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Abstract- Accurate measurement of blast-induced 

rock fragmentation is of great importance for many mining 

operations. The post-blast rock size distribution can 

significantly influence the efficiency of all the downstream 

mining and comminution processes. Image analysis methods 

are one of the most common methods used to measure rock 

fragment size distribution in mines regardless of criticism for 

lack of accuracy to measure fine particles and other perceived 

deficiencies. The current practice of collecting rock 

fragmentation data for image analysis is highly manual and 

provides data with low temporal and spatial resolution. Using 

Unmanned Aerial Vehicles (UAVs) for collecting images of 

rock fragments can not only improve the quality of the image 

data but also automate the data collection process. Ultimately, 

real-time acquisition of high temporal- and spatial-resolution 

data based on UAV technology will provide a broad range of 

opportunities for both improving blast design without 

interrupting the production process and reducing the cost of the 

human operator. 

 

This paper presents the results of a series of laboratory-scale 

rock fragment measurements using a quadrocopter UAV 

equipped with a camera. The goal of this work is to highlight 

the benefits of aerial fragmentation analysis in terms of both 

prediction accuracy and time effort. A pile of rock fragments 

with different fragment sizes was placed in a lab that is 

equipped with a motion capture camera system (i.e., a high-

accuracy indoor GPS-like system) for precise UAV 

localization and control. Such an environment presents optimal 

conditions for UAV flight and thus, is well-suited for 

conducting proof-of-concept experiments before testing them 

in large-scale field experiments. The pile was photographed by 

a camera attached to the UAV, and the particle size distribution 

curves were generated in almost real-time. The pile was also 

manually photographed and the results of the manual method 

were compared to the UAV method. 

 

Keywords: drone, unmanned aerial vehicle, UAV, real-time 

analysis, rock fragmentation analysis, blasting. 

 

1. Introduction 

 

Measuring post-blast rock fragmentation is important to 

many mining operations. Production blasting in mining 

operations acts to reduce the size of rock blocks so that the rock 

can be transported from an in-situ location to downstream 

mining and comminution processes. The rock size distribution 

induced by blasting influences the efficiency of all downstream 

mining and comminution processes [1]. It has been shown that 

rock fragmentation can influence the volumetric and packing 

properties of the rock (e.g., the fill factor and bulk volume) and, 

consequently, the efficiency of digging and hauling 

equipment [2]. Similarly, there have been a number of studies 

that demonstrate the direct influence of the rock size 

distribution fed into the crushing and grinding processes on 

energy consumption, throughput rates and productivity of these 

processes [1,2]. Due to these impacts, the measurement of post-

blast rock fragmentation is an important metric in the 

optimization of a mining operation. It is suggested that real-

time fragmentation measurement should be implemented to 

improve blast design over time with the goal of producing an 

optimal rock size distribution for downstream processes [3]. 

 

Throughout the history of mining, there have been many 

methods developed for estimating rock size distribution. The 

common methods are: visual observation, sieve analysis and 

image analysis. Visual observation involves inspecting the rock 

pile and subjectively judging the quality of the blast. This 

subjective method can lead to inaccurate results. Sieve analysis 

involves taking a sample of the rock pile being studied and 

passing it through a series of different size sieve trays. The rock 

size distribution is calculated by measuring the mass or volume 

of the rock material that remains on each tray. This method 

generates more consistent results; however, it is more 

expensive, time consuming and in certain cases impractical to 

perform as the sample rock size distribution may not be 

statistically representative of the whole rock pile. Image 

analysis methods have been developed with the rise of 

computer image processing and analysis tools. Conducting 

image analysis involves taking 2D photos, stereo images or 3D 

laser scans of the rock pile, and processing these images to 

determine particle sizes [4-6]. Image analysis techniques 

enable practical, fast, and relatively accurate measurement of 

rock fragmentation. However, the following limitations of 

image analysis have been identified [4]: 

 

 Delineation of particles might be limited due to 

disintegration and fusion of particles. 

 Transformation of surface measurements of particles 

into volumes may not be representative of the particles 

being sampled. 
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 The resolution of the image system is limited 

compared to that of sieve analysis. Accuracy of the 

fines regions using image analysis can be very low if 

the photo captured is not of high enough resolution. 

 Mesh sizes assigned to certain rock sizes in image 

analysis may be different than that assigned in sieving 

due to the effect of particle shape. 

 A constant density is generally applied to all particle 

sizes so that volume distributions in image analysis 

are directly related to mass distributions. 

 

In a study of image analysis accuracy, Sanchidrián et al. [4] 

found that image analysis methods resulted in an error of less 

than 30% in the coarse region of the rock size distribution. In 

the same study, an error of less than 85-100% was calculated 

for the fine region which means that image analysis is not 

reliable for fine particles. Regardless of these limitations, 

image analysis is still the most common method used to 

measure rock fragmentation in mines. The most common 

image analysis technique applied in mines uses 2D fixed 

cameras located (i) at the base of a rock pile, (ii) on shovels and 

truck buckets, (iii) at crusher stations, or on conveyors in the 

processing plant to capture photos [7-9]. These 2D image 

analysis techniques have the following limitations: 

 

(i) Fixed single camera located at the base of a muck pile: 

 Technicians must place scaling objects on the rock 

pile. 

 Photos have to be taken at a distance of <8-20m from 

the rock pile. This can interrupt production and may 

place technicians at risk [5]. 

 The shape of the muck pile can influence the accuracy 

of the image analysis. 

 Only a limited dataset can be collected from a fixed 

location [8]. 

 Dust, fog, rain, snow and particulates can obstruct the 

image. 

 Lighting conditions can drastically impact the results 

of the image analysis [5, 8]. 

(ii) Fixed single camera mounted on shovel booms or truck 

buckets [8]: 

 This requires installing a camera with a clear view at 

a perspective that is perpendicular to the shovel 

bucket, which can be difficult. 

 Equipment generates large amounts of vibration and 

shock during operation which can influence the 

quality of images. 

 Shielding is required to protect the camera from 

falling debris and the sun. 

 Lighting may not be controlled adequately. 

 If truck or shovel is down, no data is collected. 

 Imaging the same material multiple times biases the 

results. 

(iii) Fixed single camera installed in crusher stations [9]: 

 Detailed masking of images is required. 

 Scale object must be visible in image. 

 Difficult to match material with source. 

 Large amount of dust generation obstructs the image. 

 Imaging the same perspective multiple times biases 

the results. 

 

To overcome some of these limitations, 3D measurement 

techniques have been proposed that use LIDAR stations or 

stereo cameras to capture images [5, 6, 10, 11]. Using 3D 

measurements for rock fragmentation analysis eliminates the 

need for scale objects and reduces the error produced by the 

shape of the muck pile. If measurements are taken with a 

LIDAR station, then the error produced by uneven and 

suboptimal lighting conditions can be eliminated [5] as well. 

While these techniques reduce the limitations imposed by 2D 

photos, there are still aspects that can be improved. One 

example of this is the significant capture time required to take 

detailed images with a LIDAR system [12]. Another limitation 

of these 3D imaging techniques is that they are currently 

limited to capturing images from a fixed location since motion 

blur can significantly smooth out the 3D data, making particle 

delineation difficult [10]. 

 

In summary, the process of using cameras or LIDARs for 

post-blast rock fragmentation is highly manual and results in 

measurements that have low temporal and spatial resolution. 

Furthermore, there is no current work, to the best of our 

knowledge, which has focused on determining an optimal 

image collection procedure for rock fragmentation analysis. To 

overcome these limitations and to automate the data collection 

process, this paper presents the use of Unmanned Aerial 

Vehicle (UAV) technology to conduct real-time rock 

fragmentation analysis.  

 

In recent years, UAV technology has been introduced into 

the mining environment to conduct terrain surveying, 

monitoring and volume calculations [13-16]. These tasks are 

essential to the mining operation, but they do not leverage all 

of the benefits that UAVs can offer [15]. UAV technology has 

the potential to provide acquisition of high resolution data 

which can be beneficial in blast design, mill operations, and 

other mine-to-mill process optimization campaigns. In 

addition, UAVs can provide data acquisition fast and often, 

which improves the statistical reliability of measurements. 

 

This paper presents the results of a series of proof-of-

concept, laboratory-scale tests to measure rock fragmentation 

using UAVs at the University of Toronto Institute for 

Aerospace Studies’ (UTIAS) indoor robotics lab. The hardware 
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choices, lab configuration, and the procedure used to conduct 

image analysis are presented. We also discuss the results of the 

experiments, the benefits of utilizing UAV technology for rock 

fragmentation measurement, and the image analysis strategy 

that was developed to achieve optimal image analysis results.  

 

2. Experiment Setup and Methods 

2.1. Experiment setup 

In order to provide optimal conditions for automated UAV 

flight for proof-of-concept experiments, demonstrating the 

feasibility and benefits of automated aerial rock fragmentation 

analysis, a laboratory experiment was designed and set up. This 

step was deemed to be necessary before conducting any tests in 

large-scale field experiments. Figure 1 illustrates the 

components and overall lab configuration used for the 

proposed automated rock fragmentation analysis. Figure 2 is a 

photo taken of the UAV and the lab setup prior to take-off. 

 

 
Figure 2: Photo of the lab configuration prior to takeoff. 

 

2.1.1. Global positioning system 

The indoor robotics lab is equipped with a motion capture 

camera system for precise UAV localization and control. This 

commercially available system uses ten 4-megapixel Vicon 

MX-F40 cameras and reflective markers attached to each 

subject to measure position and orientation at a rate of 200 Hz. 

For these experiments, the rock pile’s and the UAV’s position 

and orientation are collected and sent to the Robot Operating 

System (ROS) to control the motion of the UAV relative to the 

pile [17]. Figure 3 shows a screenshot of the Vicon system with 

the UAV’s and rock pile’s location plotted. For outdoor 

practical applications, the camera-based system can be 

replaced by standard (differential) GPS, a simultaneous 

localization and mapping (SLAM) solution using onboard 

cameras for localization [18], or novel alternative localization 

methods such as the ones based on ultra-wideband [19]. 

 

2.1.2. Rock fragment pile 

A pile of rock fragments with different sizes, ranging from 

coarse gravel to fine sand, was built in the lab. Prior to forming 

the pile, the rock fragments were put through sieve analysis to 

determine the true rock size distribution as a baseline for the 

experiments. Locally sourced gravel and sand was collected for 

Figure 1: Block diagram of the lab configuration with arrows showing the typical information flow. 

 

Figure 3: Screenshot of the global sensing system with the 

UAV and rock pile labeled. 
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sieve analysis. The results of the sieve analysis are presented in 

Table 1. Once the sieve analysis was completed, the rock 

fragments were placed on a cart built for use in the indoor 

robotics lab. Careful attention was given to ensuring that no 

contamination or material loss occurred during the sample 

transportation and storage. 

Table 1: Sieve analysis results. 

Mesh Size 

(mm) 

Weight (kg) % of Total % Passing 

Fines 1.545 0.42% 0.00% 

4.00 30.140 8.12% 0.42% 

9.53 28.535 7.69% 8.54% 

12.70 167.270 45.07% 16.22% 

19.05 143.680 38.71% 61.29% 

Total 371.170 100.00%  

 

To use this sieve analysis baseline in the statistical analysis 

of the manual and automated image analysis methods, a rock 

size distribution curve was fit to the collected data. The three-

parameter Swebrec function [20] was found to be an excellent 

fit to the data and predicted the coarse region of data much 

more accurately than the Rosin-Rammler function [21]. The 

Swebrec function is given by: 

 

𝑃(< 𝑥) =
1

1 + 𝑓(𝑥)
   (1) with 

 

𝑓(𝑥) = [𝑙𝑛(𝑥𝑚𝑎𝑥/𝑥)/𝑙𝑛(𝑥𝑚𝑎𝑥/𝑥50)]𝑏 , (2) 

 

where 𝑃(< 𝑥) is percent passing, 𝑥 is the rock fragment size, 

𝑥𝑚𝑎𝑥  is the largest fragment size in the distribution, 𝑥50is the 

size at 50% passing, and 𝑏 is a curve-modulation factor. To best 

fit the curve, we find the optimal curve shaping parameters 

𝑥𝑚𝑎𝑥  , 𝑥50, and 𝑏. A plot of the sieve analysis results and the 

Swebrec function fitted to the data is plotted in Figure 4. 

 
Figure 4: Rock size distribution of sample rock pile plotted 

with fitted Swebrec curve. Curve fit parameters: 𝑥𝑚𝑎𝑥= 

27.53 mm,  𝑥50= 17.84 mm, 𝑏= 2.79. 

2.1.3. Drone specifications 

A commercially available UAV with integrated camera, the 

Parrot Bebop 2, was used in our experiments. Table 2 lists the 

main specifications of the UAV. This UAV has the ability to 

capture high-resolution photos and videos, which is essential 

for accurate image analysis. It also has a GPS receiver, which 

allows us to use it for outdoor field experiments in the future. 

In this experiment, the UAV broadcasts a secure Wi-Fi network 

to receive control commands and transmit the video stream to 

the Robot Operating System (ROS), see Figure 1. 

 

Table 2: Parrot Bebop 2 specifications [22]. 

Camera resolution 14 megapixels 

Video resolution 1920 x 1080 pixels, 30 frames per 

second 

Flight time Approx. 25 minutes 

Operating range Depends on Wi-Fi controller 

device, up to 2 km 

Battery Lithium polymer 2700 mAh 

Flash storage 8 GB 

Weight 500 g 

Networking Wi-Fi MIMO Dual Band 2.4 & 

5GHz 

 

2.1.4. Lab environment 

The indoor robotics lab has fluorescent lighting, which 

provides optimal lighting conditions for this image analysis 

experiment. The lab environment is free of wind, which 

provides optimal conditions for UAV flight. Netting has been 

installed around the perimeter of a space with dimensions of 

10 m x 10 m x 3 m for operator and vehicle safety, see Figure 2. 

All of these features allow for testing new ideas quickly and 

safely, and is therefore an ideal lab environment for proof-of-

concept experiments. 

 

2.1.5. Rock fragmentation image analysis 

For these experiments, Split-Desktop, an industry standard 

software for image analysis in mining, was used [23]. Live 

images that were captured from the UAV video stream were 

automatically imported into Split-Desktop and rock 

fragmentation was computed using appropriate macros and 

automation scripts. Once the image analysis was completed, 

rock size distribution information was exported from Split-

Desktop to MATLAB for statistical analysis. To determine the 

size of rock particles, scale objects were required to be placed 

within the image as a reference. The main software parameters, 

such as the fines factor, were calibrated using sieve analysis 

data. The fines factor, used for each image, was zero and the 

scale object size was set to 60 mm. 
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2.1.6. Robot Operating System (ROS) 

The open-source Robot Operating System (ROS) was 

chosen to act as the central software node of the experimental 

setup. ROS is a flexible software framework for writing robot 

software that has been widely adopted [24]. In these 

experiments, ROS uses high-level path plan and actual position 

and orientation measurements from the global positioning 

system to send low-level velocity and orientation commands 

wirelessly to the UAV. ROS itself receives sensor data from 

the UAV and broadcasts it to the network for the subsequent 

image analysis, see Figure 1. 

 

2.1.7. MATLAB® Robotics System Toolbox™ 

The MATLAB Robotics System Toolbox acts as an 

interface between ROS and Split-Desktop while providing 

statistical analysis to the operator in real-time. The Robotics 

System Toolbox was used to capture and save broadcasted 

images, call a macro to run image analysis on Split-Desktop, 

and import the rock size distribution generated by Split-

Desktop for statistical analysis. 

 

2.2. Aerial rock fragmentation analysis with a UAV 

To highlight the benefits of aerial fragmentation analysis in 

terms of both prediction accuracy and time effort, the 

automated UAV image analysis was tested in the lab. In 

addition, an image analysis approach based on a fixed camera 

– as is typically done in practice – was also tested. This allowed 

for a direct comparison between these two methods. 

 

To ensure that camera lens bias was not added to the 

samples, the UAV camera was used for both methods using the 

same image resolution. In order for images being captured from 

the same sample surface, a typical rock pile configuration was 

fixed for both experiments. For comparison, each method’s 

steps were timed, starting at setup and ending at the export of a 

final rock size distribution. Once these analyses were 

Figure 5: a) UAV set up as a fixed camera for manual image analysis. b) Raw and delineated photo captured in manual image 

analysis. c) UAV in flight for automated image analysis. d) Raw and delineated photo captured in automated image analysis. 
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conducted in the lab, statistical analysis was done to compare 

each method’s predictive accuracy. This comparison was then 

used to propose an optimal strategy for image analysis of rock 

fragmentation. 

 

The following subsections describe the procedure that was 

followed by the operator for the manual and automated image 

analysis method. 

 

2.2.1. Fixed-camera, manual image analysis 

When creating this procedure, it was noted that there is no 

literature that describes an optimal or standard procedure to use 

while manually capturing images for rock fragmentation image 

analysis. The procedure used in this work was as follows: 

1. place scale objects and prepare UAV camera in front 

of rock pile (Figure 5a); 

2. take photos of the muck from different positions 

around the rock pile base looking horizontally with 

~50% overlap to simulate the current practice used for 

capturing images at the base of a rock pile (Figure 6); 

3. return the UAV camera to the workstation; 

4. transfer images to the workstation and remove images 

that are of poor quality; 

5. conduct image analysis using Split-Desktop to obtain 

rock size distribution (Figure 5b). 

 

2.2.2. UAV automated image analysis 

For the automated analysis, the procedure was as follows 

(cf. Figure 1): 

1. place scale objects and prepare and initiate automated 

UAV fragmentation analysis system; 

2. if systems are ready and conditions are safe to fly, 

send command to takeoff; 

3. as UAV automatically moves along the predefined 

path taking two levels of photos with ~50% overlap, 

ensure that UAV operates safely and intervene if 

problems occur (Figure 6 and Figure 5c); 

4. once the UAV returns to the take-off location, analysis 

is finished, send command to land; 

5. on the MATLAB window, save rock size distribution 

results after filtering out poor quality images 

(Figure 5d). 

 

3. Results and Discussion 

At the time of this paper, multiple trials have been 

conducted to develop the UAV-based, automated rock 

fragmentation analysis and to compare it with the conventional, 

manual method. This paper presents the results of one 

representative trial. Benefits of using aerial fragmentation 

analysis are summarized and quantified in Section 3.3. Finally, 

an optimal strategy of measuring rock fragmentation using 

UAVs is proposed in Section 3.4. 

 

3.1. Summary of collected data 

A summary of a typical manual and automated 

fragmentation analysis experiment are given in Table 3. Eleven 

photos were taken in the manual, fixed-camera experiment 

such that an overlap of 50% was achieved between adjacent 

images. Sixteen photos were taken by the automated UAV 

method to achieve the same amount of overlap and to capture 

a small (closer) and medium (farther) scale measurement 

through holding two different altitudes above the pile (see 

Figure 6). 

 

Table 3 also includes a list of time entries for each method. 

These time entries represent the amount of time taken for each 

step in the procedure described in Section 2.2.1 and 2.2.2 for 

manual and automated image analysis, respectively. 

“Preparation” time is the time taken to complete step 1 for 

manual fragmentation analysis and step 1 for automated 

analysis. Step 2 in the manual analysis and steps 2-4 in the 

automated procedure are measured as the “operating” time. 

Figure 6: Location and camera direction used to capture images for fixed-camera, manual image analysis (blue) and 

UAV-based, automated image analysis (yellow). 
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“Breakdown” is described in steps 3-4 for the manual analysis 

and step 5 for the automated analysis. “Analysis and editing” 

time is unique to the manual, fixed-camera method since the 

conventional technique requires a technician to process the 

images and analyze results after data is collected (step 5 in 

Section 2.2.1), where this step is fully automated in the UAV-

based procedure. Figure 7a and 7b provide the rock size 

distribution calculated by the manual, fixed-camera method 

and the automated, UAV-based method, respectively. 

 

Table 3: Trial information for image analysis methods. 

 Manual, fixed 

camera 

Automated 

UAV 

Number of photos 

taken:  

11 16 

Number of photos 

used in analysis: 

10 14 

   

Time Entries   

Preparation: 4:13 min 1:35 min 

Operating: 4:19 min 6:04 min 

Breakdown: 3:46 min 2:23 min 

Analysis and 

editing: 

43:34 min 0:00 min 

Total time: 55:52 min 10:02 min 
 

3.2. Comparison of manual and automated method 

To directly compare the proposed UAV automated image 

analysis with that of the conventional fixed-camera method, 

two metrics were considered: time effort and prediction 

accuracy. 

 

3.2.1. Time effort 

The total time effort that was expended for each method is 

given in Table 3. As can be seen, the UAV image analysis 

method took approximately 20% of the time that the 

conventional method takes. The fixed-camera method requires 

a lot of time spent processing images prior to gaining results 

and after data is collected. The majority of this time is spent 

preparing images and editing the delineations of particles to 

reduce fusion and disintegration error. Counter to this, the 

automated UAV method generates results in real-time during 

flight. The time difference between methods is expected to be 

even more pronounced in a field experiment where more data 

is collected, and consequently, more processing time is taken 

by the conventional method. The UAV image analysis method 

for this experiment has not been optimized yet and with further 

development will reduce operating time by choosing strategic 

locations to capture statistically significant measurements. For 

example, we may get optimal results by flying the UAV to only 

two locations and taking two photos at each location with 

different camera angles. This type of improvement contrasts 

the numerous locations that were chosen in this experiment (see 

Figure 6). 

 

3.2.2. Prediction accuracy 

To determine the prediction accuracy of each method for 

comparison, the true error in percent passing and characteristic 

rock size was determined. The percent error of percent passing 

(𝑃(< 𝑥)) for each sieve size is given by 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑇𝑟𝑢𝑒 𝐸𝑟𝑟𝑜𝑟 =
𝑃(<𝑥)𝐼𝑚𝑎𝑔𝑒 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 − 𝑃(<𝑥)𝑆𝑖𝑒𝑣𝑒 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

𝑃(<𝑥)𝑆𝑖𝑒𝑣𝑒 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠
× 100% . (3) 

 

The resulting error distributions for each method are 

presented in Figure 8, with the error’s standard deviation 

plotted as bars and the average error plotted as a solid black 

line. For these plots, it is apparent that the UAV method has 

more variation in results. Through interpretation of the images 

Figure 7: a) Manual, fixed-camera rock size distribution. 

b) Automated UAV rock size distribution. 
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collected, this variation may result from suboptimal scale 

placement and the photo’s location and camera angle. In turn, 

this may mean that the location and orientation of pictures 

taken by a UAV should be further optimized. In addition to this, 

some of the images captured by the UAV contained the rock 

pile edges and floor. In the aerial method, these were treated as 

large particles and contributed to the variance of the UAV 

method. This is an error introduced by the experiment set-up. 

With an optimized combination of picture location and 

orientation and/or minor (possibly automated) editing, this 

source of error can be eliminated. 

 

The percent difference between these two methods is given 

by 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|𝑃(<𝑥)𝑀𝑎𝑛𝑢𝑎𝑙 𝑀𝑒𝑡ℎ𝑜𝑑 − 𝑃(<𝑥)𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑀𝑒𝑡ℎ𝑜𝑑|

𝑃(<𝑥)𝑀𝑎𝑛𝑢𝑎𝑙 𝑀𝑒𝑡ℎ𝑜𝑑
× 100%, (4) 

 

which results in a difference ranging between 1-6% over the 

2 mm to 1905 mm size range. The largest percent difference 

occurs at the mid-range size of 12.70 mm due to the narrow 

distribution of particle sizes in this region (see Figure 9). 

Characteristic rock fragment sizes, such as P80, is the rock 

fragment size for which a percentage of the weight (i.e., 80% 

for P80) is smaller than. We have chosen three standard 

characteristic rock fragment sizes to compare the image 

analysis methods: P80, P50 and P20. To compare the error 

between these sizes, the percent logarithmic error and average 

percent logarithmic error were used. For example, the 

equations for the percent logarithmic error and average percent 

logarithmic error for P80 are: 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑇𝑟𝑢𝑒 𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒 𝑖 =

 
𝑙𝑜𝑔(𝑃80𝐼𝑚𝑎𝑔𝑒 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠) − 𝑙𝑜𝑔(𝑃80𝑆𝑖𝑒𝑣𝑒 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠)

𝑙𝑜𝑔(𝑃80𝑆𝑖𝑒𝑣𝑒 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠)
× 100% (5) and 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑇𝑟𝑢𝑒 𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝐸𝑟𝑟𝑜𝑟 =
∑ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑇𝑟𝑢𝑒 𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒 𝑖𝑛

𝑖= 1

𝑛
,  (6) 

 

where n is the number of frames taken since the start of the 

analysis. To find these values, the characteristic sizes for each 

photo had to be determined. This was done by fitting a Swebrec 

function to the rock size distribution estimated by the image 

analysis method and rearranging Equation 1 to solve for the 

characteristic size. Figure 10 gives a series of plots which 

illustrate the average characteristic size error and the 

characteristic size error by photo frame. Again, the automated 

UAV image analysis method has a larger variation of error. 

However, the average characteristic size error of the automated 

Figure 8: a) True error distribution of the fixed-camera 

method. b) True error distribution of the automated UAV 

method. 

 

Figure 9: Percent difference between the manual and UAV 

methods. 
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method is within 2-5% of the conventional method. In some 

cases, such as for P80, the automated method gave a better 

prediction than the fixed-camera method. It is also interesting 

that with more photos taken in the UAV method, the error 

reduces, whereas the error for the manual method stays at about 

the same level. Intuitively, this could mean that gathering more 

images in the automated UAV method may reach an error that 

is less than that of the conventional method. By expanding this 

intuition, it may be possible to determine a minimum number 

Figure 10: a-c) Characteristic size error and average error using the first n frames calculated for the fixed-camera image 

analysis method. d-f) Characteristic size error and average error using the first n frames calculated for the automated 

UAV image analysis method. From top to bottom: error in P80, P50, and P20. 
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of photos that would be required to reach a desired threshold of 

error. These ideas will be further analyzed in the future.  

 

Overall, based on our preliminary analysis, the automated 

UAV analysis method performed better than the conventional 

method in terms of time effort (five times faster) and, on 

average, predicted the rock size distribution within 17% of the 

sieving analysis measurement (see Figure 8b). The largest error 

occurred in the coarse region of the rock size distribution. This 

automated method also resulted in a size distribution prediction 

that was within 6% of the manual image analysis method (see 

Figure 9). This is considered to be very accurate for rock 

fragmentation image analysis, especially since the findings of 

[4] suggest that image analysis relative to sieve analysis can 

reach 30% error in coarse regions and up to or beyond 100% 

error in the fines region. As a result, the proposed automated, 

UAV-based technique can provide at least comparable 

accuracy to the manual methods.  

 

The largest errors produced in this experiment were found 

to be caused by the scale of the experiment since bin edges 

interfered with rock size measurement producing error in the 

coarse fraction. This effect is illustrated in Figure 11. With an 

optimized combination of picture location and orientation or 

minor editing of images, this source of error can be eliminated 

resulting in even higher accuracy of the analysis. 

 

 
Figure 11: Example of bin edges interfering with rock size 

measurement in flight: a) before delineation, and b) after 

delineation, which predicts a rock size of 228mm on the left 

side. 

 

3.3. Discussion of benefits 

Throughout the development of the automated aerial 

fragmentation analysis system, a number of benefits have been 

identified. The main benefit is that the UAV system collects 

and analyzes images rapidly. This serves to reduce the cost to 

the operator and enables on-demand, real-time, high-resolution 

data collection. On top of this, the system provides results that 

are considerably accurate. For these reasons, the UAV system 

is considered a valuable tool for rock fragmentation real-time 

monitoring strategies. 

 

Current benefits provided by the UAV system are: 

 Collection of data does not interrupt the production 

process. 

 UAV is capable of sampling regions of interest that 

are otherwise inaccessible by a human operator. 

 Results are available in real-time allowing the real-

time adjustment of the UAV’s flight path to optimize 

the results of the fragmentation analysis. 

 Real-time results also allow the immediate adjustment 

and optimization of blast designs. 

 Surface sampling errors are reduced with high-

frequency measurements (e.g., a UAV measurement 

campaign every eight hours). 

 Fragmentation analysis resolution can be easily 

adjusted to target different regions in the rock size 

distribution by flying closer or further away from the 

rock pile. 

 Obstruction of the image by particulates can be 

controlled and avoided. 

 Additional data, such as photogrammetry for volume 

calculations, can be collected simultaneously as part 

of the UAV mission. 

 Sampling bias (resulting from taking the same image 

multiple times) can be controlled and extreme outliers 

can be filtered out in real-time. 

 The system keeps operator out of harm’s way in an 

active mining environment. A UAV is expendable; 

the human operator is not. 

 

3.4. Possible Future Extensions 

Possible extensions of the UAV automated image analysis 

method that will be investigated in future works include: 
 Statistics may be used to determine the number of 

samples required to reach a desired level of 

significance (at 5% significance level), and the UAV 

mission plan can be adjusted accordingly. Preliminary 

results given in Figure 12 show the required number 

of images over time using the statistical student’s t-

test for the characteristic sizes of P80, P50 and P20 

[25]. To understand what this plot represents, consider 

that the technician is most interested in the P80 rock 

size, at frame 10 the required number of photos for a 

statistically significant measurement is 11 and at 

frame 11 the required number of images is 11. 

Therefore, at frame 11 the UAV mission can be 

stopped. The coarse region needs more samples to be 

statistically significant, if the technician were 

interested in the P20 or P50, the UAV mission could 

have been stopped earlier with less photos. This 

method has many limitations but in a practical 

situation, where sieve analysis is not available, it may 

help determine the number of photos that would be 

required to obtain a representative measure of rock 

fragmentation.  

 The shape of the muck pile can be accounted for and 

the camera angle adjusted accordingly using a 

combination of laser rangefinders or sonar sensors. 

 The flight path and camera angles can be further 

optimized to achieve better performance on both 

measures: time effort and prediction accuracy. 

 Scale objects can be eliminated through the use of 

laser rangefinders, onboard stereo cameras, modern 

sensing devices such as the Intel® RealSense™ 

Technology, or UAV teams. 
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Figure 12: t-test calculating the number of required images 

over time using an alternate hypothesis that the new mean 

P80, P50, P20 will be 20% greater than the current mean at 

80% power and 5% significance level. 

 

4. Conclusion 

This paper presented the results of a series of proof-of-

concept, laboratory-scale tests to measure rock fragmentation 

using UAVs. The configuration of an automated UAV system 

that collects rock fragmentation data in real-time has been 

described in detail. Procedures for collecting data with the 

UAV system have been outlined from the perspective of the 

technician collecting the data. The automated method of 

collecting rock size distribution information was compared 

with conventional techniques. UAV technology was shown to 

only take a fraction of the time (~20%) that a conventional 

method takes to measure rock fragmentation within 6% of the 

conventional method’s accuracy, where the conventional 

method deviates from the true distribution by up to 14%. In 

addition to providing god accuracy results, a number of 

benefits were identified throughout the study. The main benefit 

being that UAVs can provide data acquisition fast and often, 

which improves the statistical reliability of measurements and 

reduces sampling error, while not interrupting production 

processes. 

 

Future work will focus on implementing this system in an 

active mining environment to gain more insight into the 

system’s prediction accuracy, the value added, and its ability to 

be incorporated into mine-to-mill optimization. At the time of 

this paper, the authors are investigating the impact of both the 

UAV’s location and camera angle, and the artificial lighting 

from the UAV on the prediction results. The authors are also 

investigating the impact of high-frequency measurement 

during rock pile extraction and its effect on sampling bias. 

These results will be reported on in a future paper. 

 

Acknowledgement 

The authors would like to thank Split-Engineering for their 

generous support of this project. Furthermore, the authors wish 

to thank the University of Toronto’s Dean’s Strategic Fund 

“Centre for Aerial Robotics Research and Education 

(CARRE)”, the Canada Foundation for Innovation John R. 

Evans Leaders Fund and the Natural Sciences and Engineering 

Research Council of Canada for their financial support of this 

project. 

References 

[1] S.S. Kanchibotla, W. Valery, & S. Morrell, (1999), 

Modelling fines in blast fragmentation and its impact on 

crushing and grinding. Exlpo '99-A conference on rock 

breaking (pp. 137-144). Kalgoorlie: The Australasian 

Institute of Mining and Metallurgy. 

[2] J. Mosher, (2011), Crushing, Milling, and Grinding. In P. 

Darling (Ed.), SME Mining Engineering Handbook (3rd 

ed., Vol. II, pp. 1461-1465). SME. 

[3] S. Esen, D. La Rosa, A. Dance, W. Valery, & A. Jankovic, 

(2007), Integration and optimization of blasting and 

comminution processes. EXPLO Conference (pp. 1-10). 

Woolongong, NSW: The Australasian Institute of Mining 

and Metallurgy. 

[4] J.A. Sanchidrián, P. Segarra, F. Ouchterlony, & L.M. 

López, (2009), On the accuracy of fragment size 

measurement by image analysis in combination with some 

distribution functions. Rock mechanics and rock 

engineering, 42(1), 95-116. 

[5] I. Onederra, M.J. Thurley, & A. Catalan, (2015), Measuring 

blast fragmentation at Esperanza mine using high-

resolution 3D laser scanning. Mining Technology, 124(1), 

34-46. 

[6] Motion Metrics International Corp. (2016, May 31), 

PortaMetrics™. Retrieved from MtionMetrics.com: 

http://www.motionmetrics.com/portable/ 

[7] M. Badroddin, E. Bakhtavar, H. Khoshrou, & B. Rezaei, 

(2013), Efficiency of standardized image processing in the 

fragmentation prediction in the case of Sungun open-pit 

mine. Arabian Journal of Geosciences, 6(9), 3319-3329. 

[8] E. Chow, & S. Tafazoli, (2011), Application of shovel 

bucket blast fragmentation analysis. Innovations in Rock 

Engineering ‐ In Mines without Borders, CIM Annual 

Meeting (pp. 1-9). Montral: CIM. 

[9] N.H. Maerz, & T.W. Palangio, (2004), Post-muckpile, pre-

primary crusher, automated optical blast fragmentation 

sizing. Fragblast, 8, pp. 119-136. Santiago. 

[10] M.J. Thurley, M. Wimmer, & A. Nordqvist, (2015), Blast 

measurement based on 3D imaging in sublevel caving 

drawpoints and underground excavator buckets at LKAB 

Kiruna. Fragblast, 11, pp. 1-17. Sydney. 

[11] C. McKinnon, & J.A. Marshall, (2014), Automatic 

identification of large fragments in a pile of broken rock 

using a time-of-flight camera. Automation Science and 

Engineering, IEEE Transactions on, 11(3), 935-942. 

[12] M.J. Thurley, (2013), Automated image segmentation and 

analysis of rock piles in an open-pit mine. Digital Image 

Computing: Techniques and Applications (DICTA), 2013 

International Conference on (pp. 1-8). Tasmania: IEEE. 

[13] S. Annavarapu, & G.P. Kumar, (2015), Development of 

drones to collect geotechnical data in Large underground 

mines. APCOM, 37, pp. 382-388. Fairbanks. 

[14] PrecisionHawk. (2016, May 31), Retrieved from 

PrecisionHawk.com: http://www.precisionhawk.com/ 

[15] senseFly Ltd. (2016, May 31), Drones for Mining. 

Retrieved from senseFly.com: 

https://www.sensefly.com/applications/mining.html 



6th International Conference on Computer Applications in the Minerals Industries, 

Istanbul, Turkey. 5-7 October 2016 

CAMI2016-14 

12 

 

[16] DataMapper. (2016, May 31), Professional Drone Based 

Mapping and Analytics. Retrieved from DataMapper.com: 

https://www.datamapper.com 

[17] Open Source Robotics Foundation. (2016, May 31), 

Retrieved from ROS.org: http://www.ros.org/ 

[18] J. Engel, J. Sturm, & D. Cremers, (2014). Scale-aware 

navigation of a low-cost quadrocopter with a monocular 

camera. Robotics and Autonomous Systems, 62(11), 1646-

1656. 

[19] M.W. Mueller, M. Hamer, & R. D'Andrea, (2015), Fusing 

ultra-wideband range measurements with accelerometers 

and rate gyroscopes for quadrocopter state estimation. 

Robotics and Automation (ICRA), 2015 IEEE International 

Conference on (pp. 1730-1736). IEEE. 

[20] F. Ouchterlony, (2005), The Swebrec© function: linking 

fragmentation by blasting and crushing. Mining 

Technology, 29-44. 

[21] C.V.B. Cunningham, (2005), The Kuz-Ram fragmentation 

model – 20 years on. 3rd EFEE World Conference of 

Explosives and Blasting (pp. 201-210). Brighton: EFEE. 

[22] Parrot SA. (2016, May 31), Parrot Bebop 2. Retrieved 

from Parrot.com: http://www.parrot.com/products/bebop2/ 

[23] Split Engineering LLC. (2016, May 31), Split-Desktop 

Software. Retrieved from spliteng.com: 

http://www.spliteng.com/products/split-desktop-software/ 

[24] B. Gerkey, (2015, December 9), ROS, the Robot 

Operating System, Is Growing Faster Than Ever, Celebrates 

8 Years. Retrieved from IEEE Spectrum: 

http://spectrum.ieee.org/automaton/robotics/robotics-

software/ros-robot-operating-system-celebrates-8-years 

[25] R.E. Walpole, R. Myers, S.L. Myers, & Y. Keying (2012). 

One- and two- sample tests of hypotheses. In Probability 

and statistics for engineers & scientists (9th ed., pp. 319-

387). Toronto: Prentice Hall. 

 


