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Abstract— Quadrotor motion planning in complex environ-
ments leverage the concept of safe flight corridor (SFC) to
facilitate static obstacle avoidance. Typically, SFCs are con-
structed through convex decomposition of the environment’s
free space into cuboids, convex polyhedra, or spheres. However,
when dealing with a quadrotor swarm, such SFCs can be
overly conservative, substantially limiting the available free
space for quadrotors to coordinate. This paper presents an
Alternating Minimization-based approach that does not require
building a conservative free-space approximation. Instead, both
static and dynamic collision constraints are treated in a unified
manner. Dynamic collisions are handled based on shared
position trajectories of the quadrotors. Static obstacle avoidance
is coupled with distance queries from the Octomap, providing
an implicit non-convex decomposition of free space. As a result,
our approach is scalable to arbitrary complex environments.
Through extensive comparisons in simulation, we demonstrate
a 60% improvement in success rate, an average 1.8× reduction
in mission completion time, and an average 23× reduction
in per-agent computation time compared to SFC-based ap-
proaches. We also experimentally validated our approach using
a Crazyflie quadrotor swarm of up to 12 quadrotors in obstacle-
rich environments. The code, supplementary materials, and
videos are released for reference.

I. INTRODUCTION

The excellent maneuverability and agility of quadrotors
make them very popular for applications such as search and
rescue missions [1], environmental mapping and monitoring
[2], and payload transport [3]. While single quadrotors are
impressive, quadrotor swarms offer even greater advantages,
including increased flexibility, efficiency, and robustness [4].
As the quadrotors operate in a shared space, they must
coordinate among themselves to resolve conflicts while also
avoiding static obstacles present in the environment.

Trajectory optimization approaches for coordinating
quadrotor swarms use the ellipsoidal collision avoidance
constraints [5] for inter-agent collision avoidance. These
approaches can be divided into two categories: centralized
and distributed. Centralized approaches [6]–[8] solve a joint
trajectory optimization problem for all the quadrotors. De-
spite offering an extended solution space, these approaches
become computationally intractable when dealing with a
larger number of quadrotors.

Distributed approaches such as [9]–[11] provide a scal-
able alternative. In these approaches, each quadrotor in-

Vivek K. Adajania, Siqi Zhou, and Angela P. Schoellig are with the
Learning Systems and Robotics Lab (http://www.learnsyslab.org) at the Uni-
versity of Toronto Institute for Aerospace Studies, Canada, and the Technical
University of Munich, Germany. They are also with the Vector Institute for
Artificial Intelligence. Arun Kumar Singh is with the University of Tartu,
Estonia. Emails: {vivek.adajania, siqi.zhou}@robotics.utias.utoronto.ca,
arun.singh@ut.ee, and angela.schoellig@tum.de.

Fig. 1. Twelve quadrotors performing a position exchange in a complex en-
vironment. Link to video: http://tiny.cc/AMSwarmXVideo. Link to
code and supplementary material: https://github.com/utiasDSL/
AMSwarmX.

dependently solves an optimization problem. The collision
avoidance constraints are formulated based on the trajectories
shared by neighbouring quadrotors. As shown in [11], the
independent optimization problem is a non-convex Quadrat-
ically Constrained Quadratic Program (QCQP), arising from
non-convex quadratic ellipsoidal collision avoidance and
kinematic feasibility constraints. Existing distributed ap-
proaches [9], [10], [12] rely on affine approximations: lin-
earizing the collision avoidance constraints and axis-wise
decoupling of kinematic constraints. These approximations
result in a QP but with small feasible sets. Our previous
work [11] showed how to avoid these approximations and
still obtained a QP, achieving superior inter-agent collision
avoidance performance.

To navigate a single quadrotor in complex 3D environ-
ments, many works have extensively employed the concept
of Safe Flight Corridor (SFC) for static obstacle avoidance.
Existing works perform convex decomposition of the free
space to obtain SFCs, which serve as additional constraint
sets in trajectory optimization. Several examples of such
convex constraint sets include cuboid [13], spheres [14], and
convex polyhedra [15].

SFC-based approaches also utilize high-level path planners
such as A* and RRT* to generate a guiding path for
trajectory optimization. Some methods [13]–[15] construct a
safe corridor around this guiding pah, while others [10] rely
on trajectories from previous planning steps. There exists
Gradient Descent (GD) based approaches [16], [17] that
directly incorporate the distance to obstacles, but as a cost,
which limits their generalization to different environments.

SFC-based approaches are also popular in both centralized
and distributed swarm setups. In [18], [19], convex polyhedra
are employed for each quadrotor, and authors in [10], [20]
use cuboids to avoid the static obstacles, while inter-agent
collision avoidance is formulated via ellipsoidal collision
avoidance as previously mentioned. The convex polyhedra
and cuboid corridors are represented as affine inequalities
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and can be incorporated into the QP trajectory generation
framework. However, decomposing the free space into these
convex regions can be conservative in tight environments,
resulting in less free space available for the quadrotors to
negotiate around each other.

Contribution: In this work, we propose an Alternating
Minimization (AM) approach that treats static and dynamic
collision avoidance constraints in a unified manner yet scales
to arbitrary environments. The dynamic inter-agent collisions
are handled based on the predicted or shared trajectories
of the neighbours while the static obstacle constraints are
coupled to the distance queries from the Octomap. We
show that our approach implicitly constructs a non-convex
decomposition of the free space that is much larger than that
of explicit convex decomposition approaches. We compare
our approach with state-of-the-art distributed SFC-based ap-
proaches from [11], [15], [20]. Our simulation comparison
shows a 60% improvement in success rate, on average a 1.8×
reduction in mission completion time, and on average a 23×
reduction in per-agent computation time.

II. DISTRIBUTED MOTION PLANNING PROBLEM

Our objective is to generate smooth, collision-free, and
kinematically feasible trajectories that guide N quadrotors
from their initial positions pi,o to their desired goal po-
sitions pi,g within a cluttered and complex environment.
The vector p = [x, y, z]T represents the three-dimensional
position of a quadrotor, with the subscript i denoting the
quadrotor index and the subscripts o and g indicating initial
and goal variables. Similar to our previous work [11], we
formulate the motion planning for the quadrotor swarm as a
distributed trajectory optimization problem. We assume that
each quadrotor can communicate with its neighbour without
any communication loss or delay. We also assume that each
quadrotor has access to a prior map of the environment.

A. Problem Formulation

We describe the optimization problem that needs to be
solved by quadrotor i at each planning step:

min
pi

wg

K−1∑
k=K−κ

∥pi[k]− pi,g∥2 + ws

K−1∑
k=0

∥∥∥p(q)
i [k]

∥∥∥2 (1a)

s.t. p
(q)
i [0] = p

(q)
i,a , ∀q = {0, 1, 2} (1b)

∥ṗi[k]∥2 ≤ v2, ∀k (1c)

f2 ≤ ∥p̈i[k] + g∥2 ≤ f
2
,∀k (1d)∥∥(2sΘij)

−1(pi[k]− ξj [k])
∥∥2 − 1 ≥ 0, ∀k, j (1e)

pi[k] ∈ Cfree, ∀k, (1f)

where k is the discrete-time index, K is the planning horizon
length, ||·|| denotes the Euclidean norm, and the superscript
(q) denotes the q-th time derivative of a variable. The cost
function consists of two terms. The first term is the error-
to-goal cost applied over the last κ < K steps in the
prediction horizon; the second term is the smoothness cost
that penalizes the q-th derivatives of the position trajectory.
The constants wg and ws are weights of respective terms.

The equality constraints (1b) set the initial position of the
trajectory and the higher derivatives to be consistent with the
current values of the quadrotor. The inequalities (1c)-(1d)
enforce bounds on the velocity (0, v), and the acceleration
(f, f ). The inequalities (1e) enforce the collision avoidance
with the j-th neighbouring quadrotor with position ξj [k].
Note that ξj [k] is known since the quadrotor communicates
the trajectory they computed at the previous planning step to
their neighbours. The constant s is the radius of the sphere
modelling the quadrotor. Θij is a diagonal matrix with
(1, 1, 2) characterizing an ellipsoidal envelope in the inter-
agent collision avoidance. The vector g = [0, 0, g]T is the
gravitational acceleration vector, where g is the acceleration
due to gravity. Constraint (1f) enforces the quadrotor to
remain in the space not occupied by the static obstacles in
the environment.

B. Trajectory Parameterization

We parameterize the x-, y-, and z-position trajectories for
each quadrotor as Bernstein polynomials of degree n. For
instance, the x-position trajectory for the i-th quadrotor is[

xi[0] xi[1] . . . xi[K − 1]
]T

= Wci,x, (2)

where W ∈ RK×(n+1) is the Bernstein basis matrix and ci,x
are the coefficients associated with it. The higher derivatives
of the position trajectory have the general form W(q)ci,x,
where W(q) is the q-th derivative of the Bernstein basis
matrix.

III. MAIN ALGORITHMIC RESULTS

This section presents our main algorithmic results. We first
describe our novel static obstacle avoidance model and its
integration into the AM approach. We then discuss how a
discrete path planner can be leveraged to obtain some of the
hyperparameters of our trajectory optimizer.

A. Static Obstacle Avoidance Constraints

Referring to Fig. 2, let pr denote a known position in
obstacle-free space, and p represent an arbitrary position in
2D space. We will discuss the possible choices for these
positions later in this section. Nevertheless, the condition for
p to be obstacle-free can be expressed as follows:

∥p− pr∥2≤ (d∗r(αr(p)))
2, (3)

where d∗r(αr(p)) represents the obstacle clearance from
pr in the direction of αr. We refer to d∗r as directional
clearance and pr as the attractor position. Notably, the
directional clearance depends on αr, which, in turn, relies on
p. Moreover, it can be easily obtained through ray-casting
on an Octomap while accounting for the dimension of the
quadrotor.

As shown in Fig. 2, the constraint (3) implicitly character-
izes a non-convex obstacle-free space (shown in purple) in
the vicinity of pr. Existing works often involve computing
an explicit convex decomposition of this space, referred to as
SFC. For example, two such decompositions in the form of
an axis-aligned rectangle and convex polygon are shown in



Fig. 2. The figure shows the non-convex obstacle-free region (purple)
obtained by Octomap distance queries (ray-casting) from a known obstacle-
free position pr . Our AM-based approach provides a tractable way of
incorporating the purple region into the trajectory optimization. Existing
SFC-based approaches decompose the free space into conservative convex
sets such as the rectangle [10] (blue) and convex polygon [15] (orange).

Fig. 2. Clearly, such decompositions are overly conservative,
covering only a fraction of the actual obstacle-free space.
This severely limits the range of feasible motions for the
quadrotor swarms.

We can extend (3) to 3D by formulating it for quadrotor
i at time step k as follows:

∥pi[k]− pi,r∥2≤ (d∗i,r(αi,r(pi), βi,r(pi))[k])
2, ∀k. (4)

Here, pi,r represents the attractor position associated with
quadrotor i. The scalar d∗i,r(αi,r(pi), βi,r(pi))[k] denotes the
directional clearance from the attractor position in directions
(αi,r[k], βi,r[k]) at each prediction step k. We drop the
parenthesis and refer to directional clearance as d∗i,r[k].

Incorporating constraints of the form (4) into the opti-
mization problem poses a challenge due to the absence of
an analytical, functional form for the directional clearance
d∗i,r. The subsequent subsections elaborate on how our AM-
based trajectory optimizer provides an effective workaround.
The key intuition has two core components. First, we initially
treat αi,r[k], βi,r[k] as independent of pi[k] and then grad-
ually enforce their dependency as the optimizer iterations
progress (see (8)). Second, at every step of our AM, we
fix d∗i,r[k] based on some guess of αi,r[k], βi,r[k] and we
gradually update these guess across iterations. Moreover,
we leverage the fact that (4) becomes a convex quadratic
constraint if we fix d∗i,r[k] on the right-hand side.

B. Constraint Reformulation

The static obstacle avoidance constraints (4), inter-agent
constraints (1e), acceleration constraints (1d), and velocity
constraints (1c) are inherently quadratic in nature. Solving
trajectory optimization with these constraints necessitates
tackling expensive QCQPs. In this subsection, we undertake
the task of reformulating these constraints into a polar form
[11], ultimately enabling us to achieve a QP structure without
the need for linearization. We express all these constraints
as distinct sets:

Ci,v[k] = {ṗi[k] ∈ R3 | fi,v[k] = 0, di,v[k] ≤ v}, ∀k, (5)

Ci,a[k] = {p̈i[k] ∈ R3 | fi,a[k] = 0, f ≤ di,a[k] ≤ f}, ∀k,
(6)

Cij,c[k] = {pi[k] ∈ R3 | fij,c[k] = 0, dij,c[k] ≥ 1}, ∀k, j,
(7)

Ci,r[k] = {pi[k] ∈ R3 | fi,r[k] = 0, di,r[k] ≤ d∗i,r[k]}, ∀k.
(8)

In these sets, we introduce functions fi,v , fi,a, fij,c, and fi,r
defined as follows:

fi,v[k] = ṗi[k]− di,v[k] · ω(αi,v[k], βi,v[k]),

fi,a[k] = p̈i[k] + g − di,a[k] · ω(αi,a[k], βi,a[k]),

fij,c[k] = (2sΘij)
−1(pi[k]− ξj [k])

− dij,c[k] · ω(αij,c[k], βij,c[k]),

fi,r[k] = pi[k]− pi,r − di,r[k] · ω(αi,r[k], βi,r[k]),

ω(α(.), β(.)) = [cosα(.) sinβ(.), sinα(.) sinβ(.), cosβ(.)]
T .

Notably, the parameters (α(.), β(.), d(.)) represent the polar
form representations of the constraints and will be computed
by our optimizer concurrently with the trajectory [11].

It is worth pointing out that our reformulation of inter-gent
collision and static obstacle avoidance given by fij,c and fi,r
respectively have the same structure. The only difference
stems from the fact that for the former, the feasible space
of dij,c[k] is completely defined analytically. In contrast,
evaluating the feasibility of di,r[k] requires distance queries
from the Octomap.

C. Reformulated Problem

We can express the cost function (1a), initial conditions
(1b), and the polar constraints (5)-(8) as a concise optimiza-
tion problem:

min
ζi,1,ζi,2,ζi,3

1

2
ζT
i,1Qζi,1 + qT ζi,1 (9a)

s.t. Aζi,1 = b(ζi,2, ζi,3) (9b)

ζi,1 ∈ Cζi,1
, ζi,3 ∈ Cζi,3

(9c)

Here, ζi,1 = [cTi,x, cTi,y, cTi,z]
T , ζi,2 =

[αT
i,c, αT

i,a, αT
i,v, αT

i,r, βT
i,c, βT

i,a, βT
i,v, βT

i,r]
T , and

ζi,3 = [di,c, di,a, di,v,di,r]
T represent the optimization

variables. Note that the different α, β and d are formed by
stacking the respective variables at different time steps. For,
example αi,r is formed by stacking αi,r[k] for different
k. The matrix A and vector b arise from the equality
constraints in the polar form. The matrix Q and vector
q pertain to the cost function. The sets Cζi,1

and Cζi,3

correspond to the initial boundary conditions and the
inequality constraints from the polar form, respectively.
Please refer to Section III-B of [11] for details.

D. Relaxation and Solution using AM

Our solution process consists of two core steps. First, we
relax the equality constraints in the reformulated problem
by incorporating them as penalties into the cost function as
follows:

min
ζi,1∈Cζi,1

,ζi,3∈Cζi,3

1

2
ζT
i,1Qζi,1 + qT ζi,1 − ⟨λi, ζi,1⟩

+
ρ

2

∥∥Aζi,1 − b(ζi,2, ζi,3)
∥∥2 . (10)



Fig. 3. Graphical description of the different steps of our AM-based optimizer. The purple line shows the obstacle-free space estimated by a 360-degree
Octomap distance query from the attractor position pi,r . Steps 1 and 2 (left) jointly define an approximation (orange line) of the boundary of the obstacle-
free boundary. In step 3, the colliding positions (red) are pushed towards the free space using the boundary estimated in steps 1-2. The updated trajectory
of step 3 is used to further refine the free-space boundary estimate in the subsequent iterations. The rightmost figure shows the final output from our
optimizer.

Here, the penalty parameter ρ and the Lagrange multiplier
λi control the residual of the equality constraints. Next,
we apply the AM technique to the relaxed problem. In the
following, left superscript l is used to track the values of the
variable across iterations. That is, l(.) represents the value
of (.) at iteration l.

Step 1: At iteration l + 1, we fix lζi,1 and lζi,3 to the
values obtained at iteration l and only optimize over ζi,2.
Individual optimizations over different α,β in ζi,2 can be
decoupled into parallel problems with similar structures. For
example, the optimization problem for (αi,r,βi,r) can be
reduced to (while ignoring d∗i,r dependency for now):

l+1αi,r,
l+1βi,r=arg min

αi,r,βi,r∥∥Wlci,x − xi,r − ldi,r cosαi,r sinβi,r

∥∥2
+
∥∥Wlci,y − yi,r − ldi,r sinαi,r sinβi,r

∥∥2
+
∥∥Wlci,z − zi,r − ldi,r cosβi,r

∥∥2 . (11)

The solution to (11) can be derived in closed form based
on purely geometric considerations [11]. As shown in Fig. 3
(left), this step can be geometrically interpreted as obtaining
the Octomap distance query directions (black lines) from the
attractor position.

Step 2: In this step, we solve for l+1ζi,3 while using
the known values for lζi,1,

l+1ζi,2. Thus, this step reduces to
decoupled problems over di,c,di,r,di,v,di,a. For example,
the optimization over di,r can be expressed as:

l+1di,r = arg min
di,r≤d∗

i,r∥∥Wl+1ci,x − xi,r − di,r cos
l+1αi,r sin

l+1βi,r

∥∥2
+
∥∥Wl+1ci,y − yi,r − di,r sin

l+1αi,r sin
l+1βi,r

∥∥2
+
∥∥Wl+1ci,z − zi,r − di,r cos

l+1βi,r

∥∥2 . (12)

Since l+1αi,r,
l+1βi,r have already been obtained in the

previous step, we can use them to determine the directional
clearance d∗

i,r from the Octomap queries for each prediction
step k. Thus, (12) reduces to a QP with a closed form
solution [11].

Step 3: In this step, we use the known values of
l+1ζi,2,

l+1ζi,3 to optimize over just ζi,1. This reduction
has two important implications. First, fixing αi,r (from ζi,2

) and di,r (from ζi,3 ) allows us to construct an estimate
of the boundary of the obstacle-free space (orange strip in
Fig. 3 (left)) as pi,r[k] + di,r[k] · ω[k] (recall (8)). Second,
(10) is transformed into an equality-constrained QP with a
closed-form solution. Moreover, geometrically, the effect of
this QP is to push the trajectory positions in collision with
the obstacle towards the boundary of the obstacle-free space
(Fig. 3 (left)). The solution of this step will be fed to the
next iteration. It will lead to further refinement of ζi,2, ζi,3

and consequently an updated definition of the boundary of
the obstacle-free space (Fig.3 (middle)).

A few additional points about our AM-based approach are
worth pointing out. As shown in Fig.3, the description of
obstacle-free space (orange strip) as used by our optimizer
is slightly conservative when compared to the true boundary
(shown in purple). But importantly, by construction the
estimated boundary overlaps with the true boundary for the
colliding trajectory segment.

Step 4: The Lagrange multiplier λi is updated using
the gradient of the penalty term [21]. We increment the
penalty parameter ρ by ∆ρ and repeat Steps 1 to 4 until
the residuals of the penalty term fall below a predefined
threshold. A typical final output is presented in Fig. 3 (right).
We recommend watching the video at the following link:
http://tiny.cc/AMIterViz.

E. Visibility Condition

The performance of our AM optimizer depends on the
position of the attractor pi,r. Empirically, we have observed
the best performance when pi,r is visible from both the
current position (pi,a) and the goal position (pi,g), and vice
versa. The intuition behind this condition is visualized in
Fig. 4. In the left figure of Fig. 4, the visibility condition
is met, ensuring that pi,r, pi,a, and pi,g all lie within the
obstacle-free space constructed around pi,r using Octomap
distance queries. In contrast, when the visibility condition is
not met (for example, when the current position is outside
the constructed obstacle-free space, as shown in the right

http://tiny.cc/AMIterViz


Fig. 4. The visibility condition says that the attractor position pi,r should
be visible from the current pi,a and the goal position pi,g , and vice-versa.
In the left figure, the condition is met indicating all three of them lie in the
same feasible space of the static obstacle avoidance constraints. While in
the right figure, the condition is not met and the AM algorithm may not
find an obstacle-free solution.

figure), using the AM optimizer may lead to infeasible solu-
tions. Similarly, if the goal position lies outside the feasible
obstacle-free space, the quadrotor will not make any progress
toward it, and the generated trajectory will remain confined
to the feasible obstacle-free space. We ensure the visibility
condition by carefully selecting pi,r and incorporating an
intermediate goal selection routine within our pipeline, which
is described in the following section.

F. Discrete Path Planning

We employ an off-the-shelf discrete path planner, A*, on
the prior map and use a simple heuristic for meeting the
visibility condition. This path planner generates an array
qi,gp consisting of obstacle-free positions that connect the
current position to the final goal position. From this array,
we follow a two-step process. We first select the last visible
position from the current position within the array. This se-
lected position becomes our attractor. Next, starting from the
obtained attractor position, we choose the last visible position
as our intermediate goal. As the quadrotor moves, we select
a new attractor and intermediate goal at each planning step.
Eventually, the intermediate goal would converge to the final
goal position. Note that we account for the dimension of the
quadrotor when checking for visibility.

G. Summary of Proposed Approach

Algorithm 1 describes all the components ith quadrotor
would use to navigate in a complex 3D environment. The
input to the algorithm is the current state, desired goal
position and map information. First, the quadrotor i receives
planned trajectories from neighbouring quadrotors, allowing
inter-agent collision avoidance constraints to be formulated.
Second, it runs A* on the prior map to obtain a path.
Third, from this path, an attractor and an intermediate goal
position satisfying visibility conditions are selected for the
formulation of static obstacle avoidance constraints. Finally,
the quadrotor builds the reformulated problem and applies
the AM optimizer to generate the trajectory. These steps are
repeated in the next planning step.

IV. VALIDATION AND BENCHMARKING

This section presents a comprehensive comparison in a
simulation of our proposed approach with state-of-the-art

Algorithm 1 generateTrajectory

Input Current state p
(q)
i,a , Final goal pi,g , Octomap W

Output Trajectory coefficients ζi,1

1: ξj ← NeighbouringQuadrotorsTrajectories
2: qi,gp ← runGridPlanner(pi,a,pi,g ,W)
3: pi,r ← selectAttractorPosition(qi,gp,pi,a)
4: pi,w ← selectGoalPosition(qi,gp, pi,r)
5: buildReformulatedProblem(pi,a,pi,w,pi,r, ξj)
6: ζi,1 ← alternatingMinimization(W)
7: return ζi,1

Fig. 5. We conduct a total of 60 simulation runs of different swarm plan-
ning approaches in a bookstore (left) and random room (right) environment.
The dimension of the environment is 12m×12m×2.5m for the bookstore
and 10m× 10m× 2m for the random room.

baselines [10], [11], [15] and experimental validation. All
simulations and experiments were executed on a PC with
Intel Xeon CPU with 8 cores and 16 GB of RAM, running at
3 GHz. Our simulation evaluation includes two complex en-
vironments: the "bookstore" and the "random room" see Fig.
5. We conducted a total of 60 trials, 30 in each environment,
using swarm sizes from 10 to 50, and all with randomized
start-goal positions. A trial is successful if all quadrotors
reach their designated goal positions within a time limit of
60s while avoiding collisions. The C++ implementation of
the proposed approach, baselines and the parameters used
can be found here: [22]. We refer to our proposed approach
as "AMSwarmX".

A. Distributed Swarm Baselines

We compare AMSwarmX with the following two dis-
tributed swarm baselines:

LSC-Planner [10]: This approach uses Octomap for
environment representation and subsequent construction of
SFC in the form of axis-aligned cuboids [20] for static ob-
stacle avoidance. Inter-agent collision avoidance is achieved
by incorporating ellipsoidal collision avoidance constraints,
which are linearized using the convex hull property of the
Bernstein polynomial. It also employs A* as a high-level path
planner and chooses a visible position from current position
on the planned path as the intermediate goal. The original ap-
proach includes deadlock resolution, but we exclude it in our
comparison to focus on collision avoidance capabilities. Note
that a deadlock resolution strategy can potentially enhance
the performance of any approach. With this baseline, we
showcase the advantages provided by a unified linearization-
free treatment of static and dynamic collision avoidance.

AMSwarmED (combination of [11] and [15]): This
baseline is a combination of our prior work [11] augmented
with the ellipsoidal free space decomposition method to
compute a convex polyhedron [15]. The use of high-level



Fig. 6. Performance comparison of the different approaches in a point-to-
point transition setting with an increasing swarm size. Sixty random trials
were run for each swarm size, and the averages are plotted.

path planner and intermediate goals is the same as the
previous baseline. Since the dynamic inter-agent collision
avoidance part of [11] is the same as our current work, this
baseline essentially validates the efficacy of our implicit non-
convex free space decomposition.

B. Comparative Analysis

Success Rate: Fig. 6 (left) shows the improvement
achieved by the AMSwarmX approach over AMSwarmED
and LSC-Planner. For swarm sizes up to 20, the success
rate of LSC-Planner is similar to that of AMSwarmED,
while AMSwarmX outperforms both approaches. However,
as the swarm size increases, the performance of LSC-Planner
degrades significantly compared to AMSwarmED and AM-
SwarmX. As mentioned earlier, LSC-Planner linearizes the
inter-agent collision avoidance constraints, leading to hyper-
plane constraints that are known to be conservative [11].
Also, the cuboid decomposition of obstacle-free space, es-
pecially in tight space, is conservative. Consequently, the
quadrotors often end up in deadlocks. In contrast, both
AMSwarmED and AMSwarmX can directly handle the
quadratic form of inter-agent collision avoidance constraints
in the optimizer. AMSwarmED performs better than LSC-
Planner, as the convex polyhedron corridor provides larger
free space for the quadrotors to maneuver. However, AM-
SwarmX consistently outperforms both approaches, showing
an improvement of 15%-60%, validating the benefits of our
proposed static obstacle avoidance strategy.

Computation Time: The middle plot in Fig. 6 shows the
computation time per agent for all approaches. There is only
a small (max. 20ms) difference between the mean values for
swarm sizes 10 to 50. This can be attributed to the distributed
nature of the approaches, with each quadrotor solving its own
optimization problem and considering only neighbouring
quadrotors during optimization. AMSwarmX has the lowest
average computation time per quadrotor, showing a 21×
and 23× reduction compared to AMSwarmED and LSC-
Planner, respectively. This is because AMSwarmX adds only
one static obstacle avoidance constraint at each planning
step. In contrast, AMSwarmED adds numerous hyperplane
constraints stemming from the convex polyhedron, and sim-
ilarly, LSC-Planner adds numerous hyperplane constraints
stemming from cuboid corridors. Additionally, LSC-Planner
employs numerous polynomial pieces, which increases the
number of decision variables. It is important to note that the

plot only shows the time required to solve the optimization
problem, while the time taken to generate a discrete path and
a SFC is in the sub-millisecond range.

Mission Time: The rightmost plot in Fig. 6 shows
mission completion times. LSC-Planner performs the worst
due to non-smooth transitions around corners caused by the
cuboid corridors. AMSwarmED, benefiting from a better
decomposition, exhibits smoother transitions compared to
LSC-Planner. AMSwarmX achieves the smoothest transitions
as it better captures the local shape of the free space (see
accompanying video). Cuboid-shaped corridors and convex
polyhedron are overly conservative in tight spaces, making
it difficult for quadrotors to maneuver around each other,
resulting in increased mission completion times. Overall,
AMSwarmX demonstrates a time reduction of 1.75× and
1.87× over AMSwarmED and LSC-Planner, respectively.

C. Experimental Validation

We conducted the experimental validation of AMSwarmX
using our Crazyflie 2.0 swarm testbed in two complex
environments. Trajectories were computed on a single com-
puter, with a CPU thread assigned to each quadrotor. These
computed trajectories were transmitted to the lower-level
controller at each planning step. We provided AMSwarmX
with the Octomap representation. In both scenarios, the
quadrotors perform three transitions: first, the quadrotors
execute a position exchange; next, a random transition; and
finally, they return to their original take-off positions. The
average per-agent computation time, inter-agent distance, and
distance to obstacles were found to be 4.4ms, 0.43m, and
0.37m, respectively. The smallest inter-agent distance and
distance to obstacles were 0.26m and 0.1m, respectively.
The quadrotors successfully complete the task without col-
lisions. The demonstration video can be found here: http:
//tiny.cc/AMSwarmXVideo and also in the submitted
supplementary media file.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have taken a step towards deploying
quadrotor swarms in complex 3D environments. We have in-
troduced a novel approach that addresses dynamic collisions
through shared trajectories without linearization. Meanwhile,
static collisions are handled by exploiting Octomap distance
queries to build an implicit non-convex decomposition of
free space. Our approach allows quadrotors to utilize avail-
able free space more efficiently, and thus, we outperform
SFC-based methods in terms of mission completion time,
success rate, and per-agent computation time. Furthermore,
we have conducted experimental validations of our approach
using a Crazyflie swarm testbed. Our work assumes prior
map information but this requirement can be relaxed. For
instance, our pipeline can be integrated with a high-level
exploration planner [23] that generates paths based on local
map information. Our future research efforts are directed
towards the development of high-level path planners tailored
to specific applications such as warehouse inventory man-
agement, surveillance, and exploration.

http://tiny.cc/AMSwarmXVideo
http://tiny.cc/AMSwarmXVideo
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