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Abstract— This paper presents a scalable online algorithm to
generate safe and kinematically feasible trajectories for quadro-
tor swarms. Existing approaches rely on linearizing Euclidean
distance-based collision constraints and on axis-wise decoupling
of kinematic constraints to reduce the trajectory optimization
problem for each quadrotor to a quadratic program (QP). This
conservative approximation often fails to find a solution in
cluttered environments. We present a novel alternative that han-
dles collision constraints without linearization and kinematic
constraints in their quadratic form while still retaining the QP
form. We achieve this by reformulating the constraints in a
polar form and applying an Alternating Minimization algorithm
to the resulting problem. Through extensive simulation results,
we demonstrate that, as compared to Sequential Convex Pro-
gramming (SCP) baselines, our approach achieves on average
a 72% improvement in success rate, a 36% reduction in
mission time, and a 42 times faster per-agent computation time.
We also show that collision constraints derived from discrete-
time barrier functions (BF) can be incorporated, leading to
different safety behaviours without significant computational
overhead. Moreover, our optimizer outperforms the state-of-
the-art optimal control solver ACADO in handling BF con-
straints with a 31 times faster per-agent computation time and
a 44% reduction in mission time on average. We experimentally
validated our approach on a Crazyflie quadrotor swarm of up
to 12 quadrotors. The code with supplementary material and
video are released for reference.

I. INTRODUCTION

Quadrotor swarms have a great potential in applications
such as search and rescue [1], mapping and environmental
monitoring [2], and payload transport [3]. As compared to
single quadrotors, quadrotors swarms offer increased flexi-
bility, efficiency, and robustness [4].

In this paper, we consider the problem of motion planning
for quadrotor swarms in cluttered environments and treat it
as a trajectory optimization problem to be solved. In this
context, the most straightforward approach is to formulate
one joint optimization problem that computes trajectories for
all quadrotors. Existing works have used both global mixed-
integer linear programming [5] and local optimization-based
Sequential Convex Programming (SCP) [6] approaches for
solving the joint trajectory optimization problem. The so-
lution space of these approaches is large but they quickly
become intractable as the number of quadrotors grows.
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Fig. 1. Experimental demonstration of our distributed alternating minimiza-
tion based approach for quadrotor swarm motion planning in challenging
scenes. Link to video: http://tiny.cc/AMSwarmVideo. Link to
code and supplementary material: https://github.com/utiasDSL/
AMSwarm.

Distributed approaches provide a more scalable alternative,
where each quadrotor solves an independent trajectory opti-
mization problem taking into account the predicted trajecto-
ries of its neighbours [7]–[10]. The predicted trajectories are
often assumed to be shared by the neighbouring quadrotors.
These approaches have successfully demonstrated swarm
motion planning for tens of quadrotors. However, we will
show that their performance in terms of scalability, mission
time, and computation time remains poor in highly cluttered
environments. While there exist works that further incorpo-
rate a high-level discrete planner to improve the swarm per-
formance in cluttered environments [11]–[13], in this work,
we focus on the low-level trajectory optimization problem
and propose an algorithm that addresses the limitations of
existing distributed trajectory optimization baselines.

Some of the limitations of [7]–[9] and other related works
such as [6] and [14] can be attributed to the underlying
trajectory optimizer that relies on axis-wise decoupling of
kinematic constraints and linearization of collision avoidance
constraints. These affine approximations are made to obtain
a quadratic program (QP) that can be solved efficiently.
However, the computational benefits come at the expense
of a reduced solution space. Moreover, while replanning
in a receding horizon setting, the collision constraints are
not active until the planned trajectories intersect with the
neighbouring quadrotors or obstacles [15]. This reduces the
responsiveness of the collision avoidance behaviour. One
way to mitigate this issue is to use a longer prediction
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horizon; however, this increases the computation time.
Our proposed optimizer addresses both limitations dis-

cussed above: the conservativeness of existing approaches
due to approximations and the late responsiveness to neigh-
bouring quadrotors or obstacles. We show that by refor-
mulating the quadratic kinematic constraints and collision
constraints into polar form and applying an Alternating
Minimization (AM) algorithm to the resulting optimization
problem, we can retain a QP without requiring any lineariza-
tion. As a result, we obtain more aggressive motions with
improved metrics for swarm planning, such as mission time
and success rate. Our formulation naturally extends to the
case when collision avoidance is modelled by a discrete-
time barrier function (BF) [15]. This dramatically improves
safety metrics such as clearance to neighbouring quadrotors
and obstacles while incurring no significant computational
cost. To the best of our knowledge, only a few works, such
as [16], [17], have incorporated BF constraints over the entire
planning horizon; most works such as [18] and [19] consider
a one-step reactive planning approach. Among the multi-step
approaches, ours is the first to formulate trajectory planning
with BF constraints as a QP (see Section II-C).

We compare our approach with the SCP baselines from
[7]–[9] and show on average a 72% improvement in success
rate, a 36% reduction in mission time, and a 42 times
faster per-agent computation time. Additionally, we show
that the proposed approach with BF constraints allows us
to introduce different safety behaviours. We further show
that our optimizer’s handling of discrete-time BF constraints
outperforms the state-of-the-art solver ACADO [20] with
a 31 times faster per-agent computation time and a 44%
reduction in mission time on average.

II. DISTRIBUTED MOTION PLANNING PROBLEM

Our goal is to generate smooth, collision-free, and kine-
matically feasible trajectories that navigate N quadrotors
from their initial positions pi,o to their desired goal positions
pi,g in an obstacle-rich and possibly dynamic environment.
The vector p = [x, y, z]T is the three-dimensional position
of the quadrotor, the subscript i is the quadrotor index, and
the subscripts o and g denote initial and goal variables.

Similar to [7], [8], we formulate the quadrotor swarm
motion planning as a distributed trajectory optimization
problem, where the computation for each quadrotor is par-
allelized. At each time step, the quadrotors exchange the
planned trajectories from the previous step and re-optimize
the trajectories towards their goal positions subject to con-
straints. The distributed optimization problem is solved in
a receding horizon fashion until each quadrotor reaches its
goal position.

We note that, in this work, the quadrotors’ trajectories are
optimized online to account for possible dynamic obstacles.
We assume that the obstacles’ current positions and velocities
are available to each quadrotor.

A. Optimization Problem Formulation

At each planning step, the optimization problem solved by
quadrotor i is formulated as follows:

min
pi

wg

K−1∑
k=K−κ

‖pi[k]− pi,g‖2 + ws

K−1∑
k=0

∥∥∥p(q)
i [k]

∥∥∥2 (1a)

s.t. p
(q)
i [0] = p

(q)
i,a , ∀q = {0, 1, 2} (1b)

p � pi[k] � p, ∀k (1c)

‖ṗi[k]‖2 ≤ v2, ∀k (1d)

f2 ≤ ‖p̈i[k] + g‖2 ≤ f2,∀k (1e)

hij [k] =
∥∥Θ−1ij (pi[k]− ξj [k])

∥∥2 − 1 ≥ 0, ∀k, j, (1f)

where k is the discrete-time index, K is the planning horizon
length, ||·|| denotes the Euclidean norm, and the superscript
(q) denotes the q-th time derivative of a variable.

The cost function consists of two terms. The first term
is the goal cost that penalizes the deviation of the position
of the quadrotor from the specified goal position over the
last κ < K steps in the prediction horizon; the second term
is the smoothness cost that penalizes the q-th derivatives of
the position trajectory. The constants wg and ws are weights
trading off the respective cost terms.

The equality constraints (1b) set the initial position of the
trajectory and the higher derivatives to be consistent with
the current values of the quadrotor. The inequalities (1c)-
(1e) enforce bounds on the position (p,p), bounds on the
velocity (−v, v), and bounds on the acceleration (f, f ). The
inequalities (1f) enforce the collision avoidance requirement
with either the j-th neighbouring quadrotor or obstacle with
position ξj [k]. The matrix Θij is a diagonal matrix with
(a, b, c) being its element. These scalars (a, b, c) characterize
the axis lengths of the ellipsoidal envelopes around the
neighbouring quadrotors or the obstacles. The vector g =
[0, 0, g]T is the gravitational acceleration vector, where g is
the acceleration due to gravity.

Alternative Collision Avoidance Constraint: The condition
in (1f) is commonly found in works on quadrotor swarms
(e.g., [7], [8], [13], [21]). A fundamental problem with the
standard collision avoidance constraint (1f) is that these
inequalities do not get activated until the planned trajectory
intersects with the neighbouring quadrotors or obstacles [15].
Due to the receding horizon nature of the planning, a
quadrotor only tries to avoid collisions with its neighbours
or obstacles when it is sufficiently close to them. Increasing
the planning horizon can mitigate this issue but at the cost
of increased computation time. An alternative approach is to
use BF constraints to induce a desired collision avoidance
behaviour [15]:

hij [k]− hij [k − 1] ≥ −γ hij [k − 1], ∀k, j, (2)

where γ ∈ [0, 1] is a constant controlling how fast the
quadrotor is allowed to approach the constraint boundary
given by hij = 0. Smaller values of γ generally result



in more gradual and conservative collision avoidance be-
haviours. With γ = 1, we recover the original collision-
avoidance constraint in (1f).

B. Trajectory Parameterization

We parameterize the x-, y-, and z-position trajectories for
each quadrotor as Bernstein polynomials of degree n. For
instance, the x-position trajectory for the i-th quadrotor is[

xi[0] xi[1] . . . xi[K − 1]
]T

= Wci,x, (3)

where W ∈ RK×(n+1) is the Bernstein basis matrix and
ci,x are the coefficients associated with it. The k-th row
and m-th column element of W is [W]km =

(
n
m

)
(1 −

t/(K − 1)δt)n−m(t/(K − 1)δt)m, where δt is the discrete-
time step size, and t = kδt is the continuous-time variable.
The higher derivatives of the position trajectory have the
general form W(q)ci,x, where W(q) is the q-th derivative of
the Bernstein basis matrix. The position trajectories for the
y- and z-directions are defined in a similar way.

C. Challenges in Solving the Optimization Problem

The optimization problem in (1a)-(1f) is a non-convex
quadratically constrained quadratic program (QCQP). Ex-
isting works (e.g., [6]–[8]) achieve a more favourable QP
form by deriving the convex approximation of (1d)-(1f):
the velocity and acceleration bounds are split into axis-
wise affine bounds, and the non-convex collision avoidance
constraints are approximated as affine constraints through
linearization along a trajectory. These approximations can
lead to a substantial loss of the feasible space (see Fig. 3 in
[22], Fig. 2 in [23]).

Achieving a QP structure with the BF constraints (2) is
even more challenging. To see this, we rewrite (2) as

−hij [k] + (1− γ)hij [k − 1] ≤ 0, ∀k, j. (4)

The constraint is non-convex, and the non-convexity comes
from the first term −hij [k]. If we linearize the first term, we
get an exact but a more conservative convex substitute for the
BF constraint. However, the resulting constraint still remains
quadratic in the decision variables due to the presence of
hij [k − 1]. Linearizing the complete right-hand side of (4)
will lead to a QP form. However, satisfaction of a completely
linearized version may not imply satisfaction of (4) [24].

III. THE ALTERNATING MINIMIZATION ALGORITHM

This section presents our main algorithmic results: an
AM-based linearization-free trajectory optimizer for solving
the motion planning problem introduced in Sec. II-A. We
first present the solution for the case with standard collision
constraints (1f). We then show how it naturally extends to
the BF constraints (2).

A. Constraints Reformulation

In our proposed approach, one key ingredient that enables
us to bring the QCQP problem to a QP form is a polar
reformulation of the quadratic constraints (1d)-(1f). Here we
present a general form of the polar representation presented
in [25] for quadratic constraints.

Consider an inequality of the form ||M(v−v0)||2≤ η2 (or
||M(v − v0)||2≥ η2) with M being a diagonal matrix with
positive entries. The inequality constraint can be equivalently
written in a polar form as follows: f = M(v − v0) −
d ω(α, β) = 0 with d ≤ η (or d ≥ η). Here, ω(α, β) =
[cosα sinβ, sinα sinβ, cosβ]T is a unit direction vector
pointing from v0 to v with α being the azimuthal angle and
β being the polar angle, and the scalar d is the magnitude
of the vector M(v − v0).

Using the polar reparametrization, we can write the
quadratic constraints (1d), (1e), and (1f) as the following
constraint sets:

Ci,v[k] = {ṗi[k] ∈ R3 | fi,v[k] = 0, di,v[k] ≤ v}, ∀k, (5)

Ci,a[k] = {p̈i[k] ∈ R3 | fi,a[k] = 0, f ≤ di,a[k] ≤ f}, ∀k,
(6)

Cij,c[k] = {pi[k] ∈ R3 | fij,c[k] = 0, dij,c[k] ≥ 1}, ∀k, j,
(7)

where the functions fij,c, fi,v , and fi,a are

fi,v[k] = ṗi[k]− di,v[k] ω(αi,v[k], βi,v[k]),

fi,a[k] = p̈i[k] + g − di,a[k] ω(αi,a[k], βi,a[k]),

fij,c[k] = Θ−1ij (pi[k]− ξj [k])− dij,c[k]ω(αij,c[k], βij,c[k]).

Note that (α·,·, β·,·, d·,·) are the parameters of the polar form
representations of the constraints and will be computed by
our optimizer together with the trajectory.

B. Reformulated Problem

Before deriving the final form of our reformulated prob-
lem, we rewrite the polar form constraints derived in the
previous subsection in a compact matrix form. Given the
parametrization in (3), the equality part of constraints (5),
(6), (7) can be represented as

A︷ ︸︸ ︷Ã

Ã

Ã


ζi,1︷ ︸︸ ︷ci,x
ci,y
ci,z

 =

b︷ ︸︸ ︷

di,v cosαi,v sinβi,v
di,a cosαi,a sinβi,a

ξx + adi,c cosαi,c sinβi,c
di,v sinαi,v sinβi,v
di,a sinαi,a sinβi,a

ξy + bdi,c sinαi,c sinβi,c
di,v cosβi,v

−g̃ + di,a cosβi,a
ξz + cdi,c cosβi,c


.

(8)



Here, Ã =
[
ẆT ẄT FTc

]T
, the matrix Fc is con-

structed by vertically stacking the matrix W as many times
as the number of neighbouring quadrotors and obstacles
present in the environment. The vectors (ξx, ξy, ξz) are
formed by vertically stacking the corresponding variables
(ξj,x[k], ξj,y[k], ξj,z[k]) at different time steps of the pre-
diction horizon and for all the neighbouring quadrotors and
obstacles. In a similar fashion, (α·,·,β·,·,d·,·) are formed
by vertically stacking (α·,·[k], β·,·[k], d·,·[k]). The vector g̃ is
formed by vertically stacking g as many times as the length
of prediction horizon.

Using the derivations above, we now write the reformu-
lated optimization problem as

min
ζi,1,ζi,2,ζi,3

1

2
ζTi,1Qζi,1 + qT ζi,1 (9a)

s.t. Aζi,1 = b(ζi,2, ζi,3) (9b)

Gζi,1 � h (9c)

ζi,1 ∈ Cζi,1 , ζi,3 ∈ Cζi,3 , (9d)

where ζi,1 = [cTi,x, c
T
i,y, c

T
i,z]

T , ζi,2 = [αTi,c,α
T
i,a,α

T
i,v, β

T
i,c,

βTi,a, β
T
i,v]

T , and ζi,3 = [di,c, di,a, di,v]
T are the variables

to be optimized. The matrix Q and vector q are formed
from the objective function (1a). The matrix G and vector
h in the inequality constraint (9c) stem from the positional
bounds (1c).

The set Cζi,1={ζi,1 ∈ R3n |Cζi,1 = e} encodes the initial
conditions (1b). Here, the matrix C = [WT

0 , ẆT
0 , ẄT

0 ]T ,
and the subscript 0 represents the 0-th row of the respective
matrices. The vector e = [pTi,a, ṗTi,a, p̈Ti,a]T contains the
current position, velocity and acceleration values. The set
Cζi,3 consists of the conditions on each of the variables
(dij,c,di,v,di,a) derived from the polar reformulation.

C. Relaxation and Solution by AM

The optimization (9a)-(9d) has some hidden convex struc-
tures which makes it suitable for AM-based approaches.
To exploit these structures, we first relax the non-convex
equality (9b) and affine (9c) constraints as penalties in the
following form:

min
ζi,1∈Cζi,1 ,ζi,3∈Cζi,3

1

2
ζTi,1Qζi,1 + qT ζi,1 − 〈λi, ζi,1〉

+
ρ

2

∥∥Aζi,1 − b(ζi,2, ζi,3)
∥∥2 +

ρ

2

∥∥Gζi,1 − h + si
∥∥2 .

(10)

The parameter ρ trades-off satisfaction of constraint residual
with the minimization of primary cost function. The slack
variable si ≥ 0 is unknown, and we discuss shortly how
these are obtained within an AM setup. The vector λi is
called the Lagrange multiplier and is crucial for driving the
constraint residuals to zero [26].

Algorithm 1 summarizes the AM steps for minimizing
(10), wherein the superscript l in l(.) represents the value
of (.) at l-th iteration of the algorithm. At each step of the
AM, only one of ζi,1, ζi,2, ζi,3 are optimized while the rest

are held fixed at values obtained in the previous update. Each
step in Algorithm 1 is either a convex QP or has a closed-
form solution. We discuss these observations below in detail.

Step (S1): We solve for ζi,1 while keeping the other
variables constant. We see that the problem is an equality-
constrained convex QP whose solution boils down to solving
a set of linear equations:

[
Ǎ CT

C 0

] [
l+1ζi,1
µ

]
=

[
lb̌
e

]
, (11)

where the matrix Ǎ=Q + ρGTG + ρATA, the vector
lb̌=q + ρGT (h −l si) + ρAT lb − lλi, and µ are the dual
variables associated with the equality constraints.

Step (S2): We now solve for ζi,2. As an example, the
optimization problem for the variables (αi,c,βi,c) is

l+1αi,c,
l+1βi,c= arg min

αi,c,βi,c∥∥Fcl+1ci,x − ξx − aldi,c cosαi,c sinβi,c
∥∥2

+
∥∥Fcl+1ci,y − ξy − bldi,c sinαi,c sinβi,c

∥∥2
+
∥∥Fcl+1ci,z − ξz − cldi,c cosβi,c

∥∥2 . (12)

The minimization (12) is simply a projection of
(l+1ci,x,

l+1 ci,y,
l+1 ci,z) onto ellipsoids centered at

(ξx, ξy, ξz) and has a closed-form solution [25]. Similarly,
we can obtain (l+1αi,v,

l+1 βi,v) and (l+1αi,a,
l+1 βi,a).

Step (S3): The optimization over di,c involves solving the
following QP:

l+1di,c = arg min
di,c≥1∥∥Fcl+1ci,x − ξx − adi,c cos l+1αi,c sin l+1βi,c
∥∥2

+
∥∥Fcl+1ci,y − ξy − bdi,c sin l+1αi,c sin l+1βi,c

∥∥2
+
∥∥Fcl+1ci,z − ξz − cdi,c cos l+1βi,c

∥∥2 . (13)

Each element of di,c is decoupled from each other. Thus (13)
reduces to parallel single variable QPs, each of which can
be solved in closed form. We clip the resulting solution to
(1,∞) to satisfy the lower bound on di,c (recall the definition
of Cζi,3 ). We obtain di,v and di,a in a similar fashion with
their respective clipping bounds.

Step (S4): The slack variables si is updated based on [27].
Step (S5): The Lagrange multipliter λi is updated using

the approach presented in [26].

D. Incorporating BF Constraints

In (7), di,c[k]=1 corresponds to the boundary of the
feasible set of the collision avoidance constraints (1f). In
other words, dij,c[k]=1 ensures hij [k]=0. Along similar
lines, dij,c[k] < 1 would correspond to the interior of the
set. With this insight, we can define the polar reformulation
of BF constraints in the following form:

Cij,bf [k] = {pi[k] | fij,c[k] = 0,

dij,c[k] ≥ 1 + (1− γ)(dij,c[k − 1]− 1)}, ∀k, j, (14)



Algorithm 1 The AM algorithm used by quadrotor i at each
planning step

1: Initialize lζi,2 = 0, lζi,3 = 0, lλi = 0, lsi = 0 at l = 0
2: while l ≤ maxiter or residuals ≥ thresold do
3:

l+1ζi,1 = arg min
ζi,1∈Cζi,1

1

2
ζT
i,1Qζi,1 + qT ζi,1 − 〈

lλ, ζi,1〉

+
ρ

2

∥∥∥Aζi,1 − b(lζi,2,
lζi,3)

∥∥∥2

+
ρ

2

∥∥∥Gζi,1 − h+ lsi

∥∥∥2

(S1)

l+1ζi,2 =argmin
ζi,2

ρ

2

∥∥∥Al+1ζi,1 − b(ζi,2,
lζi,3)

∥∥∥2

(S2)

l+1ζi,3 =arg min
ζi,3∈Cζi,3

ρ

2

∥∥∥Al+1ζi,1 − b(l+1ζi,2, ζi,3)
∥∥∥2

(S3)
l+1si =max

(
0,−Gl+1ζi,1 − h

)
(S4)

l+1λi =
lλi −

ρ

2
AT

(
Al+1ζi,1 − b(l+1ζi,2,

l+1ζi,3)
)

−ρ
2
GT

(
Gl+1ζi,1 − h+ l+1si

)
(S5)

4: end while

By comparing (7) and (14), we can see that the constraints
differ only in the feasible region definition of dij,c[k]. When
γ=1, the constraints are equivalent.

We integrate (14) into Algorithm 1 through a minor
modification in Step (S3), specifically QP (13). Let ldij,c[k]
be the value of dij,c[k] obtained at the l-th iteration of
Algorithm 1. We can use this value to approximate the
feasible region of dij,c[k] for BF constraints at the (l+ 1)-th
iteration as

dij,c[k] ≥ 1 + (1− γ)(ldij,c[k − 1]− 1). (15)

The right-hand side of (15) is constant, and thus the feasible
region of dij,c[k] for BF constraints is approximated through
a simple lower bound. We can now just solve the QP (13)
and clip the obtained value to this lower bound to solve for
the optimal dij,c[k] at iteration (l + 1).

IV. SIMULATION RESULTS

This section provides a simulation analysis and compari-
son of our approach against the state-of-the-art baselines [7],
[9], [20]. We denote our approach as “Ours (Quadratic)”, and
the “Quadratic” in the parenthesis refers to quadratic kine-
matic constraints. The proposed approach and the baselines
are implemented in C++. The codes are available here [28].
All the simulations were executed on a PC with Intel Xeon
CPU with 8 cores and 16 GB of RAM, running at 3 GHz.

The prediction horizon length is set to K=30 with
a discretization of 0.1s. The Bernstein polynomials used
to parameterize the position trajectories have a degree
of n=10. In the trajectory optimization problem (1a)-
(1f), we set wg=7000, ws=100, κ=5 and penalize
the acceleration (q=2) trajectory in the cost. In the
constraints, we set v=1.73ms−1, f=0.3g and f=1.5g.
For collision avoidance with neighbouring quadrotors,

we set Θij=diag(0.17m, 0.17m, 0.45m), but a colli-
sion is declared with Θcoll=diag(0.13m, 0.13m, 0.40m).
A quadrotor j is considered to be a potential con-
flict for quadrotor i if at any prediction step of the
horizon,

∥∥(Θij + Θp)
−1(pi[k]− ξj [k])

∥∥2≥1 holds, where
Θp=diag(0.2m, 0.2m, 0.2m). Similarly, we choose appro-
priate parameters for the collision constraints with obstacles.
In Algorithm 1, we set maxiter=2000, thresold=0.01, and
the penalty parameter ρ=min(1.3l, 5e105), where l is the
iteration count of the algorithm.

A. Distributed Swarm Baselines

We compare our proposed approach Ours (Quadratic) with
γ=1 with three different distributed swarm baselines:

1) SCP (On-demand) [8]: This approach relies on lin-
earization of collision avoidance constraints and axis-
wise decoupling of the kinematic bounds. It uses a so-
called On-demand strategy where it tries to resolve only
the first predicted collision.

2) SCP (Continuous) [9]: This approach is similar to
SCP (On-demand) but it adds collision constraints over
the entire prediction horizon.

3) Ours (Axiswise): This approach is the same as
Ours (Quadratic) in the sense that it does not rely
on linearizing collision constraints but has axis-wise
kinematic bounds. The maximum and minimum values
for the axis-wise velocity bounds are ±v/

√
3, and the

acceleration limits can be computed such that it satisfies
extreme cases (see (13) and (14) of [6]).

We consider a cluttered environment with 16 cylindrical
static obstacles in a volume of 4m × 4m × 2m and vary
swarms from 10 to 50. We tested the approaches in 100
configurations for each swarm size with randomized start-
goal and obstacle positions. A trial is successful if all
the quadrotors reach their assigned goal positions without
collisions and under a time limit of 20s.

B. Comparative Analysis

Success Rate: The first plot in Fig. 2 summarizes
the improvement achieved by Ours (Quadratic)
and Ours (Axiswise) over SCP (On-demand), and
SCP (Continuous) in the success-rate metric. For swarm
size up to 30, our approaches provide around 11%-
62% improvement over SCP (On-demand) and 1%-19%
over SCP (Continuous). As swarm size increase to 50,
the performance gap between our approaches and the
SCP (On-demand) and SCP (Continuous) swell to 39%-
72%. The explanation is that the SCP baselines replace the
non-convex collision constraints as hyperplane constraints, a
conservative approximation of free space. Furthermore, SCP
(On-demand) adds only a handful of collision constraints
that result in unsafe separation and, ultimately, collisions in
highly cluttered settings. For swarm size 50, we also see
that Ours (Quadratic) has 15% more success rate than Ours
(Axiswise) as the former has larger access to acceleration
and velocity bounds.



Fig. 2. Average performance comparison of approaches in point-to-point
transition setting with an increasing number of swarm sizes in a fixed volume
of 32m3 and with 16 static obstacles. 100 configurations were run for each
swarm size.

Computation Time per Agent: The middle plot in Fig.
2 shows the average computation time per agent for the
different swarm sizes. Both of our approaches have similar
computation time per agent and are substantially faster than
SCP (On-demand) and SCP (Continuous). For the swarm
size of 10 case, we see that our approaches are 1.7 times
faster than SCP (On-demand), and 18.7 times faster than
SCP (Continuous). With a swarm size of 50, our approaches
are still 1.7 times faster than SCP (On-demand) but are 42
times faster than SCP (Continuous). This excellent perfor-
mance of our approaches can be attributed to the fact that
AM optimizer of Algorithm 1 requires us to solve only
one equality-constrained QP per iteration. On the contrary,
the SCP (Continuous) solves constrained QP with a large
number of inequality constraints. Moreover, it has to incor-
porate one slack variable per collision constraint to prevent
potential in-feasibility in the optimization problem. The
strategy of incorporating only the most imminent collision in
SCP (On-demand) offers improvement in computation time
per agent but at the expense of success rate as described
previously.

Mission Time: The rightmost plot in Fig. 2 presents the
average time taken by the swarm to reach their desired goal
positions. We see that SCP (On-demand) performs the worst
as the on-demand strategy leads to agents being closer to
each other and obstacles, thus, slowing down the progress
toward their goals. SCP (Continuous) performs relatively
better than SCP (On-demand), but our approaches have the
lowest mission times. For swarm size 40, we see that Ours
(Quadratic) on average shows 36% and 15% reduction in
mission time than SCP (On-demand) and SCP (Continuous),
respectively. Interestingly, the trends show that Ours (Axis-
wise), on average, completed the task 0.5s-0.9s faster than
Ours (Quadratic).

C. Trade-off Between Performance and Safety

Figure 3 showcases the performance comparison of
Ours (Quadratic) with three different values of γ. We ran
the same 100 configurations and recorded the smallest inter-
agent distance and distance-to-obstacles observed at each
time step. With γ=0.95, we see 3.98%-8.69% improvement
in inter-agent distances over γ=1. The improvements in-
crease to 7.11%-12.35% with a more conservative γ=0.9.

Fig. 3. Average performance comparison of our approach in point-to-
point transition setting with different values of γ in the barrier function
constraints. The environment is of 32m3 in volume and has 16 static
obstacles. For each swarm size, 100 configurations were executed.

Fig. 4. Performance comparison of our approach and ACADO with BF
constraints (γ = 0.9) in antipodal position exchange scenario with no static
obstacles. ACADO could accomodate only a maximum of 8 agents.

We see a similar trend in distance-to-obstacles. This im-
provement in clearance comes at the expense of increased
mission time (see first plot in Fig. 3). We also observed that
the computation time per agent increased with decreasing γ.
For swarm size 50, the average computation time per agent is
1.61ms, 82% increase over γ=1. Nevertheless, our approach
is still real-time.

D. Off-the-shelf Solver Baseline

We now compare Ours (Quadratic) against the optimal
control solver ACADO [20]. ACADO is provided with the
original BF constraints (2), while Ours (Quadratic) uses the
reformulation presented in (14). We ran an antipodal position
exchange with a swarm size of 2, 4, 6, and 8 with no static
obstacles. Figure 4 presents the observed metrics. We see that
the computation time per agent scaling for Ours (Quadratic)
is linear, while for ACADO, it increases quadratically with
the number of agents. Furthermore, Ours (Quadratic) can
complete the task faster than ACADO.

V. EXPERIMENTAL EVALUATION

We tested our approach on our Crazyflie 2.0 swarm
testbed. The quadrotors’ trajectories are computed on a single
computer, and we send position and velocity trajectories to
the underlying lower controller based on [29]. More details
about the testbed can be found here [28].

A video summarizing the experimental results can be
found here: http://tiny.cc/AMSwarmVideo. The al-
gorithm is tested on various challenging scenarios. First, a
12 quadrotor swarm performs a head-on transition where a
single quadrotor is in conflict with other 11 quadrotors at

http://tiny.cc/AMSwarmVideo


a time in an obstacle-free environment. Second, we repeat
the same transition but with 6 static obstacles in the envi-
ronment. We see that our approach navigates the quadrotors
to their desired goals in an agile and smooth manner. Third,
we qualitatively show a 12 drone random transition in an
obstacle-free setting with two values of γ. We see quadrotors
with conservative γ show a safe, evasive behaviour. Lastly,
a formation of 8 quadrotors performs a transition in the
presence of an unpredictable human. With the help of BF
constraints, each quadrotor is able to navigate around the
human safely.

VI. CONCLUSION

We presented a novel contribution toward making quadro-
tor swarm navigation more reliable and scalable. We showed
how to formulate the original problem with quadratic col-
lision and kinematic constraints as a QP without relying
on conservative approximations. Furthermore, our approach
can naturally handle more sophisticated collision avoidance
constraints based on discrete-time BFs. In simulation, our
optimizer significantly outperformed SCP-based approaches
that have been common in recent works. Similarly, our
approach also proved to be more computationally efficient
than the state-of-the-art optimal control solver ACADO when
considering BF constraints. In experiments, we showed the
efficacy of the proposed algorithm in challenging scenarios
in both obstacle-free and cluttered environments.
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