurement of muckpile rock fragmentation is 
important because all downstream mining and com-
minution process efficiencies are greatly influenced 
by fragmentation. Mosher (2011) describes that rock 
fragmentation can influence the volumetric and 
packing properties of rock and, consequently, the ef-
ficiency of digging and hauling equipment. Similar-
ly, other studies have demonstrated the direct influ-
ence of the rock size distribution on comminution 
energy consumption, mill throughput rates and the 
productivity of these processes (Kanchibotla 
et al. 1999, McKee 2013). Blasting engineers also 
use the rock size distribution as a means of quality 
control of blast design and operation. Thus, the con-
tinuous measurement of muckpile rock fragmenta-
tion is crucial for the optimization of a mining op-
eration. Despite this importance, the current practice 
of collecting rock fragmentation data for muckpiles 
can be logistically complex, laborious, and produces 
data that has low temporal and spatial resolution 
(Bamford et al. 2017b).  

Unmanned Aerial Vehicle (UAV) technology can 
increase both temporal and spatial resolution of rock 
fragmentation data without exposing technicians to 
hazardous conditions. The added benefit of imple-
menting UAV systems is their capacity to automate 

the entire measurement process. Bamford, et al. 
(2017b) demonstrated that using UAV technology in 
a laboratory environment to acquire real-time rock 
fragmentation data has produced comparable quality 
results to sieving and manual image analysis with 
significant time savings. This included measuring 
fragmentation in 20% of the time taken to carry out 
conventional image analysis. However, in mining 
environments, there are more measurement uncer-
tainties due to the sensors used and the heterogene-
ous nature of the muckpiles that are measured. For 
example, GPS sensors are less accurate than the mo-
tion capture system used in the lab. If UAV systems 
are to be implemented to automate the measurement 
of muckpile fragmentation in the field, then the qual-
ity of results they produce, and their limits should be 
well understood. The goal of this work is to provide 
an evaluation of the accuracy of UAV systems for 
fragmentation data acquisition using photographic 
methods. Moreover, this work aims to illustrate the 
impact of UAV flight mission altitude and ground 
sampling resolution on the minimum detectable par-
ticle size using photographic methods.  

During a test campaign, rock piles were con-
structed with sieved rock fragments of different sizes 
and material types at an active mine site. The rock 
piles were then measured by a UAV to conduct 
fragmentation analysis using photographic tech-
niques. Through processing of the collected data, the 
accuracy of each calculation step to measure frag-
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mentation size distribution was computed. This in-
cludes calculating the accuracy of the: 

• 3D model generated by the UAV system; 
• Estimated image scale; and 
• Measured rock size distribution. 

To illustrate the impact of Ground Sampling Res-
olution (GSR), the measured rock size distributions 
for sieved rock piles at two different flight mission 
altitudes are presented and compared with the screen 
sizes used to create them. 

2 FRAGMENTATION MEASUREMENT OF 
MUCKPILES 

Several methods have been developed to estimate 
rock size distribution for muckpiles. These methods 
include visual observation by an expert, sieve analy-
sis, and photo (2D) and 3D image analysis. Visual 
observation involves inspecting the rock pile and 
subjectively judging the quality of the blasted mate-
rial. This subjective method often produces inaccu-
rate and imprecise results. Sieve analysis involves 

passing a sample of the rock pile through a series of 
different sieve size trays. This method generates 
more consistent and accurate results; however, it is 
more expensive, time consuming, and in certain cas-
es, impractical to perform for muckpiles. Using this 
method may also result in bias measurement because 
only a sample of a muckpile can be sieved. 

Image analysis techniques for measuring rock 
fragmentation are commonly used in modern mining 
operations because they enable practical, fast, and 
relatively accurate measurements (Sanchidrián et al. 
2009). Different sensors and approaches can be used 
for image collection and processing. The most 
common technique is to capture photos of a muck-
pile from fixed ground locations, using a monocular 
camera and physical scale objects to estimate the 
scale. This method typically involves a technician 
walking to the location of a muckpile, placing scale 
objects in the area of interest, and capturing individ-
ual photos. Among the limitations of this technique, 
discussed by Sanchidrián et al. (2009), the imaging 
system resolution and image segmentation are of 
high importance, as both can lead to inaccurate rock 

  

(a) UAV collecting data during a flight mission. 

Figure 1: a) Photo taken during data collection using a UAV system and b) setup for screening rock piles at McEwen Mining’s El 

Gallo mine. 

 
Table 1: UAV specifications provided by DJI (2018a). 

Parameter  Specification 

Dimensions  1668 mm × 1518 mm × 727 mm 

Weight with batteries (no camera)  9.5 kg 

Max Takeoff Weight  15.5 kg 

Hovering Accuracy  Vertical: ±0.5 m, Horizontal: ±1.5 m 

Hovering Time with batteries (no camera) 32 min 

 
Table 2: Camera specifications provided by DJI (2018b). 

Parameter  Specification 

Dimensions  120 mm × 135 mm × 140 mm 

Weight  530 g 

Resolution  4608 × 3456 

Angle of View  72∘ 

Gimbal Accuracy ±0.02∘ 

  

(b) Sieving rock pile material. 

 



size measurement. The system resolution is limited 
by the sensor hardware used, whereas accurate au-
tomated segmentation of rock fragments is still con-
sidered a challenging task. Most recently, Ramezani 
et al. (2017) proposed promising results using Deep 
Neural Networks as a potential first step to improve 
automated rock segmentation accuracy.  

Application of 3D imaging and analysis methods 
has eliminated the need for placement of scale ob-
jects and has reduced the error that can be created by 
the uneven shape of the rock pile surface. In the 
work by Onederra et al. (2015), a LiDAR scanner 
was used to measure fragmentation of a muckpile in 
an open pit mine. This method improved automated 
rock segmentation and enabled measurement in poor 
lighting conditions in underground mines, as shown 
in Campbell & Thurley (2017). Stereo imaging can 
also help improve automated rock segmentation as 
shown in Noy (2012) where the sensor is mounted 
on a shovel to collect fragmentation data. While the 
3D techniques improve image analysis methods, 
there are still some limiting aspects. One example of 
this is the significant amount of time that is required 
to capture detailed scans with LiDAR technology. 
Another drawback of the current 3D imaging tech-
niques is that they have been limited to capturing 
images from fixed locations because motion blur can 
significantly distort the 3D data, making delineation 
difficult as mentioned in Campbell & Thurley 
(2017). 

In recent years, UAV technology has advanced 
rapidly. The technology is routinely used in many 
mining operations for aerial surveying and volume 
calculation. An example of using UAVs to measure 
fragmentation of muckpiles in a quarry using photo-
graphic methods is given by Tamir et al. (2017). 
However, in this study, no evaluation of the accura-

cy of the collected data and estimated results was 
provided. 

3 EQUIPMENT AND METHODOLOGY 

In this study, to collect fragmentation data, a test 
campaign was conducted at McEwen Mining’s El 
Gallo gold mine located in Sinaloa State, Mexico. 
This campaign was carried out during December 
2017. The following sections provide details of the 
equipment used and the data collection methodology 
of the campaign. 

3.1 UAV System 

A commercially available UAV and gimbal cam-
era combination, the DJI Matrice 600 Pro UAV and 
DJI Zenmuse X5 camera, was used during the test 
campaign. Figure 1a shows the UAV system captur-
ing photos during a flight mission. The UAV was se-
lected because of its high payload capacity. It could 
also be used to carry a LiDAR system. During the 
test campaign a LiDAR system was also used to col-
lect fragmentation data. Results of processing the 
data collected with the LiDAR system will be pre-
sented in future work. Table 1 lists the main specifi-
cations of the UAV. The camera was selected be-
cause of its high resolution. It was easily integrated 
with the selected UAV and its gimbal provides phys-
ical photo stabilization. Table 2 lists the main speci-
fications of the gimbal camera system. In these tests, 
flight missions were designed and then the UAV 
was autonomously flown to capture photographs of 
muckpiles for analysis. The flight missions used are 
described in Section 3.3. During the test campaign, 
fragmentation measurement was run off-line. In fu-

  

(a) Before ore mixing. Note that the pile between a and b was 

not used to construct pile d. 

  

(b) After ore mixing. 

Figure 2: Orthophotos of screening area before and after ore rock piles are mixed. Piles are outlined and labelled. 



ture test campaigns, an onboard computer will be 
used to conduct real-time fragmentation measure-
ment. 

3.2 Screening of Piles 

Rock piles were constructed with sieved rock 
fragments of different sizes for ore and waste mate-
rial types. Two screen sizes were used to sieve rock 
fragments, creating three piles for each material 
type. These square opening screens had 10.16 cm (4 
inches) and 20.32 cm (8 inches) aperture widths. 
Figure 1b shows the sieving process. This method 
produced piles with the following fragment size 
ranges: less than 10.16 cm (pile a in Figure 2a), 
10.16 cm – 20.32 cm (pile b in Figure 2a), and 
greater than 20.32 cm (pile c in Figure 2a). Once 
Flight Mission A (Section 3.3) was completed to 
measure the fragmentation of the sieved piles, the 
sieved piles of the ore material were mixed. This 
was done so that the accuracy of fragmentation 
measurement using image analysis could be calcu-
lated using a wide range of fragments sizes. Figure 
2a illustrates the sieved ore piles before mixing. The 
mixing was done by the backhoe shown in Figure 1b 
so that the material was homogenized. Ideally, the 
piles would have been constructed and mixed on a 
concrete surface to avoid contamination, however, 
this was not available at the mine site. Due to this, 
some rock fragments that were not the sieved size 
were visible in the pile area. For example, some rock 
fragments with sizes <10.13 cm were visible in the 
edge of the >20.26 cm sieved pile. These additional 
rock fragments were manually masked after identi-

fying outliers. This process reduced the errors in the 
minimum rock fragment size measured for the piles 
since outliers were removed. The mixed pile’s frag-
mentation size was then measured by the UAV using 
Flight Mission B. Figure 2b shows the mixed pile 
(pile d) that was built from mixing piles a, b and c in 
Figure 2a. 

3.3 Flight Missions 

Flight missions were created and flown using the 
DJI Ground Station Pro application. This application 
allows the user to specify an area for 3D mapping 
and to specify mission parameters such as altitude or 
GSR, overlap, and flight speed. This application de-
termines the mission waypoints for 3D mapping us-
ing the specified camera parameters including focal 
length and resolution. The flight missions flown, 
their parameters, and target piles during the test 
campaign are provided in Table 3. All flights were 
flown with the gimbal pitch angle stabilized at 90∘ 
down. Flight Mission A was flown over the whole 
screening area at a flight altitude of 20 m. This flight 
was used to measure the volume and pre-mixed rock 
size distribution of the ore sieved piles. It was also 
used to measure the rock fragmentation of the waste 
sieved piles. Figure 3 illustrates Flight Mission A 
(light blue) over the area where the sieved piles were 
constructed. Flight Mission B was flown over the 
mixed ore pile at an altitude of 15 m to measure its 
volume and rock fragmentation. Flight Mission C 
was flown over the waste sieved piles at an altitude 
of 15 m to increase GSR for comparison with the 
rock fragmentation measured for these piles in Flight 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Flight Mission A (light blue) and numbered GCPs (orange) plotted on an orthophoto of screening area. 

 
Table 3: Flight missions used to collect data. 

Flight 

Mission Target Piles Cover Area Flight Time 

Number 

of Photos Altitude 

GSR 

(pixels/m) 

Front 

Overlap 

Side 

Overlap 

A  Sieved ore and waste 0.27 ha 4 min 49 sec 97 20 m 200 80% 60% 

B  Mixed ore 0.05 ha 2 min 45 sec 64 15 m 250 90% 60% 

C  Sieved waste 0.05 ha 2 min 26 sec 56 15 m 250 90% 60% 



Mission A. Fourteen (14) Ground Control Points 
(GCPs) were marked on the ground and measured 
throughout the area using a total station so that the 
accuracy of the 3D model generated could be calcu-
lated. The marks on the ground should be visible to 
the camera when the UAV is in flight. Figure 3 
shows the GCPs (orange) plotted throughout the 
sieving area. 

4 DATA PROCESSING AND RESULTS 

4.1 3D Model Generation and Accuracy 

To use image analysis for measuring rock frag-
mentation, an image scale or set of images scales are 
required to calculate particle sizes. A 3D model of 
the pile was generated from the images captured by 
the UAV. Onboard GPS and camera orientation 
measurements from the UAV were used to compute 
image scale without using physical scaling objects 
on the muckpile. The process used to compute image 
scale is described in Section 4.2. To create the 3D 
model from photos captured using the UAV, Open-
DroneMap (2018), an open source software, was 
used. This software takes a set of images and their 
GPS locations and processes them to generate a 3D 
model of the area captured by the image set. This 3D 
model includes geographic data such as point 
clouds, meshes, digital terrain models, digital sur-
face models, and orthophotos.  

Geographic data for each flight mission, de-
scribed in Section 3.3, was generated using Open-
DroneMap. The image scale calculation in this paper 
used the point cloud generated; however, a digital 
terrain model or digital surface model could also be 
used. To georeference geographic data, the GPS data 
logged by the UAV or GCPs and their location in 
the set of images can be used. Placing and maintain-

ing a set of GCPs on an active muckpile is laborious, 
logistically complex, and may not be feasible. 
Therefore, the GPS data recorded by the UAV was 
used in georeferencing the 3D model even though 
GCPs were available in this study. This GPS data is 
recorded in each photo’s file during flight and 
OpenDroneMap automatically reads and uses this 
data for georeferencing.  

To evaluate the accuracy of the 3D models gener-
ated, the agreement between the generated 3D model 
and a reference model is evaluated. Since the image 
scale calculation involves a 3D distance between 
points, distances between GCPs are considered as an 
appropriate model to assess the accuracy of the 3D 
model. This has assumed that the GCPs are correct 
because they have been recorded with a more pre-
cise total station. The GPS data recorded by the 
UAV is subject to a ±1.5 m horizontal and ±0.5 m 
vertical hovering accuracy so it is considered less 
precise than the GCPs. The assessment of accuracy 
is done by calculating the Root Mean Square Error 
(RMSE), a key statistic used to determine remote 
sensing accuracies (Congalton 2016). Equation 1 has 
been adapted to calculate 3D RMSE. 

RMSE = √
∑ (𝑒𝑖)2𝑛

𝑖

𝑛
 (1) 

where  

(𝑒𝑖)
2 = (𝑥𝑟𝑖 − 𝑥𝑚𝑖)

2 + (𝑦𝑟𝑖 − 𝑦𝑚𝑖)
2 + (𝑧𝑟𝑖 − 𝑧𝑚𝑖)

2 

With 𝑥𝑟𝑖, 𝑦𝑟𝑖 and 𝑧𝑟𝑖 are the components of the 
reference model’s distance between GCPs in the x, 
y, and z directions, respectively. The distance com-
ponents of the generated 3D model between GCPs in 
the x, y, and z directions are 𝑥𝑚𝑖, 𝑦𝑚𝑖 and 𝑧𝑚𝑖, re-
spectively. The number of samples is represented by 
𝑛. Table 4 provides an example of the generate 

Table 4: 3D distance error between GCPs for 3D model created using images captured during Flight Mission A. Values in meters. 

 

 

 

 

 

  

Table 5: RMSEs for flight missions. 

Flight Mission Number of Points (n) 3D RMSE 

A  14 0.287 m 

B  11 0.177 m 

C  7 0.114 m 



model’s 3D distance error (𝑒𝑖) created for fourteen 
GCPs using the image set collected during Flight 
Mission A. Table 5 gives the 3D RMSEs calculated 
for each flight mission. It is observed that for flight 
missions with a lower altitude (Flight Mission B and 
C) a lower RMSE was found, indicating higher ac-
curacy. The magnitude of RMSEs relative to the alti-
tude of flight missions is similar to the results re-
ported by Bamford et al. (2017c) during previous 
laboratory-scale tests. Future work will investigate 
whether the accuracy of the 3D model can be im-
proved when GCPs are used for georeferencing in-
stead of GPS data. 

4.2 Image Scale Estimation 

An emerging approach to conduct rock fragmen-

tation measurement is by using an orthophoto creat-
ed using geographic data processing software, such 
as OpenDroneMap,. This method estimated image 
scale by assuming that the GSR of the orthophoto is 
accurate. The work by Tamir et al. (2017) uses an 
orthophoto for fragmentation measurement. An or-
thophoto has a fixed GSR which can be directly used 
as image scale in image analysis software. While 
this is convenient, orthophoto files tend to be large 
and demanding on computing resources and are pro-
duced at low resolution by default. They also include 
large, unpredictably shaped areas that should not be 
measured for fragmentation analysis. An example of 
this is an inclusion of the pit floor and highwall be-
cause the flight mission covered the area outside the 
muckpile. These properties indicate that using or-
thophotos for measuring fragmentation will be diffi-

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Schematic of method used to estimate image scale using 3D model and UAV sensor data, Bamford et al. (2017a). 

 
Table 6: Image scales and their errors estimated for images used to measure fragmentation of sieved and mixed ore piles. 

Flight 

Mission 

Altitude 

Pile Description 

Image Scale along 

top edge of photo 

Error range along 

top edge of photo 

Image Scale along 

bottom edge of photo 

Error range along 

bottom edge of photo 

A 20 m Sizes greater 

than 20.32 cm 

209.79 pixels/m -2.78 to +2.71 209.79 pixels/m -2.78 to +2.71 

A  20 m Sizes from 10.16 

cm to 20.32 cm 

209.51 pixels/m -2.77 to +2.70 210.06 pixels/m -2.78 to +2.71 

A 20 m Sizes less than 

10.16 cm 

210.60 pixels/m -2.80 to +2.73 211.15 pixels/m -2.81 to +2.74 

B 15 m Mixed pile 264.69 pixels/m -2.72 to +2.66 265.39 pixels/m -2.73 to +2.68 

 
Table 7: Image scales estimated and their errors for images used to measure fragmentation of sieved waste piles. 

Flight 

Mission 

Altitude Pile Description  Image Scale along 

top edge of photo 

Error range along 

top edge of photo 

Image Scale along 

bottom edge of photo 

Error range along bot-

tom edge of photo 

A 20 m Sizes greater than 

20.32 cm  

211.69 pixels/m -2.83 to +2.75 212.25 pixels/m -2.84 to +2.77 

A  20 m Sizes from 10.16 

cm to 20.32 cm 

209.51 pixels/m -2.77 to +2.70 210.06 pixels/m -2.78 to +2.71 

A 20 m Sizes less than 

10.16 cm  

211.69 pixels/m -2.83 to +2.75 212.25 pixels/m -2.84 to +2.77 

C  15 m Sizes greater than 

20.32 cm  

260.88 pixels/m -1.69 to +1.67 261.56 pixels/m -1.70 to +1.68 

C  15 m Sizes from 10.16 

cm to 20.32 cm 

262.56 pixels/m -1.72 to +1.69 263.25 pixels/m -1.73 to +1.70 

C  15 m Sizes less than 

10.16 cm  

259.22 pixels/m -1.67 to +1.65 259.90 pixels/m -1.68 to +1.66 



cult to automate. Due to these limitations, we have 
chosen to use individual images to measure frag-
mentation.  

Using image analysis with individual images re-
quires an image scale to be estimated. If there are no 
physical scales in the area captured by the photo, 
then image scale must be estimated. A simple trigo-
nometric model relying on camera field of view and 
flight altitude can be used to estimate image scale. 
However, a 90∘ gimbal pitch angle and flat surface 
must be assumed. Equation 2 provides the image 
scale along the top and bottom edges of a photo cal-
culated using this simple model. 

image scale =
𝑖𝑤

2𝑧 tan(𝑓ℎ/2)
 (2) 

Where 𝑧 is the flight altitude above flat surface, 
𝑓ℎ is the camera’s horizontal field of view, and 𝑖𝑤 is 
the image width in pixels. From our experience, 
when the UAV is used to measure fragmentation for 
a pile against a mine’s highwall, then the pilot will 
typically change the gimbal pitch angle so that a safe 
distance is always maintained from the highwall. 
Changing the gimbal pitch angle invalidates the 
gimbal pitch angle assumption in the simple model, 
making the image scale equation much more com-
plex. To avoid using physical scaling objects and as-
suming the simple model, the 3D surface model, 
onboard sensor data recorded by the UAV, and cam-
era parameters were used together to estimate image 
scales. A schematic of the method used to estimate 
image scale using the 3D model and UAV sensor da-
ta is given in Figure 4. The process used to estimate 
image scale is described in detail in Bamford et al. 
(2017a) and is presented at the end of this paper in 
Appendix A.  

To estimate error in the calculated image scales, 
the 3D RMSE for the 3D models (discussed in Sec-
tion 4.1) was used. Equation 3 calculates the image 
scale error using the 3D RMSE. 

scale error = scale −
𝑖𝑤

𝑖𝑤/(scale) ± RMSE
 (3) 

Where 𝑖𝑤 is the image width in pixels, scale is the 
estimated image scale using the method described in 
Appendix A, and RMSE is the 3D RMSE. Table 6 
and Table 7 present the image scale and image scale 
error for each photo used to measure fragmentation 
for ore and waste piles, respectively. Since the im-
age analysis software only accepts an image scale 
along the top and bottom edge of the photo, the im-
age scale is estimated along the top and bottom edg-
es. There is approximately a 10 pixels/m increase 
between the flight mission GSRs in Table 3 and the 
estimated image scales in Table 6 and Table 7. For 
example, Flight Mission A has a GSR of 200 pix-
els/m and the image scale estimated for the pile with 
sizes greater than 20.32 cm during Flight Mission A 
was 209.79 pixels/m along the top and bottom edge 
of the image. This increase is caused by a difference 
between the planned flight mission altitude and the 
altitude measured above the 3D model. One example 
of this difference is that the altitude for Flight Mis-
sion A is 20 m, and the altitude measured above the 
3D model for the photo captured at the end of the 
mission is 18.51 m. The differences in altitudes are 
expected to be due to (1) the assumption in flight 
mission planning that the surface is flat, and (2) the 
added vertical distance between the camera and the 
GPS sensor. For the UAV system described in Sec-
tion 3.1, the vertical distance is 40 cm. 

4.3 Fragmentation Measurement of Mixed Pile 

To evaluate the accuracy of fragmentation meas-
urement of the ore mixed pile, the rock size distribu-
tions using the image analysis method and sieving 
are compared.  

For image analysis Split-Desktop by Split Engi-
neering LLC. (2018) was used. This software takes a 

Figure 5: Image analysis of waste rock pile with rock fragment sizes between 10.16 cm and 20.32 cm using photo captured during 

Flight Mission C. In 5b, blue regions represent rock fragment boundaries and light blue regions are masked. 

  

(a) Image collected by UAV. 

  

(b) Delineated image. 



photograph and delineates rock fragments using im-
age segmentation. Figure 5 illustrates the delineation 
of rock fragments using image segmentation for one 
of the waste rock piles (10.16 to 20.32 cm). To 
measure the rock sizes, estimated image scales are 
manually input into the software. Manual editing 
was used to improve the rock delineation process. In 
future work, custom image segmentation algorithms 
will be implemented to eliminate the manual editing 
step and to help automate fragmentation measure-
ment. Figure 6 and Table 9 show the measured 
fragmentation produced by image analysis for the 
mixed ore rock pile.  

To determine the sieving size distribution of the 
mixed pile, volumes were calculated for each sieved 
pile. This was done by computing the volume be-
tween a digital surface model and a digital terrain 
model of each pile generated using OpenDroneMap 
at a resolution of 10 pixels per meter. To compute 
the volume between the two models for each pile, 
the outlines of each pile in Figure 3 were used. This 

resulted in the volumes reported in Table 8. The 
volume measured for the mixed pile is 0.41 m3 
greater than for the combination of the sieved piles. 
This difference is thought to be caused by an accu-
mulation of small variations in the digital terrain 
model underneath the piles. Ideally, the bottom sur-
face should have been measured before placement of 
the piles to ensure more accurate volume measure-
ment. Figure 6 plots the sieving size distribution cal-
culated for the mixed ore pile using the volumes in 
Table 8. As can be seen in Figure 6, the residuals be-
tween the image analysis and sieve analysis are 
7.96% and 0.82% for the sieve sizes of 10.16 cm and 
20.64 cm, respectively (less than 10% passing). This 
range is considered acceptable because these residu-
als are expected to be caused by the effect of particle 
shape and particle occlusion, known limitations of 
image analysis. The larger residuals found for the 
lower sieve size (10.16 cm) is caused by a lesser 
proportion of the fines material being visible on the 
surface because it was mixed in from the bottom of 

Table 8: Volumes calculated for sieved and mixed ore rock piles labeled in Figure 2. 

Pile Label Description Volume 

a  Sizes greater than 20.32 cm 0.51 m3 

b  Sizes from 10.16 cm to 20.32 cm 0.64 m3 

c  Sizes less than 10.16 cm 3.45 m3 

a + b + c  Sieved piles 4.60 m3 

d  Mixed pile 5.01 m3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Rock size distributions of mixed ore rock pile measured using sieving and image analysis. Rock size distributions are 

plotted to show variation caused by image scale error. This variation is small and is close to the image analysis distribution. 

 

Table 9: Summary of image analysis measurements shown in Figure 6. 

Pile Description P20 (cm) P50 (cm) P80 (cm)  Pmax (cm) 

Mixed pile  0.49 4.89 15.43  39.30 



the pile. Most of the finer material was at the bottom 
of the pile because the mixed pile (d) was built on 
top of the smaller than 10.16 cm sieved pile (a), as 
shown in Figure 2. To understand this error better, a 
series of mixing the pile and measuring the fragmen-
tation should be conducted to see if the sieved rock 
size distribution will result by averaging or combin-
ing the surface size distributions. This concept could 
also be applied to an operating mine, where continu-
ous measurement of the rock size distribution could 
be done during excavation to obtain a better predic-
tion of fines. This is because most fines end up in 
the bottom of the muckpile due to segregation and 
they are exposed during excavation. 

4.4 Influence of UAV Flight Altitude on the 
Fragmentation Measurement 

To understand the impact of GSR on the mini-
mum detectable fragment size and rock size distribu-
tion accuracy, image analysis was conducted on 
each of the sieved waste piles to measure fragmenta-
tion for two different flight altitudes (20 m and 15 
m). The rock size distributions are then compared to 
each other and the expected size ranges created by 
sieving.  

Each flight altitude produces a different GSR as 

shown in Table 3 and the estimated image scales in 
Table 7. Since we have one closed rock size range 
between 10.16 cm to 20.32 cm, we can calculate a 
GSR that will allow rocks in this range to be reliably 
delineated. In Split-Desktop, particles smaller than 
16 square pixels can not be reliably automatically 
delineated. Assuming the 10.16 cm size rocks do not 
pass through the square screen apertures, this would 
require the condition on GSR given in Equation 4. 

GSR >
16

(10.16)2

pixels2

cm2
=

16

0.0103226

pixels2

m2
 

= 1550
pixels2

m2
= 39

pixels

m
 

(4) 

Therefore, to reliably delineate rocks that are 
10.16 cm and larger, a GSR of 39 pixels per meter or 
greater is required. For both flight altitudes, the GSR 
is greater than this value (250 pixels per meter for 15 
m flight altitude, and 200 pixels per meter for 20 m 
flight altitude). Thus, the image analysis is able to 
reliably delineate the target rock fragment sizes. 
Figure 7 and Table 10 show the waste rock size dis-
tributions produced by image analysis for Flight 
Mission A and C (20 m and 15 m flight altitudes, re-
spectively). Table 10 illustrates that the range of 
measured sizes within the sieving size range was on-
ly 61.1% and 60.9% for the middle size range piles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Rock size distributions of waste rock piles measured using image analysis at resolutions of 200 pixels/m (Flight Mission 

A) and 250 pixels/m (Flight Mission C). 

 

Table 10: Summary of image analysis measurements shown in Figure 7. 

Flight 

Mission 

Altitude Pile Description  P20 (cm) P50 (cm) P80 (cm)  Pmax (cm) Percent within 

sieved range 

A 20 m Sizes greater than 20.32 cm  20.20 39.27 59.79  88.39 79.83% 

A 20 m Sizes from 10.16 cm to 20.32 cm 8.63 12.17 16.44  28.22 61.16% 

A 20 m Sizes less than 10.16 cm  0.01 0.02 2.73  18.87 94.86% 

C 15 m Sizes greater than 20.32 cm  23.25 42.08 63.19  97.94 83.86% 

C 15 m Sizes from 10.16 cm to 20.32 cm 8.68 12.49 16.99  27.21 60.88% 

C 15 m Sizes less than 10.16 cm  0.02 0.33 3.35  14.63 99.21% 



in Flight Mission A and C, respectively. This rela-
tively high error is discussed in Section 5. For the 
other piles, the range of particle sizes that are meas-
ured within the correct sieving sizes, ranges from 
79.8% to 99.2%, which is considered acceptable. 

As can be seen in Figure 7, the coarse size sieved 
piles (>10.16 cm) are not as affected by the flight al-
titude as the pile of fine material (<10.16 cm). This 
difference is caused by the lower GSR at the higher 
flight altitude chosen for Flight Mission A. The low 
GSR, in turn, makes a larger amount of smaller rock 
fragments non-detectable during image analysis. 
This can be seen in Figure 7 for the pile with sizes 
less than 10.16 cm for the two flight altitudes. At 20 
m altitude (Flight Mission A), the minimum detecta-
ble size was 2 cm with 78.2% below this size. At 15 
m altitude (Flight Mission B), the minimum detecta-
ble size was 1.7 cm with 70.1%. This decrease in 
percent passing at a higher GSR indicates that more 
rock fragments are detected and measured at the 15 
m altitude than at the 20 m altitude. 

Since a high GSR is desirable to detect more fine 
material, a low flight altitude will be required. How-
ever, there are a number of factors that will impact 
the selection of flight altitude. This includes the size 
of the area that has to be covered and the time avail-
able since a low altitude will require more scanlines, 
and time, to cover the area. Another consideration 
includes the number of photos that are accepted by 
the geographic data processing software, since a 
lower altitude will produce more photos to process. 
From experience, caution must be taken when flying 
at low altitudes because the risk of collision is much 
higher. This is due to weak GPS signal in the lower 
benches of an open pit mine and also because the 
airspace near a muckpile at lower altitudes is fre-
quently occupied by tall mining equipment, such as 
drilling rigs. 

5 DISCUSSION 

This section discusses some of the sources of error 
during rock size distribution measurement and the 
possible solutions that will be explored in future 
work. Relatively large errors were found when 
measuring the fragmentation of the medium size 
range (10.16 cm to 20.32 cm) waste material (Figure 
7). This includes 30% of material smaller than 10.16 
cm and 10% of material larger than 20.32 cm. While 
the 10% of oversize material is considered accepta-
ble, the 30% error is considered large (Sanchidrián 
et al. 2009). This error is expected to be caused by 
particle over-segmentation, occlusion and shape. For 
example, Figure 8 illustrates particle occlusion for 
the medium range waste pile for Flight Mission C. 
In Figure 8, there are a number of particles that are 
measured as a smaller size than their sieved size be-
cause they are overlapped by other particles. A pos-
sible solution to this limitation is to use a 3D model 
to predict whether a particle is overlapped or not 
(Onederra et al. 2015, Campbell & Thurley 2017). In 
future work, this technique will be applied to LiDAR 
data collected during the test campaign and the 3D 
model generated using the 2D images. Another po-
tential source of error is caused by over-
segmentation. This error could be mitigated with 
more manual editing, however, since the goal of 
UAV measurement of rock fragmentation should be 
to automate data collection and processing, this is 
not feasible. To help improve the accuracy of seg-
mentation, the use of Deep Neural Networks for 
rock segmentation shows promise and will be inves-
tigated in future work. As mentioned in Section 4.3, 
mixing the pile to expose different surface configu-
rations may also decrease the error caused by parti-
cle shape when combining a series of measurements. 

  

Figure 8: Close up of image analysis of waste rock pile with rock fragment sizes between 10.16 cm and 20.32 cm using photo cap-

tured during Flight Mission C. In 8b, blue regions represent rock fragment boundaries, purple regions represent overlapped 

rocks that are measured as less than 10.16 cm, and light blue regions are masked. 

  

(a) Raw image collected by UAV. 

  

(b) Delineated image with overlapped rocks highlight purple. 



6 CONCLUSION 

This paper evaluated the quality of photographic 
data collected by UAVs for measuring fragmenta-
tion of muckpiles. The UAV system used to measure 
rock piles for fragmentation analysis was described 
along with the data collection methods. Using rock 
piles that were constructed with sieved rock frag-
ments of different sizes and material types, the accu-
racy of each step was evaluated. The accuracy of the 
3D model generated by the UAV was evaluated us-
ing the RMSE statistic computed by using the dis-
tance between reference GCPs. This resulted in an 
RMSE ranging from 0.11 m to 0.29 m for the data 
processed in the test campaign. To decrease this er-
ror it was suggested to include GCPs during 3D 
model generation. The computed image scale was 
then evaluated by estimating the error propagated by 
the 3D model. This resulted in very small error, in 
the range of ±2.8 pixels/m. This error is expected to 
decrease with increased 3D model accuracy. The 
measured rock size distribution for a mixed pile con-
structed from sieved piles was comparable with siev-
ing analysis with a maximum error of 7.96%. This 
error is possibly caused by particle shape and occlu-
sion as well as the limitation of image analysis using 
surface measurement to represent volume. 

The paper also investigated the impact of flight 
altitude on the measured rock size distribution. The 
effect of flight altitude was shown to have a larger 
impact on the minimum size that is detectable. This 
effect was shown to largely impact the measurement 
of fine material, with smaller impact on the meas-
urement of coarser material. Flight altitude, and a 
high GSR, has been shown to improve the particle 
segmentation process through decreasing the mini-
mum detectable size. 
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APPENDIX A 

This appendix describes a point-cloud-based 
method used to calculate image scale. The proposed 
method uses a monocular camera attached to a 
UAV, onboard sensors to measure UAV and camera 
orientation, and global position information (e.g., 
GPS or an external motion capture system) to meas-
ure camera position. 

A.1 3D Model Creation 

The first step in this process is creating a 3D 
model, or point cloud. The UAV is used to take 
overlapping images around the area of interest. For 
example, if the area of interest is a soccer field, the 
UAV will fly parallel scanlines up and down the 
field capturing photos at a fixed spacing. 

Next, a geographic data processing software, such 
as OpenDroneMap, is used for 3D model reconstruc-
tion. First, the software takes a set of images, detects 
and describes features in them, and then matches 
these features between images. With these known 
matches, bundle adjustment is conducted to create a 
3D reconstruction of the scene. The 3D model is 
then transformed, or georeferenced, using the GPS 
data captured for each image. The 3D model created 
in this step can be used, or taken from, other analysis 
projects, such as drill and blast campaigns or topo-
graphic surveys. 

A.2 Camera Intrinsic Parameters 

The next step towards obtaining image scale for 
photographic fragmentation analysis is the meas-
urement of camera intrinsic parameters. Camera in-
trinsic parameters are innate characteristics of the 
camera and sensor, and can be measured using cam-
era calibration software. For this paper, an open 
source camera calibration package was used. These 
parameters are required to transform a point, repre-
sented by pixel coordinates, in the image to a point 
on the image in the GPS frame (world frame). Once 
they are estimated, the camera parameters are stored 
in a matrix defined in Equation A1. 

𝐊 = [
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] (A1) 

Where 𝑓𝑥 and 𝑓𝑦 are focal lengths in the sensor’s 
x- and y-direction, respectively.  𝑐𝑥 and 𝑐𝑦 are pixels 
coordinates of the optical center.  𝑠 is the skew be-
tween sensor axes. 

A.3 Camera Extrinsic Parameters 

The position and orientation of the camera in the 
world frame is required as an origin of the ray that 
will project image points onto the 3D model. The 
position and orientation is combined into the trans-
formation matrix of the camera. Equation A2 defines 
the structure of the camera transformation matrix. 

𝐓 = [
𝐂 𝐫

𝟎𝑇 1
] (A2) 

Where 𝐓 is referred to as the (4 × 4) transfor-
mation matrix of the camera with respect to the 
world frame origin. 𝐂 is a (3 × 3) rotation matrix in 
the special orthogonal group, 𝑆𝑂(3), that represents 
the camera’s orientation relative to the world frame. 
𝐫 = (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) is a translation vector that represents 
the camera’s position in the world frame. The trans-
formation matric is also known as the camera extrin-
sic parameters, and comprises a minimum of six pa-
rameters to describe position and orientation in the 
special Euclidean group, 𝑆𝐸(3). For this method, the 
camera position and orientation is estimated from 
onboard sensor measurement of camera orientation 
and UAV position and orientation. 

A.4 Ray Equation 

This section derives an equation to represent a ray 
from pixel coordinates in the image to the world 
frame using the camera parameter matrix defined in 
Equation A1 and the camera transformation matric 
defined in Equation A2. This derived equation is 
used to represent each ray projected from the four 
corners of the image so that the rays can be inter-
sected with the 3D model. A pixel location in the 
image, 𝐩, is represented by coordinates 𝑢 and 𝑣, 
where 𝑢 and 𝑣 are integers. The pixel location, 𝐩, is 
then represented in the image using homogeneous 
coordinates, 𝐩 = (𝑢′, 𝑣′, 𝑤′). The non-homogeneous 
pixel coordinates are computed using Equation A3. 

𝑢 =
𝑢′

𝑤′
, 𝑣 =

𝑣′

𝑤′
 (A3) 

To represent the point, 𝐩, in the image as 𝐩, we 
set 𝑤′ = 1 such that the center of the image frame is 
the origin and points are mapped to the plane 𝑤′ =
1. The first step to find an equation to represent a 
ray from image pixel coordinates to the world frame, 
is to determine the direction of the ray in the image. 
The direction of the ray in the image, 𝐩𝑐, from the 
homogeneous pixel location, 𝐩, for a camera with a 
camera parameter matrix, 𝐊, is calculated using 
Equation A4. 

𝐩𝑐 = 𝐊−1𝐩̃ (A4) 

Using 𝐩𝑐 from Equation A4, the ray direction in 
the image is transformed into the world frame. This 
transformation assumes that camera distortion has 
been removed from the image to ensure that the ray 
in the world frame is straight and follows the same 



direction as the ray in the image frame. The homo-
geneous ray direction (a (4 × 1) vector) in the world 
frame, 𝐩𝑚, is computed using the ray direction in the 
image, 𝐩𝑐, and the camera transformation matrix, 
according to Equation A5. 

𝐩𝑚 = 𝐓 [
𝐩𝑐

1
] (A5) 

Where 𝐩𝑚 = (𝑥𝑚, 𝑦𝑚 , 𝑧𝑚 , 1), with 𝑥𝑚 , 𝑦𝑚 , 𝑧𝑚 
representing the slope along each axis in the world 
frame. Once the ray direction in the world frame, 
𝐩𝑚, is determined using Equation A5, the equation 
for the ray in the world frame emitting from the pix-
el location, 𝐩, is represented by Equation A6. 

𝐪̃ = [
𝐫
1

] + 𝛼𝐩𝑚 (A6) 

Where 𝐪̃ = (𝑥, 𝑦, 𝑧, 1) is a homogenerous point 
on the ray at the position 𝐫 = (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) in the 
world frame, 𝑥, 𝑦 and 𝑧 are components in the world 
frame, and 𝛼 is a scalar, since the pixel location is 
projected along the ray. For example, if Equation A6 
is used to represent the ray emitted from a point in 
the image to a flat surface on a plane at 𝑧 = 0, then 
Equation A6 can be rearranged to solve for 𝛼, as 
shown in Equation A7. 

𝛼 = −
𝑧𝑟

𝑧𝑚
 (A7) 

A.5 Plane and Line Parameterization 

To find the intersection of the ray with the 3D 
model, the model is first triangulated so that each 
triangle is represented as a plane. The three corners 
of each triangle, represented as 𝐩0, 𝐩1 and 𝐩2, are 
used to represent a plane such that a general point on 
the plane is represented by Equation A8. 

𝐩0 + (𝐩1 − 𝐩0)𝜂 + (𝐩2 − 𝐩0)𝜇 (A8) 

With 𝜂, 𝜇 ∈ ℝ. Using two points along the ray 
emitting from a corner pixel, a simple line equation 
is then created. For example, a point at the position 
of the camera, 𝐩𝑎 = 𝐫, and a point intersecting a sur-
face at 𝑧 = 0, 𝐩𝑏 , both are along the ray. Equation 
A9 gives the equation of the line along the ray emit-
ting from a corner pixel. 

𝐩𝑎 + (𝐩𝑏 − 𝐩𝑎)𝑡 (A9) 

With 𝑡 ∈ ℝ. The line and plane parameters at the 
point of their intersection can then be solved accord-
ing to Equation A10. 

[

𝑡
𝜂
𝜇

]

= [

(𝑥𝑎 − 𝑥𝑏) (𝑥1 − 𝑥0) (𝑥2 − 𝑥0)

(𝑦𝑎 − 𝑦𝑏) (𝑦1 − 𝑦0) (𝑦2 − 𝑦0)
(𝑧𝑎 − 𝑧𝑏) (𝑧1 − 𝑧0) (𝑧2 − 𝑧0)

]

−1

[

(𝑥𝑎 − 𝑥0)

(𝑦𝑎 − 𝑦0)
(𝑧𝑎 − 𝑧0)

] 

(A10) 

A.6 Image Scale for Fragmentation Analysis 

To calculate image scale, the intersections of all 
four corner point rays of the image with the 3D 
model should be determined. For an example image 
analysis software used to measure fragmentation, 
Split-Desktop, an image scale is applied at the top 
and bottom edges of the image. As such, each pair of 
corner intersection points along each edge are used 
to compute the image scale for each edge according 
to Equation A11. 

image scale =
image width

√(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2
 (A11) 

Where the image width is the width of the image 
in pixels, and ∆𝑥, ∆𝑦 and ∆𝑧 are the distances be-
tween the corner points along the 𝑥, 𝑦 and 𝑧 world 
frame axes, respectively. The distance between the 
corner points is in the unit of distance measurement 
used in the image analysis software (e.g. meters). 


