



### 151-0566-00 Introduction to Recursive Filtering and Estimation (Spring 10)

# Class Website

All information concerning the class: announcements, class facts, problem sets, etc.

http://www.idsc.ethz.ch/Courses/recursive\_filtering

Please check regularly. Announcements concerning the class are only made on the website.

## Description

#### **Contents:**

Probability review; Bayes theorem; recursive estimation using Bayes theorem; introduction to estimation; standard Kalman filter; extended Kalman filter; particle filtering.

#### Notes:

Notes available online: *Introduction to Estimation and the Kalman Filter* by H. Durrant-Whyte and other notes.

#### **Requirements:**

Introductory probability theory and matrix-vector algebra.

### **Class Facts**

| Instructor          | Prof. Raffaello D'Andrea, rdandrea@ethz.ch                                                                                                                                                                                                                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Teaching Assistants | Angela Schöllig, aschoellig@ethz.ch<br>Sebastian Trimpe, strimpe@ethz.ch                                                                                                                                                                                                                  |
| Lecture             | Wednesday, 13:15 to 15:00, NO C $6$                                                                                                                                                                                                                                                       |
| Exercise            | Wednesday, 15:15 to 16:00, NO C $6$                                                                                                                                                                                                                                                       |
| Office hours        | By appointment (please send an e-mail to the teaching assistants).                                                                                                                                                                                                                        |
| Exam                | Final exam during the examination session, covers all material.                                                                                                                                                                                                                           |
| Grading             | 40% quiz/programming exercises, 60% final exam if the grade for<br>the quiz and programming exercises is better than the grade in the<br>final exam;<br>100% final exam otherwise.                                                                                                        |
|                     | Only the two best grades from the quiz and the programming exercises will count towards the $40\%$ above.                                                                                                                                                                                 |
|                     | PhD students will get credits for the class if they pass the class (final grade of 4.0 or higher).                                                                                                                                                                                        |
| Repetition          | The final exam is only offered in the session after the course unit.<br>Repetition is only possible after re-enrolling. Students who took the<br>class in Spring 09 and have to retake the course should inform the<br>teaching assistants <b>before the beginning of the new class</b> . |

### Lectures

| #  | Date   | Торіс                                    | Reading*        |
|----|--------|------------------------------------------|-----------------|
| 1  | Mar 03 | Probability Review                       | 1, 2            |
| 2  | Mar 10 | Probability Review                       | 1, 2            |
| 3  | Mar 17 | Bayes Theorem                            | 1, 2            |
| 4  | Mar 24 | Recursive Estimation using Bayes Theorem | 1, 2            |
| 5  | Mar 31 | Introduction to Estimation               | 3               |
| _  | Apr 07 | Easter break                             | _               |
| 6  | Apr 14 | Standard Kalman Filter                   | 4, 5, 6         |
| 7  | Apr 21 | Standard Kalman Filter                   | 4, 5, 6         |
| 8  | Apr 28 | Extended Kalman Filter                   | 7               |
| -  | May 05 | no lecture and exercise class            | -               |
| _  | May 12 | no lecture and exercise class            | _               |
| 9  | May 19 | Particle Filtering                       | to be announced |
| 10 | May 26 | Particle Filtering                       | to be announced |
| _  | Jun 02 | no lecture and exercise class            | -               |

\* Introduction to Estimation and the Kalman Filter by H. Durrant-Whyte.

# Quizzes and Programming Exercises

During the semester, there will be a graded quiz and programming exercises, which can be used to improve the final grade for the course (see "grading" above). The quiz will take place at the beginning of the lecture and will test the student's understanding of the corresponding topic. The programming exercises will require the student to apply the lecture material.

Up to three students can work together on the programming exercises. If they do, they have to hand in one solution per group and will all receive the same grade.

| #  | Туре        | Topic                                                         | Dates                           |
|----|-------------|---------------------------------------------------------------|---------------------------------|
| Q1 | Quiz        | Probability, Bayes Theorem, Estimation<br>(Lectures #1 to #5) | Apr 14                          |
| P1 | Programming | Kalman filter                                                 | Apr 28 (issued)<br>May 12 (due) |
| P2 | Programming | Particle filter                                               | May 26 (issued)<br>Jun 09 (due) |

## Problem Sets

We will make sets of problems and solutions available online for the chapters covered in the lecture. It is the student's responsibility to solve the problems and understand their solutions. The teaching assistants will answer questions in office hours and some of the problems might be covered during the exercise classes.

| # | Торіс                                                   |
|---|---------------------------------------------------------|
| 1 | Probability review                                      |
| 2 | Bayes theorem, recursive estimation using Bayes theorem |
| 3 | Introduction to estimation                              |
| 4 | Kalman filter                                           |
| 5 | Particle filter                                         |