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In recent years, Unmanned Aerial Vehicle (UAV) technology has been introduced into the mining 

industry to conduct terrain surveying. This work investigates the application of UAVs with artificial 

lighting for measurement of rock fragmentation under poor lighting conditions, representing night 

shifts in surface mines or working conditions in underground mines. The study relies on indoor and 

outdoor experiments for rock fragmentation analysis using a quadrotor UAV. Comparison of the 

rock size distributions in both cases show that adequate artificial lighting enables similar accuracy 

to ideal lighting conditions. 

 

Introduction 
In recent years, Unmanned Aerial Vehicle (UAV) technology has been introduced to the mining industry to conduct 

terrain surveying, monitoring and volume calculation tasks. These tasks are essential for mining operations, but they 

do not leverage all the benefits that UAVs can offer to the industry. In general, UAVs can be used for continuous 

acquisition of high-resolution data, which can be beneficial in blast design, monitoring mine operations and other 

mine-to-mill optimization campaigns, enabling more efficient and faster response to changes in the mining process 

conditions. Moreover, compared to manual techniques, data acquisition with UAVs can be automated to provide 

higher spatial- and temporal-resolution data which, in turn, improves the statistical reliability of measurements. Other 

benefits of UAV-based data collection in the minerals industry include: no disruption of production, safety of 

technicians, and being able to collect data from typically inaccessible and hazardous areas.  

 

Rock breakage by drilling and blasting is the first phase of the production cycle in most mining operations. 

Measurement of post-blast rock fragmentation is important because the rock size distribution can greatly influence the 

efficiency of all downstream mining and comminution processes [1]. Studies have shown that rock fragmentation can 

influence the volumetric and packing properties of rock (e.g. the fill factor and bulk volume) and, consequently, the 

efficiency of digging and hauling equipment [1]. Similarly, other studies have demonstrated the direct influence of 

the rock size distribution on comminution energy consumption, mill throughput rates and the productivity of these 

processes [2]. Blasting engineers also use the rock size distribution as a means of quality control of blast design and 

operation. Due to these impacts, the continuous measurement of post-blast rock fragmentation is important to the 

optimization of a mining operation. 

 

Several methods have been developed for estimating rock size distribution. These include visual observation by an 

expert, sieve analysis, and 2D and 3D image analysis [3]. Visual observation involves inspecting the rock pile and 

subjectively judging the quality of the blasting material. This subjective method often produces inaccurate and 

imprecise results. Sieve analysis, or screening, involves passing a sample of the rock pile through a series of different 

sieve size trays. This method generates more consistent and accurate results; however, it is more expensive, time 

consuming, and in certain cases, impractical to perform. 

 

Image analysis techniques for measuring rock fragmentation are commonly used in modern mining operations because 

they enable practical, fast, and relatively accurate measurements [4]. Different sensors and approaches can be used for 

image collection and processing [5]. Recent techniques include using Light Detection and Ranging (LiDAR) sensors 

[6] and Deep Neural Network image segmentation [7]. However, the most common technique is to capture images of 

a post-blast muck pile from fixed ground locations, using a monocular camera and scale objects. This method, referred 

to as the conventional method, involves a technician walking to a rock pile, placing scale objects of known size in the 

region of interest, and capturing individual 2D images. Sanchidrián et al. [4] discussed several limitations of the 

conventional method for rock fragmentation analysis. Among these limitations, image system resolution is of high 

importance, as it can lead to inaccurate rock size measurement. 

 



Using 3D measurement techniques to capture images of rock piles has overcome some of these limitations, [6, 8]. 

Application of 3D imaging methods eliminates the need for placement of scale objects and reduces the error that is 

created by the uneven shape of the rock pile. Using LiDAR sensors for rock fragmentation analysis can reduce the 

delineation error produced by uneven shape of the muck pile and the resolutions error associated with poor lighting 

condition [8]. While the 3D techniques improve image analysis methods, there are still limiting aspects. One example 

of this is the significant amount of time required to capture detailed scans with LiDAR technology [6]. Another 

drawback of the 3D imaging techniques is that they are limited to capturing images from fixed locations because 

motion blur can significantly smooth out the 3D data, making particle delineation difficult [8]. 

 

To improve the spatial and temporal resolution of image analysis for measurement of rock size distribution and to 

automate the data collection process, our work has focused on using UAVs to conduct aerial rock fragmentation 

analysis [9, 10, 11]. While UAVs can be configured to carry LiDAR systems, which may reduce delineation error in 

poor lighting conditions, current commercially available UAV systems are configured with high-resolution monocular 

cameras. As a result, if the UAV system captures images in poor lighting conditions, boundaries of rock fragments 

are difficult to delineate and/or particles become obstructed by shadow and darkness. These lighting conditions 

represent night shifts in surface mines and working conditions in underground mines. Enabling UAV measurement in 

these conditions is essential for automated and continuous post-blast rock fragmentation analysis, since mining 

environments rarely provide ideal conditions for image-based methods. 

 

This work investigates the application of UAVs for measurement of rock fragmentation under poor lighting conditions. 

The study relies on indoor and outdoor experiments using a quadrotor UAV. First, a rock pile with known size 

distribution was photographed by the UAV in a lab. The experiments were carried out in both ideal lighting and dark 

conditions. For the dark case, different artificial lighting, separate from the UAV, were used to illuminate the rock 

pile. The same experiments were conducted outdoors. Comparison of the rock size distributions from both experiments 

show that adequate and evenly distributed artificial lighting allows producing similar accuracy to the ideal lighting 

condition. 

 

Experiment Setup  

Aerial Vehicle System 
The components and overall configuration of the aerial vehicle system used in this study for rock fragmentation 

measurement is illustrated in Figure 1. The system is similar to what was employed in [9, 11], but differs as a 

component for artificial lighting was added. 

 

 Unmanned Aerial Vehicle. A commercially available UAV with integrated camera, the Parrot Bebop 2, was 

used in our experiments because it has onboard image stabilization and a Global Positioning System (GPS) receiver. 

A list of the main specifications and performance of the vehicle can be found in [12]. This UAV can capture stabilized 

high-resolution photos and videos, which is essential for accurate image analysis. The GPS receiver provides position 

measurements for vehicle control. In these tests, the UAV broadcasted video streams with a resolution of 856 × 480 

pixels stabilized onboard during flight. The camera orientation was stabilized onboard by moving a virtual window 

through the field of view of the integrated fisheye lens. The UAV receives camera commands and transmits the camera 

orientation in tilt and pan. 

 

 Software Framework. The open-source Robot Operating System (ROS) [13] was used to act as the central 

software framework of the aerial vehicle system (see Figure 1). For the proposed system, ROS wirelessly sent high-

level flight commands to the UAV to follow a user-defined flight plan, which required the use of onboard position 

and orientation measurements for feedback. Images captured from the UAV video stream were either stored onboard 

the UAV for offline analysis or off-board on the ground control station for real-time analysis. Images stored for real-

time processing were analyzed in a standard fragmentation analysis software, Split-Desktop [14]. We used a keyboard 

and mouse macro to run the image analysis automatically. 

 

Since flight safety is of paramount importance, three safety measures were implemented into the system. By default, 

a safety pilot could take control over the UAV using a joystick, the Xbox Wireless Controller, that was interfaced with 

ROS. In case of joystick malfunction, a ROS graphical user interface could have been used to initiate emergency 

procedures on the ground control station. This user interface was also used to display flight information on the ground 

control station. Finally, if connection with the UAV was lost, the drone would automatically fly to its predefined home 

position. 



 Rock Fragmentation Analysis. For image analysis, Split-Desktop [14], an industry standard software for 

fragmentation analysis in mining, was used. The software receives an image and delineates particles using image 

segmentation. Scale objects are traced graphically to set the image scale. This assumes that (1) the scale object lies on 

the rock pile surface, and (2) the surface is planar. To avoid using physical scaling objects, as described in [10], a 

point cloud created by the aerial vehicle system could be used to compute image scale. In this work, physical scale 

objects were used to determine image scale. 

 

 Flight Plan. For aerial rock fragmentation analysis, flight plans were created to capture nine images at a camera 

tilt angle of 83 degrees, for a fixed altitude of 0.5 m above the rock pile while ensuring no or little image overlap. The 

tilt angle chosen is the maximum that the UAV specification allowed.  The images were taken approximately 

perpendicular to the rock pile surface, as suggested by the fragmentation analysis software [14]. 

 

 Light Source. To illuminate the rock pile during fragmentation measurement, natural and artificial lighting were 

used. In these experiments, we used a variety of lighting conditions with different light sources. Fixed artificial lighting 

sources (not attached to the UAV) were setup for dark conditions. The amount of luminous emittance from the light 

sources was measured in luminous flux per unit area (with the SI unit lux). We also measured the illuminance (in lux) 

of the subject rock pile. 

 

Indoor Configuration 
The aerial vehicle system used in the indoor experiments differs from the outdoor experiments in the global positioning 

system used. The lab is equipped with a motion capture camera system for precise UAV localization and control. This 

commercially available system uses ten 4-megapixel Vicon MX-F40 cameras and reflective markers attached to each 

subject to measure position and orientation at a rate of 200 Hz. For the lab experiments, the position and orientation 

of the rock pile and the UAV are collected and sent to ROS to control the motion of the UAV relative to the pile. The 

indoor lab has fluorescent lighting and is free of wind. 

 

A pile of rock fragments with different sizes, ranging from coarse gravel (19 mm) to fine sand (<4 mm), was built in 

the lab. Prior to forming the pile, the rock fragments were put through sieve analysis to determine the ‘true’ rock size 

distribution as a reference for computing measurement accuracy. The results of the sieve analysis are presented for 

four discrete screen sizes, which is referred as the reference curve in the “Results” section. To use the sieve analysis 

as a reference for sizes greater than 19 mm, the Swebrec rock size distribution [4] curve was fit to the collected data. 

The parameters of this distribution are presented in [9]. Spherical scale objects, with a diameter of 60 mm, were used 

to provide image scale for fragmentation analysis in the indoor experiments. 

 

 
 

Figure 1: Block diagram of the aerial vehicle system used for aerial fragmentation analysis. 

Arrows show the typical information flow while conducting a flight plan. 



Outdoor Configuration 
Outdoor experiments were conducted in the outdoor robotics experiment area at the University of Toronto. The aerial 

vehicle system used in this configuration employs a GPS receiver for UAV localization and control. The pile of rock 

fragments, used in the indoor configuration, was measured in variable lighting conditions outdoor. The ‘true’ rock 

size distribution was used as a reference for computing measurement accuracy. The same spherical scale objects, used 

in the indoor configuration, were used to provide image scale for fragmentation analysis in the outdoor configuration. 

 

Methodology 
To investigate the application of artificial lighting for measurement of rock fragmentation under poor lighting 

conditions, indoor and outdoor experiments were carried out using the aerial vehicle system described above. Steps 

were taken in the indoor and outdoor experiments to ensure a fair comparison of results under different lighting 

conditions. In both experiments, the same flight plans were flown by the aerial vehicle system while ensuring that the 

rock pile configuration was fixed. 

 

The procedure used to conduct indoor experiments was: 

 

1. Measure points around rock pile base using motion capture camera system; 

2. Place scale objects on the rock pile; 

3. Configure artificial lighting system, if required; 

4. Record the luminous emittance of the light source; 

5. Record the illuminance of the rock pile; 

6. Capture images following the rock fragmentation analysis flight plan; 

7. Transfer images to workstation; and 

8. Conduct rock fragmentation measurement with image analysis software. 

 

The procedure used to conduct outdoor experiments differs from the indoor procedure in step 1, where instead of using 

the motion capture camera system to measure points around the rock pile base a GPS receiver was used. 

 

Results 
The following subsections present results for the indoor and outdoor experiments, respectively. These results compare 

the rock size distributions measured by the aerial vehicle system in a variety of lighting conditions. 

 

Lab Experiments 
A variety of lighting conditions were created in the lab environment, as described in Table 1. Poor lighting conditions 

(120 lx, 40 lx, and 11 lx) were created to represent night shifts in surface mines or working conditions in underground 

mines (3 lx in stopes and 7.5 lx in haulages [15]). Then, using the procedures described above, aerial rock 

fragmentation analysis was conducted for each condition. Figure 2 provides examples of the images collected in ideal 

(Experiment #1) and dark (Experiment #4) lighting conditions alongside the delineation net produced. As can be seen, 

the delineation created in the ideal case is more accurate than those created in the dark case because particle boundaries 

are difficult to identify. 

 

To determine prediction accuracy for each lighting condition, the percent error residuals for percent passing with 

respect to the reference sieve analysis curve were computed for the discrete sieve series. Percent error residuals are 

calculated for percent passing (P(< 𝑥)) according to: 

 

Percent error residuals =
P(< 𝑥)Image Analysis − P(< 𝑥)Sieve Analysis

P(< 𝑥)Sieve Analysis

×100% 

 

where P(< 𝑥)Image Analysis is the percent passing a size of 𝑥 measured by the image analysis software and 

P(< 𝑥)Sieve Analysis is the percent passing a size of 𝑥 measured by the sieve analysis. The rock fragmentation analysis 

for each experiment, with residuals, is plotted in Figure 3. The Swebrec rock size distribution function [4] was fit to 

the discrete points from sieve analysis and image analysis methods so that a 2-norm error between the image analysis 

and the reference curve could be calculated. Figure 4 presents the illuminance measured for each experiment against 

the 2-norm error. 

 



 
 

Figure 2: a) Raw and delineated photo captured in ideal lighting (450 lx). b) Raw and delineated 

photo captured in dark conditions (11 lx). 

 

TABLE 1 Indoor experiment lighting conditions 

Experiment 

Number 

Experiment 

Description 

Illuminance of 

the Rock Pile (lx) 

Luminous 

Emittance (lx) 

Position of Light 

Source 

1 Normal lighting 450 1815 per light ceiling, 3 m above pile 

2 Dim lighting 120 1815 per light ceiling, 3 m above pile 

3 Uneven lighting 40 1815 per light ceiling, 3 m above pile 

4 Dark 11 NA* NA 

5 Artificial lighting 1 14 1000 20° tilt, 3 m from pile 

center 

6 Artificial lighting 2 18 1000 30° tilt, 2 m from pile 

center 
*NA = not applicable. 

 

 
 

Figure 3: Rock fragmentation analysis results for indoor experiments with respect to the sieve 

analysis reference curve. Discrete points represent the combined results for each set of images 

collected during each experiment. The gray envelope represents the accepted maximum error 

envelope of 30% recommended by [4] for industry standard 2D image analysis. 



The rock size distribution estimated in the normal lighting case (450 lx) is shown to remain within the 30% maximum 

error envelope suggested by [4]. In the dark case (11 lx), the estimated distribution is far from the true distribution and 

falls out of the maximum error envelope, as was expected. In the uneven lighting case (40 lx), the error increased 

because a combination of shadows and bright particle faces created particle disintegration and fusion. To ensure that 

this was avoided in artificial lighting conditions, light was applied evenly. In the artificial lighting cases (14 lx and 18 

lx) and dim lighting (120 lx), the predicted distributions remained in the acceptance envelope. The artificial lighting 

conditions produced distributions that were very close to the distribution predicted in the ideal conditions. The results 

indicate that artificial lighting, even if it marginally increases the illuminance of the rock pile, enables accurate 

prediction of rock fragmentation. 

 

 
 

Figure 4: 2-norm error between the estimated rock size distributions and the sieve analysis 

reference curve plotted against illuminance measurements for indoor experiments. Qualitative 

measures of common lighting conditions are provided as ranges of illuminance measurements. 

 

Outdoor Experiments 
Having shown that applying artificial lighting in poor lighting conditions improves the accuracy of results indoors, 

we applied this method in outdoor experiments at the site specified above. We also conducted aerial rock 

fragmentation analysis in a variety of lighting conditions to investigate the effect lighting has on prediction accuracy, 

as described in Table 2. Using the procedures described above, aerial rock fragmentation analysis was conducted for 

cloudy, dusk, and dark conditions as well as using artificial lighting to illuminate the pile in dark conditions. The rock 

fragmentation analysis for each experiment, with residuals, is plotted in Figure 5. Figure 6 presents the illuminance 

measured for each experiment against the 2-norm error. 

 

The rock size distributions estimated in the cloudy (9500 lx), and dusk (363 lx) conditions are shown to remain within 

the 30% maximum error envelope suggested by [4]. In the dark case (3 lx), the UAV system was not able to measure 

fragmentation of the rock pile because the camera did not measure any light. In the artificial lighting cases (14 lx), the 

predicted distributions remained in the acceptance envelope. The artificial lighting condition produced a distribution 

that was close to the distribution predicted in the cloudy conditions. These results are very promising because an even 

artificial lighting has enabled accurate prediction of rock fragmentation in outdoor settings. 

 

TABLE 2 Outdoor experiment lighting conditions 

Experiment 

Number 

Experiment 

Description 

Illuminance of 

the Rock Pile (lx) 

Luminous 

Emittance (lx) 

Position of Light Source 

1 Cloudy 9500 54000 NA* 

2 Dusk 363 1966 NA 

3 Artificial lighting 14 18 45° tilt, 30 m from pile 

4 Dark 3 3 NA 
*NA = not applicable. 

 



 
 

Figure 5: Rock fragmentation analysis results for lab experiments with respect to the sieve 

analysis reference curve. Discrete points represent the combined results for each set of images 

collected during each experiment. The gray envelope represents the accepted maximum error 

envelope of 30% recommended by [4] for industry standard 2D image analysis. 

 

 
 

Figure 6: 2-norm error between the estimated rock size distributions and the sieve analysis 

reference curve plotted against illuminance measurements for outdoor experiments. Qualitative 

measures of common lighting conditions are provided as ranges of illuminance measurements. 

 

Conclusion 
This work presented the results of indoor and outdoor experiments to investigate the effect of lighting conditions on 

aerial rock fragmentation analysis. The use of fixed artificial lighting to collect images in poor lighting conditions was 

proposed to improve accuracy of rock fragmentation analysis using UAV. Results, from both the indoor and outdoor 

experiments, show that lighting conditions greatly impact the accuracy of image analysis techniques for rock 

fragmentation measurement. Applying the artificial lighting evenly to the rock pile, can improve prediction accuracy. 

In this study, fixed artificial lighting was used for the experiments, however, in hazardous or inaccessible areas like 

underground stopes, the artificial lighting can be attached to the UAV system or another vehicle can be used for the 

artificial lighting. Continuous measurement of the rock size distribution is important at different lighting conditions 

because the rock size distribution can change while the muck pile is excavated, which impacts the potential efficiency 

of downstream processes. Aerial fragmentation analysis shows promise to be a faster, more accurate, and high 

resolution measurement technique for the mining industry, and with the addition of artificial lighting systems poor 

lighting conditions can be mitigated. 
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