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Abstract— Supplementary material detailing application of
presented methodology Flatness Approach to Predictive Path-
Following (FAPP) - submitted by M.Greeff and A.P. Schoellig
to ICRA2018 - to a quadrotor.

I. INTRODUCTION

This supplementary material details why and how a pre-
sented methodology Flatness Approach to Predictive Path-
Following (FAPP) can be applied to a quadrotor. We briefly
describe the physical derivation of the nonlinear quadrotor
model. We then show that this nonlinear model is indeed
differentially flat and as such we can apply feedforward
linearization. We similarly show the associated path-attached
virtual quadrotor model.

II. NONLINEAR MODEL

We can derive the standard quadrotor model, ẋ = f(x,u),
[1], [2] using newtonian mechanics by consider the rigid-
body dynamics of a quadrotor. We make the following
assumptions in the derivation:

• Aerodynamic effects, including drag, are ignored.
• The center of mass of the quadrotor is aligned with the

origin of the body axis.
• The quadrotor has a symmetric structure.
• Gyroscopic forces are negligeable.

We define geometric variables in Fig. 1. The origin of the
body frame, FB , is placed at the centre of mass of the
quadrotor. The body frame is aligned such that XB and YB
are the physical axes of the quadrotor and ZB is normal
to the hover plane. The linear position of the origin of the
body frame with respect to the inertial frame, FI is defined
as ξ = (x, y, z). We define the orientation of the body frame
with respect to the inertial frame, R = ZψYθXφ where the
euler angles η = (φ, θ, ψ) are the roll, pitch and yaw angles
respectively.
Positional Dynamics: We define the thrust in the body
frame: TB := (0, 0, T ). Considering then that TI = RTB ,
where TI is the thrust in the inertial frame, newton’s second
law gives:

mξ̈ = mG + RI
BTB , (1)
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Fig. 1. Quadrotor Frames for Position and Rotational Dynamics

where G = [0, 0, g = 9.8] m/s2 is the gravity vector,
ξ̈ is the translational acceleration and m is the mass of the
quadrotor.
Rotational Dynamics: We define the angular velocities in
the body frame as υυυ = (p, q, r). Then υυυ = Jηη̇̇η̇η where Jη is
the angular velocity Jacobian matrix:

Jη =

1 0 −Sθ
0 Cφ CθSφ
0 −Sφ CθCφ


Given that the body frame is aligned with the physical axes
of the rotor, we assume the inertial matrix I (with respect to
the body frame, FB) is diagonal:

I =

Ix 0 0
0 Iy 0
0 0 Iz


We define the torques about the respective body frame axes
as τττB := (τφ, τθ, τψ). Again, considering balancing torques
in the body frame, from newton’s second law we have the
angular dynamics:

Iυ̇̇υ̇υ = τττB − υυυ × (Iυυυ) (2)

where υυυ × (Iυυυ) are the centripetal forces.
Defining the state x = (x, y, z, ẋ, ẏ, ż,R, p, q, r) and input

u = (u1, u2, u3, u4) = (T, τφ, τθ, τψ), using (1) and (2), we
can write the quadrotor dynamics in the form ẋ = f(x,u)
where:



f(x,u) =



ẋ
ẏ
ż
0
0
−g

R× [p, q, r]T

(Iy − Iz)qr/Ix
(Iz − Ix)pr/Iy
(Ix − Iy)pq/Iz


+



0 0 0 0
0 0 0 0
0 0 0 0

1
mR1,3 0 0 0
1
mR2,3 0 0 0
1
mR3,3 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 1

Ix
0 0

0 0 1
Iy

0

0 0 0 1
Iz



u

(3)
We also include a model of the dynamics of an

inner loop controller which takes inputs ucmd =
(żcmd, φcmd, θcmd, rcmd), where żcmd is a commanded ve-
locity in z, φcmd and θcmd are commanded roll and pitch
angles and rcmd is a commanded yaw velocity in the body
frame, and outputs u:

z̈d =
1

τIz
(żcmd − ż) (4a)

u1 = m
g + z̈d
R3,3

(4b)

ψd = ψ + τIψrcmd (4c)
rd = rcmd (4d)

pd =
R2,1(R1,3,d −R1,3)−R1,1(R2,3,d −R2,3)

R3,3 · τrp
(4e)

qd =
R2,2(R1,3,d −R1,3)−R1,2(R2,3,d −R2,3)

R3,3 · τrp
(4f)

R1,3,d = sψd
sφcmd

+ cψd
cφcmd

sθcmd
(4g)

R2,3,d = sψd
cφcmd

sθcmd
− cψd

sφcmd
(4h)

u2 =
pd − p
τp

(4i)

u3 =
qd − q
τq

(4j)

u4 =
rd − r
τr

(4k)

where τIz, τIψ, τrp, τr, τp, τq are identified inner loop control
parameters 1.

III. FEEDFORWARD LINEARIZATION
A. Demonstration of Differential Flatness

Recall the formal definition of differential flatness.

Definition 1. A nonlinear system model (1) is differentially
flat if there exists ζζζ(t) ∈ Rm, whose components are
differentially independent, such that the following holds [3]:

ζζζ = Λ(x,u, u̇, . . . ,u(δ)) (5)

x = Φ(ζζζ, ζ̇̇ζ̇ζ, . . . , ζζζ(ρ−1)) (6)

1sα = sin(α) and cα = cos(α)

u = Ψ−1(ζζζ, ζ̇̇ζ̇ζ, . . . , ζζζ(ρ)) (7)

where Λ, Φ and Ψ−1 are smooth functions, δ and ρ are the
maximum orders of the derivatives of u and ζζζ needed to
describe the system and ζζζ = [ζ1, . . . , ζm]T is called the flat
output.

The differential flatness of the quadrotor model (3) is
demonstrated in [1] for flat outputs ζζζ = (x, y, z, ψ). We now
show that the quadrotor with inner loop control dynamics
does not change the differential flatness property of the
original nonlinear quadrotor model. In order to show this we
need to show conditions (5)-(7) for the combined quadrotor
and inner loop dynamic model. We consider the same flat
outputs ζζζ = (x, y, z, ψ) which are differentially independent,
i.e., any output cannot be written in terms of the derivatives
of the other outputs:
Condition (5): Notice that given that the flat outputs ζζζ are
comprised of some terms of state x, condition (5) is shown
by definition.
Condition (6): Similarly, condition (6) holds for the transla-
tional states, i.e., (x, y, z) and (ẋ, ẏ, ż), of x by definition of
the flat outputs. We are then left to derive R and (p, q, r)in
terms of the flat state. We begin by writing R in terms of its
column vectors and considering the translational acceleration
(from (1)) in the standard quadrotor model:

a =

 ẍ
ÿ

z̈ + g

 =

 ζ̈1
ζ̈2

ζ̈3 + g

 =
T

m
zIB (8)

where we defined R ≡ RI
B = [xI

B yI
B zIB] in terms of

column vectors. Using the fact that zIB is a unit vector and
T
m is a scalar we have zIB = a

||a|| . As in [1], we introduce
an intermediate frame C produced by rotation, RI

C =
[xI

C yI
C zIC], of ψ about the inertial z-axis and make

the observation that xI
C lies in the zIB − xI

B plane. Given
that yI

B is normal to the zIB − xI
B plane we can determine

yI
B =

zI
B×x

I
C

||zI
B×x

I
C||

and xI
B = yI

B×zIB. Consequently, we have
shown R to be a function of the flat outputs and some of
their derivatives.

We now show the same for (p, q, r) by differentiating (8):

ȧ =
Ṫ

m
zIB +

T

m
(ωωωI

B × zIB), (9)

where ωωωI
B = pxI

B + qyI
B + rzIB. Plugging the defintion of

ωωωI
B into (9) reduces:

ȧ =
Ṫ

m
zIB +

T

m
(−pyI

B + qxI
B), (10)

From the third component in (8) we have T
m = z̈+g

R3,3
which

after differentiation gives:

Ṫ

m
=

...
zR3,3 − (z̈ + g)Ṙ3,3

R2
3,3

(11)



where from the standard quadrotor model Ṙ = R×[p, q, r]T

and therefore Ṙ3,3 = R3,1q − R3,2p. Plugging T
m and Ṫ

m
from (11) into (10) allows us to solve for p and q as [p, q]T =
M1

−1n1 where:

M1 =

[
R3,2R1,3−R1,2R3,3

R3,3

R1,1R3,3−R3,1R1,3

R3,3
R3,2R2,3−R2,2R3,3

R3,3

R2,1R3,3−R3,1R2,3

R3,3

]

n1 =

[ ...
xR3,3−

...
zR1,3

z̈+g...
yR3,3−

...
zR2,3

z̈+g

]
Furthermore, as in [?], considering the third component of
ωωωI

B = ωωωC
B +ωωωI

C gives r = ψ̇R3,3. We have shown condition
(6) of differential flatness.
Condition (7): We demonstrate condition (7) by showing
ucmd as a function of the flat outputs ζζζ and their derivatives.
First, we substitute u1 in (4b) into (8) and observe that z̈d =
z̈. We substitute this result into (4a) which after rearranging
gives:

żcmd = ż +
1

τIz
z̈ (12)

which is a function then of the flat state z up to its second
derivative.

Next we find φcmd and θcmd by first taking the derivative
of (10) with respect to time:

ä =
T̈

m
zIB+2

Ṫ

m
(ωωωI

B×zIB)+
T

m
ωωωI

B×ωωωI
B×zIB+

T

m
αααI
B×zIB,

(13)
whereαααI

B = ṗxI
B+q̇yI

B+ṙzIB. We notice that we can already
compute the terms 2Ṫ (ωωωI

B × zIB) and TωωωI
B × ωωωI

B × zIB in
terms of flat outputs and their derivatives. We also have that
αααI
B × zIB = −ṗyI

B + q̇xI
B from the definition of αααI

B. By
taking the derivative of (11) we can compute T̈ , which after
incorporating Ṙ3,1 = R1,1q −R1,2p and Ṙ3,2 = R2,1q −
R2,2p, we can plug into our relation for ä in (13) along with
the remaining known quantities to solve for ṗ and q̇ in terms
of the flat outputs and their derivatives. Taking the derivative
of ψ̇R3,3 gives the relation for ṙ.

Now considering the rotational dynamics (2) in the stan-
dard quadrotor model and using our relations for p, q, r and
ṗ, q̇, ṙ we can determine u2, u3, u4 in terms of the flat outputs
and their derivatives. Plugging u2, u3, u4 into (4i)-(4k) we
can solve for pd, qd, rd in terms of the flat outputs and their
derivatives. From (4d) we have ψ̇cmd = rd. We use (4g) and
(4h) to find R1,3,d and R2,3,d which when using (4c) in (4e)
and (4f) allows us to solve for θcmd and φcmd in terms of the
flat outputs and their derivatives. We have demonstrated that
conditions (5)-(7) hold and the standard quadrotor including
inner loop controller model is differentially flat.

B. Feedforward Linearization

From the demonstration of the differential flatness of the
quadrotor and inner loop dynamics, we can define flat state:

z = (x, ẋ, ẍ,
...
x, y, ẏ, ÿ,

...
y , z, ż, z̈,

...
z , ψ, ψ̇)

and flat input

v = (x(4), y(4), z(4), ψ̈).

As explained in [], we can then equivalently rewrite the
nonlinear quadrotor model (3) as:

ż = Az + Bv (14)

v = Ψ(z,u, u̇, . . . ,u(σ)), (15)

where (14) is the linear flat model and the inverse of
(15) is given by (7), which we can determine as shown in
the preceding section by demonstrating condition (7) for the
nonlinear quadrotor model.

We therefore consider (14) in the model predictive control
framework which outputs the next desired flat state zd and
input vd which we then feed through the inverse (7) as:

ucmd = Ψ−1(zd,vd).

IV. PATH-FOLLOWING

We consider a path-attached virtual quadrotor, with an
associated path dynamic model the path-attached virtual
quadrotor state s(t) ∈ Rρ, the path-attached virtual quadrotor
input w(t) ∈ R and g a smooth function, attached to a
parametrized geometric path in the flat output space:

P = {ζζζref ∈ Rm| ζζζref = p(θ(t)), θ ∈ [θ0, θ1]}. (16)

Considering ρ = 4 (the maximum derivative of flat output
in derivation of condition (7)), the associated path dynamic
model is given by the linear path dynamic model for a virtual
quadrotor vehicle is given by ṡ = Aps + Bpw [4] where:

Ap =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



Bp =


0
0
0
1


with s = (θ, θ̇, θ̈,

...
θ ).

V. PREDICTIVE CONTROL

We recall the aim of FAPP: Given a quadrotor that can be
represented by a differentially flat nonlinear model (3) and a
geometric path to be followed (16), design the flat input v(t)
and path-attached virtual quadrotor input w(t) such that the
following is satisfied: At every time step k, solve the OCP:

min
v̂,ŵ

J(ẑ, v̂, ŝ, ŵ), (17)

where we consider the sequence of predicted flat states ẑ,
flat inputs v̂, path states ŝ and path inputs ŵ. This OCP
is subject to the equivalent linear flat model in (14), the



linear path dynamic model in (which gives a corresponding
reference flat state, zref , through path parameterization (14))
and linear constraints on the optimization variables (the flat
inputs and path inputs).

Straight Line Path Following: We consider the aim of
FAPP and optimization problem in equation (17). Then for
a straight line Bézier curves, the reference flat state ζζζref =
p(θ) =

∑q
j=0

(
q
j

)
(1− θ)q−jθjPj, θ ∈ [0, 1], where q = 1:

ζζζref =


xref (θ)
yref (θ)
zref (θ)
ψref (θ)

 = P0(1− θ) + P1(θ). (18)

Taking up to the third derivative of (18), we can determine
the reference flat state:

zref = Πs + Π0

where:

Π =



P1,x − P0,x 0 0 0
0 P1,x − P0,x 0 0
0 0 P1,x − P0,x 0
0 0 0 P1,x − P0,x

P1,y − P0,y 0 0 0
0 P1,y − P0,y 0 0
0 0 P1,y − P0,y 0
0 0 0 P1,y − P0,y

P1,z − P0,z 0 0 0
0 P1,z − P0,z 0 0
0 0 P1,z − P0,z 0
0 0 0 P1,z − P0,z

P1,ψ − P0,ψ 0 0 0
0 P1,ψ − P0,ψ 0 0



Π0 =



P0,x

0
0
0

P0,y

0
0
0

P0,z

0
0
0

P0,ψ

0


where P0 = (P0,x, P0,y, P0,z, P0,psi) and P1 =
(P1,x, P1,y, P1,z, P1,psi) are the control points for a straight
line Bézier curve and we vary the path parameter θ (based
on distance along the path) between 0 and 1.

We then discretize the linear flat model (14) and linear
path model:

zk+1 = Adzk + Bdvk.

sk+1 = Apdsk + Bpdwk.

Given a current measured flat state, z0, and a current path
state, s0, we write lifted forms, for N prediction steps, of
our discretized models:


z1
z2
...

zN


︸ ︷︷ ︸

ẑ

=


Ad

A2
d

...
AN

d


︸ ︷︷ ︸

Â

z0 +


Bd 0 0 . . . 0
AdBdBd 0 . . . 0
...

. . .
. . .

AN−1
d Bd . . .AdBdBd


︸ ︷︷ ︸

B̂


v1

v2

...
vN


︸ ︷︷ ︸

v̂

,
(19)

ŝ = Âps0 + B̂pŵ. (20)

A potential form of the cost function J in (17) is:

J =
1

2

N∑
i=1

(z− (Πs + Π0))TQ(z− (Πs + Π0))

+
1

2

N∑
i=1

(z− zcmd)
TS(z− zcmd)

+
1

2

N∑
i=1

vi
TRvi +

1

2

N∑
i=1

wi
TRpwi

where the first term weights the positional error between the
quadrotor and the path-attached virtual quadrotor, the second
term more the quadrotor forward by weighting the velocity
error between the quadrotor velocity and a desired velocity.
The final two terms are regularization terms on the snaps
(flat inputs) of the quadrotor and virtual quadrotor.
We then define the expanded forms of our weight ma-
trices: Q̂ ∈ RNρ̄×Nρ̄ where Q̂ = diag(Q) and sim-
ilarly for Ŝ, R̂ and R̂p. Further, we define: Π̂ =
diag(Π), Π̂0 = [Π0,Π0, . . . ,Π0]T and ẑcmd =
[zcmd,1, zcmd,2, . . . , zcmd,N ]T . We rewrite (17) using (19)
and (20) and these expanded matrices. Expanding we obtain
the quadratic cost:

J(ṽ) =
1

2
ṽTHṽ + fT ṽ

where ṽ =
[
v̂T ŵT

]T
with

H =

[
B̂T Q̂B̂ + B̂T ŜB̂ + R̂ − B̂T Q̂Π̂B̂p

−B̂T
pΠ̂T Q̂B̂ B̂T

p (Π̂T Q̂Π̂)B̂p + R̂p

]
,

f =

[
f1
f2

]
,

with f1 = (z0
T ÂT − s0

T ÂT
pΠ̂T − Π̂T

0 )Q̂B̂ +

(z0
T ÂT − zcmdT )ŜB̂ and f2 = −z0

T ÂT Q̂Π̂B̂p +
s0
T ÂT

pΠ̂T Q̂Π̂B̂p + Π̂T
0 Q̂Π̂B̂p.

VI. CONSTRAINTS

We generally considered two sets of constraints on the
quadrotor: the first is a constraint on the body rates and the
second is a constraint on the total thrust. In this supple-
mentary material, we focus on the second constraint on the
maximum thrust [2] which is given as:



ẍ2 + ÿ2 + (z̈ + g)2 ≤ f2
max

where fmax is the maximum total thrust T that the quadrotor
can produce. The discretized version of the constraint can
be put in lifted form resulting in an inequality that is
quadratic in ẑ. We do this by first defining G̃ ∈ R3N

where G̃3k = g k = 1, . . . , N and M̃ ∈ R3N×14N where
M̃3k+1,14k+3 = 1, M̃3k+2,14k+7 = 1, M̃3k+3,14k+11 =
1 k = 0, . . . , N − 1. Further after writing F ∈ R3N where
Fk = f2

max k = 1, . . . , N , we can rewrite our maximum
thrust constraint as:

(M̃ẑ + G̃)T (M̃ẑ + G̃) < F

.
Plugging in our expanded discretize model for ẑ, we make

the assumption that the quadratic coefficient B̂TM̃TM̃B̂ is
relatively small. We justify this because this term contains
squares of relatively small values in B̂, obtained through
discretization of the linear flat model (14).

We, therefore, reduce the maximum thrust constraint to a
linear constraint on the optimization variables v̂:

Aconv̂ ≤ Bcon

where

Acon = 2z0
T ÂTM̃TM̃B̂ + 2GTM̃B̂

and

Bcon = F−GTG− 2GTM̃Âz0 − z0
T ÂTM̃TM̃Âz0.

REFERENCES

[1] D. Mellinger and V. Kumar, “Minimum Snap Trajectory Generation
and Control for Quadrotors,” in Proc. IEEE International Conference
on Robotics and Automation (ICRA), 2011, pp. 2520-2525.

[2] M.W. Mueller and R. D’ Andrea, “A model predictive controller for
quadrocopter state interception,” in Proc. European Control Confer-
ence (ECC), 2013, pp. 1383-1389.

[3] M. Fliess, J. Lévine, P. Martin and P. Rouchon, “Flatness and defect of
non-linear systems: introductory theory and examples,” International
Journal of Control, vol. 61, no. 6, pp. 1327-1361, 1995.

[4] T. Faulwasser and V. Hagenmeyer, and R. Findeisen, “Optimal ex-
act path-following for constrained differentially flat systems,” IFAC
Proceedings Volumes, vol. 44, no. 1, pp. 9875-9880, 2011.


	INTRODUCTION
	NONLINEAR MODEL
	FEEDFORWARD LINEARIZATION
	Demonstration of Differential Flatness
	Feedforward Linearization

	PATH-FOLLOWING
	PREDICTIVE CONTROL
	CONSTRAINTS
	References

